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with a size in the 100 nm range. In a typical EWDLS experiment,

a laser beam is totally reflected off a glass-solution interface, and

an evanescent wave is then created as illumination source. The

penetration depth of the evanescent wave can be tuned by varying

the incident angle. Particles located in the volume illuminated by

the evanescent wave scatter light which is collected by a detect-

ing unit and passed down to a correlator to generate the intensity

time autocorrelation function (IACF). Since the method has been

devised by Lan et al.11, it has witnessed rapid development. In

early attempts, EWDLS has been applied to study translational

diffusion of spherical colloids in dilute solutions12–17. With a

set-up which allows independent variation of the components

of the scattering vector Q‖, Q⊥, parallel and perpendicular to

the surface, respectively, it is possible to distinguish between the

anisotropic diffusivity of colloidal spheres in these directions ex-

perimentally18,19. EWDLS has also been employed to study the

dynamics of stiff polymers adsorbed to the interface20, as well as

the collective motion of end-grafted polymer brushes 21,22; near-

wall diffusion of a spherical particle in a suspension of rod-like

depletants23 and colloidal dumbbells24; and rotational diffusion

of optically anisotropic spheres 25,26. Notably, evanescent waves

have also been used for near-wall nano-velocimetry 27,28, and to

probe dynamics at liquid-liquid interfaces29.

Recent years have brought increasing interest into the effects

of confinement on collective dynamics of colloids. To this end,

EWDLS experiments have been performed on hard-spheres sus-

pensions with volume fractions up to 42 percent by Michailidou

et al. 30,31, along with theoretical developments32. On the basis of

a heuristic approximation for the near wall self-diffusivity, these

works suggest that for a concentrated suspension, many-particle

hydrodynamic interactions are diminished at high volume frac-

tions due to the presence of the wall, which is there referred to as

’screening out’. In this paper we qualitatively confirm this obser-

vation. However, we provide a more quantitative method to de-

termine the near-wall self-diffusion coefficients and we are able

to show the diminishment of HI affects the self-diffusivity normal

and parallel to the interface to a different extent. This becomes

possible using the virial approximation for the initial decay rate of

the scattered electric field autocorrelation function (EACF), which

we described in our earlier contribution33. There we presented a

detailed discussion of the derivation of exact expressions for the

first cumulant (i.e. initial decay rate) of the EACF in a concen-

trated suspension of hard spheres. After constructing an appropri-

ate theoretical framework based on the Smoluchowski equation,

we have presented two methods for practical calculations of the

first cumulant: the virial expansion, and precise multipole simula-

tions. While the latter may be used for high accuracy calculations

at any volume fraction of the suspension, the virial expansion is

expected to correctly reproduce the experimentally measured cu-

mulants up to moderate concentrations.

The aim of this paper is to present our results on near-wall

dynamics in a model hard-sphere system, viewed in EWDLS ex-

periments. For the first time we provide a thorough analysis of

the scattering vector dependence of the first cumulant, which al-

lows us to assess the range of volume fractions where the virial

approximation can be used to describe the experimental data. By

tuning the suspension volume fraction and the penetration depth,

we are able to investigate the effect of HI-diminishment for high

concentrations and its anisotropy in a more convincing way than

proposed earlier 30,31. Comparing to virial expansion results and

simulations, we are able to assess the validity of the former ap-

proximate scheme at higher volume fractions. We also discuss in

detail the colloidal near-wall self-diffusivity which may be deter-

mined from our results in a similar way as proposed for the cor-

responding bulk property by Pusey34, Segré35 et al and Banchio

et al36 and analysed theoretically by Abade et al37.

The paper is organised as follows. After a short review of the

theoretical foundations (section 2) and the details of the numer-

ical simulations (section 4), we describe the details of sample

preparation, the evanescent wave light scattering setup and the

data analysis in section 5. The experimental EWDLS data are

compared to the theoretical predictions in the result and discus-

sion section 6 where we also confront our predictions to data pub-

lished earlier and discuss the progress we make here beyond the

state of earlier contributions 30,31. Finally we summarize our re-

sults in the conclusion section 7.

2 Theoretical description

We consider an ensemble of N identical spherical particles of ra-

dius a immersed in a Newtonian solvent of viscosity η. The fluid

is bounded by a planar no-slip wall at z = 0.

In EWDLS experiments, the scattered light intensity time au-

tocorrelation function g2(t) is measured, from which the nor-

malised scattered electric field correlation function ĝ1(t) (EACF)

is calculated. Since the scattered electric field Es depends on the

configuration of the system, i.e. the positions of the particles, its

fluctuations can be related to the diffusive dynamics of near-wall

particles. The initial decay of the EACF is exponential in time

ĝ1(t) =
〈Es(t)E

∗
s (t = 0)〉

〈|Es(t)|2〉
∼ exp(−Γt) as t → 0, (1)

with Γ being the first cumulant, similarly to bulk DLS38. How-

ever, there are two important differences to the bulk case. Firstly,

the sample is illuminated by a non-uniform evanescent wave. Its

intensity decays exponentially with the distance z from the wall

as exp(−κz), thus restricting the scattering volume to a wall-

bounded region with a thickness of order κ−1. The particles stay-

ing closer to the boundary receive more intensity and yield the

strongest signal. The instantaneous scattered electric field is then
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given for an ensemble of N particles as33

Es ∼
N∑

j=1

exp
(
−
κ

2
zj
)
exp (iQ · rj) , (2)

where rj is the position of the centre of sphere j, Q is the scatter-

ing vector and zj = rj · êz, with êz being a unit vector normal to

the wall.

Secondly, the mobility of the particles is strongly hindered by

the presence of the wall. The boundary reflects the flow incident

upon it, leading to an increase of friction, and thus a slow-down

of colloidal dynamics. The effect is more pronounced for par-

ticles staying close to the surface where their mobility becomes

distance-dependent. This information is encoded in the hydro-

dynamic mobility tensor µ
w
ij which describes the velocity Ui the

particle i acquires due to the force Fj applied to the particle j

Ui = µ
w
ij · Fj . (3)

For non-interacting spheres in a wall-bounded fluid, the tensors

µ
w
ij become diagonal in particle indices, but retain the anisotropic

structure which follows from the invariant properties of the sys-

tem,

µ
w
ij = δij [µ

w
‖ (1− êz êz) + µw

⊥êz êz]. (4)

where 1 is the unit tensor, and µw
‖,⊥ are scalar mobilities for

motion parallel and perpendicular to the boundary. In the ab-

sence of the wall, the mobility tensor becomes isotropic, with

µ‖ = µ⊥ = µ0 = 1/6πηa being the Stokes mobility of a spherical

particle. It follows from the fluctuation-dissipation theorem that

the Stokes-Einstein diffusion coefficient D0 is given by kBTµ0,

where kB is the Boltzmann constant, and T denotes the temper-

ature. The same relation holds between the many-particle diffu-

sion matrix D and the mobility tensor µw.

Using the Smoluchowski equation formalism, Cichocki et al.33

derived an analytical expression for the first cumulant measured

in an EWDLS experiment for a suspension of spherical particles,

Γ = D0

[κ
2
êz − iQ

]
·
Hw(κ,Q)

Sw(κ,Q)
·
[κ
2
êz + iQ

]
, (5)

where the hydrodynamic function reads

Hw(κ,Q) =
κ

µ0nA

N∑

i,j

〈
exp

[
−
κ

2
(zi + zj)

]
µ

w
ij exp [iQ · (ri − rj)]

〉
,

(6)

and the wall-structure factor is given by

Sw(κ,Q) =
κ

nA

N∑

i,j

〈
exp

[
−
κ

2
(zi + zj)

]
exp [iQ · (ri − rj)]

〉
.

(7)

Here, nA/κ is the number of particles within the illuminated scat-

tering volume, with n being the bulk particle number density, and

A is the illuminated wall area. The brackets 〈. . .〉 denote ensem-

ble averaging. Eq. (5) is a generalisation of the bulk result for

concentrated suspensions39

Γ = D0Q
2H(Q)

S(Q)
, (8)

which corresponds to the limit of infinite penetration depth or

κ → 0.

Decomposing the scattering vector into components parallel

and perpendicular to the wall,

Q = Q‖ +Q⊥ = Q‖ê‖ +Q⊥êz, (9)

where ê‖ is a unit vector in the direction of Q‖ and using the in-

variant properties of the system, we arrive at the following struc-

ture of the first cumulant

Γ =
D0

Sw

[(
κ2

4
+Q2

⊥

)
H⊥ +Q2

‖H‖ +
κ

2
Q‖HI +Q‖Q⊥HR

]
,

(10)

where

H⊥ = êz ·Hw(κ,Q) · êz, (11)

H‖ = ê‖ ·Hw(κ,Q) · ê‖, (12)

HI = êz · 2Im[Hw(κ,Q)] · ê‖, (13)

HR = ê‖ · 2Re[Hw(κ,Q)] · êz, (14)

with Im and Re standing for the imaginary and real part, respec-

tively. The coefficients H as well as Sw may be either evaluated

numerically using the virial expansion approach, or by extracted

from numerical simulations. Both techniques are briefly described

in the course of this work. The expressions given above are valid

for an arbitrary wall-particle interaction potential. Further on, we

restrict to hard-core interactions.

In the dilute regime, the hydrodynamic function and structure

factor have only single-particle contributions, from which it fol-

lows that HI = HR = 0. The surviving parts D0H‖/Sw and

D0H⊥/Sw in Eq. (10) simplify then to the single-particle average

diffusion coefficients
〈
D‖

〉
κ

and 〈D⊥〉κ, respectively, in agree-

ment with the notation proposed in earlier works17–19. In the

case of hard-core sphere-wall interactions, the penetration-depth

average (in the dilute limit) reads

〈. . .〉
κ
= κ

∫ ∞

a

dz e−κ(z−a)(. . .). (15)

We may now explicitly write the first cumulant in this case as 18,19

Γ = Q2
‖

〈
D‖

〉
κ
+

(
κ2

4
+Q2

⊥

)
〈D⊥〉κ . (16)
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The averaged diffusivities
〈
D‖,⊥

〉
κ

have been calculated as func-

tions of κa in Ref.17.

Importantly, this is also the case in the limit of Q‖ → ∞ or

Q⊥ → ∞, where only the self-parts of Hw and Sw survive. The

cumulant may then be expressed using the self-diffusion tensor

Ds which is defined as the initial slope of the mean square dis-

placement tensor of a tracer particle located at a height z at t = 0,

viz.

D
s(z) =

1

2

d

dt
〈∆r(t)∆r(t)〉

t=0 , (17)

where ∆r(t) is the displacement vector of the tracer particle dur-

ing the time t. The tensor Ds may be expressed in terms of the

mobility matrix µ
w, as we have shown in Ref. 33. Thus, the cumu-

lant may be approximated for sufficiently large Q‖ or Q⊥ by

Γ ≈ Q2
‖

〈
Ds

‖

〉
κ
+

(
κ2

4
+Q2

⊥

)
〈Ds

⊥〉κ , (18)

where Ds
‖,⊥ are the components of the self-diffusion tensor

Ds(z), with the average given by

〈
Ds

‖,⊥

〉
κ
=

∫ ∞

0

dz e−κzg(z)Ds
‖,⊥(z)

∫ ∞

0

dz e−κzg(z)

, (19)

and g(z) being the single-particle distribution function. Its defini-

tion reads

ng(z) = N

∫
dr2 . . .

∫
drN Pw

eq(R), (20)

where Pw
eq(R) is the equilibrium probability density function (in

the presence of a wall) for the system to be at a configuration

R = {r1, . . . , rN}. The quantities in Eqs. (6), (7), and (20), are

taken in the thermodynamic limit, which has been discussed for

a wall-bounded system in Ref. 33. In a dilute system with hard

sphere-wall interactions, and when interactions between the par-

ticles may be neglected, the average (19) reduces to the formula

(15).

3 Virial expansion

For moderately concentrated systems, calculations of the

wall structure factor Sw and the components of the wall-

hydrodynamic tensor Hw may be performed by expanding them

in terms of powers of bulk-particle concentration n far from the

wall. The procedure has already been elaborated in great detail in

Ref.33. Thus, we refrain here from the technical aspects, focusing

on the resulting expressions.

The small dimensionless parameter in the density expansion is

the bulk volume fraction,

φ =
4π

3
a3n, (21)

instead of the concentration n. The virial expansion of the wall-

structure factor (7) reads

Sw(κ,q) = S(1)(κ) + φS(2)(κ,q) +O(φ2). (22)

The coefficient S(1) and the self-part of S(2) may be found ana-

lytically as as

S(1) = e−κa, (23)

S
(2)
self =

2e−κa

(κd)3
[6− 3(κd)2 + 2(κd)3 − 6e−κd(1 + κd)]. (24)

with the particle diameter d = 2a. The distinct part of S(2) has to

be evaluated numerically. The analogous virial expansion of the

wall hydrodynamic tensor requires a cluster decomposition of the

mobility matrix47, and has a similar form

Hw(κ,Q) = H
(1)(κ) + φH(2)(κ,Q) +O(φ2). (25)

In this case in order to obtain the terms H(1) and H(2) we need

the one- and two-particle cluster components of the mobility ma-

trix. Explicit expressions for S(1),(2) and H(1),(2) are rather com-

plex, and have been given explicitly in Ref. 33. To calculate them,

the HYDROMULTIPOLE code, implemented according to Ref.48, has

been used.

Inserting the expansions (22) and (25) into Eq. (5), we find

the following virial expansion for the first cumulant

Γ = Γ(1)(κ,Q) + φΓ(2)(κ,Q) +O(φ2), (26)

where the factor

Γ(1)(κ,Q) = D0

[κ
2
êz − iQ

]
·
H(1)

S(1)
·
[κ
2
êz + iQ

]
, (27)

is the infinite dilution prediction, given explicitly by Eq. (16),

while the second term reads

Γ(2)(κ,Q) = D0

[κ
2
êz − iQ

]
·
H(2)S(1) −H(1)S(2)

(S(1))2
·
[κ
2
êz + iQ

]
.

(28)

These virial expansion results, together with simulations that are

also valid at high concentrations, will be compared to experi-

ments in section 6. The relations above may be transformed using

Eqs. (11)–(14) and expressed in terms of the tensorial compo-

nents of the hydrodynamic function Hw. The subsequent section

contains the details of simulations.

4 Numerical simulations

To determine the equilibrium wall-structure factor (7), the hydro-

dynamic functions (11)–(14), and the first cumulant (5), we have

carried out a series of numerical simulations for a wall-bounded

hard-sphere system with particle volume fractions in the range

0 < φ ≤ 0.3. Key elements of our numerical techniques are sum-

marized below; a more detailed description is provided in our

4 | 1–13

Page 4 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



previous paper33.

Since hydrodynamic-interaction algorithms are unavailable for

a single-wall system with periodic-boundary conditions, the cal-

culations were performed for a suspension confined between two

well separated parallel walls. The equilibrium particle distribu-

tions were determined using a standard Monte–Carlo (MC) algo-

rithm, and the multiparticle mobility matrix µ
w
ij was evaluated

using the periodic version40 of the Cartesian-representation algo-

rithm41–43 for a suspension of spheres in a parallel-wall channel.

Most of our calculations were carried out for a wall separation

h = 13d (where d is the sphere diameter). By comparing results

for different values of h, we have established that the above wall

separation is sufficient to obtain accurate one-wall results, pro-

vided that the particle volume fraction is adjusted for the excess

particle density in the near-wall regions.

To evaluate the required volume-fraction correction, we con-

structed the equilibrium ensemble for a reference system with a

large wall separation h = h0 and the assumed particle number

density n in the middle of the channel. The excess particle num-

ber per unit area, nex, was determined using the formula

N = Ahn+ 2Anex, (29)

where N is the number of particles in the periodic cell, A is the

wall area, and h = h0 is the wall separation in the reference sys-

tem. The particle number N = N(h) for channels with different

widths h is obtained from expression (29), with known reference

values of n and nex.

Since the evanescent wave scattering occurs only near the illu-

minated surface, and the hydrodynamic field associated with the

periodic forcing ∼ exp(iQ · r) decays on the length scale l ∼ Q−1
‖

with the distance from the wall, the effect of the second wall of

the channel on the multiparticle mobility is small42. We find that

for the evanescent wave parameters corresponding to our exper-

iments, the effect of the second wall on the hydrodynamic func-

tions (11)–(14) is smaller than the statistical simulation inaccu-

racies.

The hydrodynamic tensor Hw was determined as an average

over M independent MC trials. To obtain statistical accuracy of

the order of 2 %, we have used M in the range from M = 30 for

large systems with N ≈ 103 particles to M = 400 for N ≈ 200

particles.

5 Experimental details

5.1 Hard-sphere sample and preparation

As model systems for the EWDLS experiments, we used two

batches of poly (methyl methacrylate) (PMMA) particles, named

ASM470 and ASM540 in the following, which were purchased

from Andrew Schofield, University of Edinburgh. The spherical

particles are covered with a thin poly-12-hydrostearic acid layer

to stabilize them against aggregation in organic solvents. To al-

low scattering experiments at high volume fractions the particles

were transferred from a cis-decaline suspension (as received) to a

refractive index matching cis-decaline/tetraline mixture by spin-

ning and re-dispersing them. The solvent used had a cis-decaline

mass fraction of w = 0.2, a refractive index of n2 = 1.498 and

a viscosity of η = 2.658 mPas at temperature of T = 298 K as

measured using an Abbemat RXA156 and an Automated Micro-

viscometer AMVη from Anton Paar, Graz, Austria. To determine

the particle radius, we employed standard Dynamic Light Scat-

tering (DLS) measurements. The recorded time autocorrelation

functions of the scattered intensity g2(t) (IACF) were analysed by

three different methods, namely cumulant analysis, stretched ex-

ponential fitting and inverse Laplace transformation. The three

methods yield hydrodynamic radii of RH = 98 nm (ASM470)

and RH = 144 nm (ASM540) with a variation of less than 1

nm in both cases. These values are assumed to be identical with

the hard sphere particle radius a in the following. Further, the

size distributions obtained from inverse Laplace transformation

showed a full width at half maximum of less than five percent.

The negligible size polydispersity is confirmed by the observation

that the suspensions crystallize at sufficiently large particle vol-

ume fractions.

Prior to the scattering experiments, the suspensions were fil-

tered through PTFE syringe filters with a nominal pore size of

1 µm directly into the measurement cells to minimize parasitic

scattering from dust particles. To reduce the number of neces-

sary alignment processes of the EWDLS measuring cell, this was

filled with the hard sphere suspension of highest volume fraction,

and further dilution was achieved by removing a part of the sam-

ple and replacing it by pure solvent. The exact volume fraction

was determined a posteriori by drying a 250 µl aliquot and deter-

mining the mass of the remaining particles. Further, the EWDLS

sample cell was equipped with a small magnetic stirrer bar with

which the samples were homogenised before each angular scan

to minimize the influence of particle sedimentation.

5.2 EWDLS set-up

EWDLS experiments were performed with a home-built instru-

ment, based on a triple axis diffractometer by Huber Diffraktion-

stechnik, Rimsting, Germany, which has been described in de-

tail elsewhere 19. The setup is equipped with a frequency dou-

bled Nd/Yag Laser (Excelsior; Spectra Physics) with a vacuum

wavelength of λ0 = 532 nm and a nominal power output of 300

mW as a light source. Scattered light is collected with an opti-

cal enhancer system by ALV Lasververtriebsgesellschaft, Langen,

Germany, which is connected to two avalanche photo diodes by

Perkin Elmer via an ALV fiber splitter. The TTL signals of the diode

were cross-correlated using an ALV-6000 multiple tau correlator.

The scattering geometry and the definition of the scattering vec-

1–13 | 5

Page 5 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 6 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



in Fig. 1, the back reflected beam will also be reflected off the

glass sample interface, thereby causing a second evanescent wave

with wave vector kR = −kP , where kP is the wave vector of the

evanescent wave caused by the original primary beam. In what

follows, the subscript P will refer to the evanescent wave caused

by the primary beam, while R will be associated with the evanes-

cent wave due to the back reflected beam. The latter gives rise

to a second scattering process, for which the in-plane scattering

angle is θR = 180− θP . Consequently the scattering vector com-

ponents parallel to the interface are given by

Q‖,i =
2π

λ0
n2

√
1 + cos2 αr − 2 cosαr cos θi, (32)

where i ∈ {R,P}. Differently, the component normal to the in-

terface remains unchanged in the two cases

Q⊥,R = Q⊥,P
.
= Q⊥ =

2π

λ0
n2 sinαr. (33)

The normalized field correlation functions in such a situation

should be considered as a weighted sum of two individual cor-

relation functions from two scattering experiments

ĝ1(t) =
P (QP )

P (QP ) +RP (QR)
gP1 (t) +R

P (QR)

P (QP ) +RP (QR)
gR1 (t),

(34)

where QP =
√

Q2
‖,P +Q2

⊥, QR =
√

Q2
‖,R +Q2

⊥ and P (Qi) is

the particle scattering factor of a sphere.

In evanescent illumination, the scattering factor is affected

by the non-uniform character of the electric field and becomes

penetration-depth dependent. For an optically uniform particle,

the scattering amplitude in the evanescent field reads B(Q, κ) =
1
V

∫
V
exp

[
(iq+ κ

2
êz) · r

]
dr. Thanks to the high symmetry, for a

spherical particle of radius a, B(Q, κ) can be explicitly calculated

as

B(Q, κ) = 3

[
ca cosh(ca)− sinh(ca)

(ca)3

]
, (35)

with c =
√

−Q2 − iQ⊥κ+ κ2

4
. The particle scattering factor is

then found as P (Q) = |B(Q, κ)|2.

In order to illustrate the effect of back-reflection for a dilute

suspension, we analyse Eq. (34) using the field correlation func-

tion given by the first two cumulants:

gi1(t) ≈ exp

(
−Γit+

1

2
Γ2,it

2

)
, (36)

with the first cumulant Γi given in the dilute regime by Eq. (16),

and the second cumulant can be calculated as

Γ2,i = γi − Γ2
i , (37)

where the second moment γi is defined as17

γi = Q4
‖,i

〈
D2

‖

〉
κ
+

(
Q4

⊥ −
κ4

16

)〈
D2

⊥

〉
κ

(38)

+ 2Q2
‖,i

(
Q2

⊥ −
κ2

4

)〈
D‖D⊥

〉
κ

+ κQ2
‖,i

〈
D′

⊥D‖

〉
κ
+

(
Q2

⊥ +
κ2

4

)〈(
D′

⊥

)2〉

κ
.

Here D′
⊥ = d

dz
[D⊥(z)]. The resulting IACF has to be calculated

from ĝ1(t) using the generalized Siegert relation, Eq. (30). The

averaged diffusion coefficients, which are required for the cal-

culations of Γ and Γ2 at a given value of κa were calculated in

Reference17.
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Fig. 2 Top: Result of model calculations for zero particle density without

(dashed dotted line) and with (full line) taking into account the effect of

back-reflection, showing a considerable difference in the high-Q range.

Bottom: Comparison of experimental data obtained at φ = 0.175 (full

circles) to simulations (line with triangles) and and virial approximations

at the same concentrations with (full line) and without (dashed dotted

line) taking into account the effect of back reflection. The experimental

parameter Q⊥d = 3.15 and κd = 2.08 are the same for both graphs.

The calculated model correlation functions are now evaluated

according to the same analysis procedure as the experimental
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data to obtain initial slopes Γ as a function of Q‖. In the top

part of Fig. 2 we compare initial relaxation rates of model corre-

lation function, which were calculated in this way at infinite dilu-

tion. The model calculations coincide perfectly at low scattering

vectors. However, those data, which were calculated taking into

account the effect of back-reflection, strongly decrease at larger

scattering vectors. Here and in the following, we will present

the results in dimensionless form, i. e. relaxation rates in units

of D0/d
2 and scattering vectors in units of 1/d where D0 is the

particles’ bulk diffusion coefficient at infinite dilution.

For a concentrated suspension, both ΓP and ΓR may be calcu-

lated from the virial expansion and from simulations. The first

cumulant of the EACF including the back-reflection effect may

thus be written from Eq. (34) as

Γ =
P (QP )

P (QP ) +RP (QR)
ΓP +R

P (QR)

P (QP ) +RP (QR)
ΓR, (39)

again without any free parameter. In the bottom part of Fig. 2

the same experimental data are compared to simulation results

and to virial calculations for φ = 0.175. In both, the virial cal-

culations and the simulations, the effect of back-reflection can be

included as described above. It turns out that up to Q‖d ∼ 7 the

first term in Eq. (39) dominates, so that Γ ≈ ΓP , and the back-

reflection effect need not be taken into account. However, in the

high-Q range, the back-reflection is essential to correctly repro-

duce the experimental data, as seen in Fig. 2. We are therefore

led to conclude that the first cumulants obtained experimentally

at high in-plane angles, i. e. θ > π/2 should be considered with

extreme care and potentially discarded when comparing experi-

mental data to theoretical predictions and simulations.

6 Results and Discussion

To illustrate the influence of the particle volume fraction, we dis-

play experimental data of Γ versus the scattering vector from Q‖-

scans with ASM470 suspensions at different volume fractions in

Fig. 3. It is obvious that at high Q‖ the experimental data de-

viate from the virial approximation displayed as full lines in Fig.

3 for all concentrations, which is fully explained by the effect of

back-reflections, discussed in section 5.4. Apart from this high-

Q‖ deviation, the virial approximation predicts the experimen-

tally observed at data correct, even at a sphere volume fraction of

almost 25 percent.

The same degree of agreement between virial approximation

and experimental data is observed in Q⊥-scans, which are shown

in Fig. 4. Here we display the experimental data obtained from

the ASM540 suspension with φ = 0.175 performed at the same

penetration depth κd = 2.08 but with extremely different values

of parallel scattering vector component, i. e. Q‖ = 1.83 and Q‖ =

5.7. Together with these data we also present the results of BD-

simulations which were obtained for a set of similar parameters,
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Fig. 3 Relaxation rates versus parallel component of the scattering

vector. Symbols represent experimental data obtained from ASM470

(RH = 98 nm) suspensions at different volume fractions at Q⊥d = 3.0

and κd = 2.6, lines are prediction by the virial approximation and open

symbols refer to data points which are obscured by the back-reflection

effect discussed in section 5.4

i. e. Q‖d = 1.83, κd = 2.08 and φ = 0.15. At low Q‖, the results

from all three methods agree very well, and at large Q‖, where no

simulation data are available, the agreement between experiment

and virial approximation is also within the experimental error.

Only at the highest volume fraction (φ = 0.3) for which exper-

imental data and simulations are available there is a significantly

better agreement between simulation data and experiments than

between virial approximation and measured data. This is shown

in Fig. 5 where we display data from a Q‖ scan, obtained from an

ASM540 suspension with φ = 0.3 at Q⊥d = 2.36 and κd = 2.08

together with the corresponding predictions. At this high volume

fraction the deviation between virial approximation and simula-

tions is comparable or even larger than experimental error bars.

It is interesting to investigate the limit of large scattering vec-

tors, where self-diffusion is probed. As discussed in section 5.4,

the relaxation rates determined at the largest scattering vectors

(and thus the largest angle θ) are not reliable. However, as first

suggested by Pusey 34, self-diffusion in bulk can be probed ap-

proximately at a wave vector Q∗ such that S(Q∗) ≈ S(Q → ∞).

This observation has been supported theoretically by Abade et

al49. It is expected that at this point the distinct structure factor

vanishes, and likewise does the distinct hydrodynamic function,

so that only the self-parts contribute to the dynamic properties

at this point. In the bulk case, this statement was later corrobo-

rated by extensive numerical simulations35,36. Segré et al 35 stated

that in a bulk suspension of hard spheres, this point is found for

Q∗a ∼ 4.0, where S(Q∗a) = 1, to the right of the main peak

of S(Q). As shown by Banchio et al52, bulk structure factors of

hard sphere suspensions with different volume fractions show an

isosbestic point at S(Qa = 4.02) = 1 and at the same value of

Qa the corresponding hydrodynamic functions attain their high-
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Fig. 4 Relaxation rates versus normal component of the scattering

vector. Symbols represent experimental data obtained from an ASM540

(RH = 144 nm) suspension with φ = 0.175 at κd = 2.08 at different

values of the parallel scattering vector component, i.e. Q‖d = 5.7 (open

circles) and Q‖d = 2.18 (full squares). Full lines are predictions by the

virial approximation for the same experimental parameters and the

dashed dotted line refers to simulation results obtained for Q‖d = 2.18

and κd = 1.8.

Q limit. Michailidou et al.30 used the EWDLS experimental data

at Qa = 4.58 arguing that this should not be too far from Q∗a,

thus providing a good estimate of the near-wall self-diffusion co-

efficient. Here, we propose a more thorough way to determine

the particles’ near-wall self-diffusion properties which follows the

same line of arguments as discussed for bulk systems above. We

note here that in EWDLS both the structure factor and the hydro-

dynamic function become penetration-depth dependent33. How-

ever, upon re-scaling by their asymptotic values, both Sw(Q) and

the components of Hw(Q) exhibit an isosbestic point at which

they attain their asymptotic values. We compute them using the

virial expansion, and plot the results in Fig. 6. Like for bulk ex-

periments, first cumulants obtained at the Q‖,⊥a values of the

isosbestic point provide a good approximation for the near wall

self-diffusion coefficients.

However, as the first isosbestic point right of the structure fac-

tor main maximum is found approximately at Q∗
‖d = 7.3, we

could determine experimental data of the first cumulant at this

scattering vector mainly from the ASM540 suspensions. For the

smaller ASM470 particles the data at Q∗
‖d is distorted by the back-

reflection effect (except for φ = 0.1), and thus it may not be used

to experimentally determine the self-diffusion coefficient parallel

to the wall 〈Ds
‖〉κ. Further, the experimentally accessible range of

Q⊥d is in all cases much smaller than Q∗
⊥d such that we can not

get reliable experimental information on the self-diffusion prop-

erties normal to the wall.

In Fig. 7, we present the normalized ratios of 〈Ds
‖〉 over the

bulk self-diffusion constant. The latter was calculated according

0 10 20 30 40 50
0

10

20
 experiments
 simulations
 virial approximation
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Fig. 5 Relaxation rates versus parallel component of the scattering

vector. Symbols represent experimental data obtained at Q⊥d = 2.36

and κd = 2.08 from an ASM540 (RH = 144 nm) suspension with

φ = 0.30. The full lines are prediction by the virial approximation and the

line with triangles refers to simulation results. Experimental data points,

which are obscured by the back-reflection effect discussed in section

5.4, are omitted in this graph.

to the semi-empirical formula49

Ds
b(φ)

D0
= 1− 1.8315φ(1 + 0.12φ− 0.65φ2), (40)

which includes two virial coefficients due to Batchelor51 and Ci-

chocki et al.47, and is expected to be accurate up to φ ∼ 0.45.

Its validity has been extended by Riest et al.50 up to φ = 0.5 by

modifying the coefficient of the last term to −0.70. We compare

experimental data to predictions by virial approximation and sim-

ulations. The theoretical values for 〈Ds
‖〉κ were determined by

linearly extrapolating the high-Q range of the Γ vs Q2
‖ depen-

dence, making use of Eq. (18). Our experimental data confirm

the trend predicted by both methods and show that the near-wall

dynamics approach the bulk behaviour at high particle volume

fractions. With this observation we qualitatively confirm the ear-

lier results by Michailidou et al. 30,31. Since the virial approach

allows quick calculation of Γ vs Q2
‖ data, we can easily predict

near wall self-diffusion coefficients for a variety of parameters, by

using the slope in the high Q-range. We use this possibility to

quantitatively compare self-diffusion properties predicted by the

virial approximation to the data by Michailidou. For this purpose

we calculate 〈Ds
‖〉κ and 〈Ds

⊥〉κ for a series of volume fractions

and average them as 〈Ds
w〉κ = (〈Ds

‖〉κ + 〈Ds
⊥〉κ)/2 according to

their experimental procedure. Their choice of Qa = 4.58 is de-

termined by the fact that they measured with a geometry which

corresponds to θ = 0◦ and αr = 90◦, thus at a scattering vector

which makes an angle of 45◦ with the interface. In this config-

uration the parallel contribution and the normal contribution to

self-diffusivity are weighted equally in the experiment. The com-

parison in Fig. 8 shows that the prediction calculated by a 1 : 1

1–13 | 9

Page 9 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0.7

0.8

0.9

1

1.1

 H
||
(Q

) 
/ 

 H
||
(Q

=
∞

)

φ=0
φ=0.05
φ=0.1
φ=0.2
φ=0.3

0 10 20 30 40 50 60 70

(Q
||
d)

2

0.5

0.6

0.7

0.8

0.9

1

1.1

 S
w
(Q

) 
/ 

S
w
(Q

=
∞

)

Fig. 6 The wall structure factor Sw(Q) and the hydrodynamic function

H‖(Q) in a Q‖-scan at fixed Q⊥d = 2.36 and κd = 2.08 for a selection

of volume fractions. Both functions are normalised by their self-values at

Q → ∞. At (Q‖d)
2 ≈ 53 we find an isosbestic point for both functions

(marked by the dotted vertical line), suggesting that the self-diffusion

coefficients may be determined from the data collected in the vicinity of

this point. The statement also holds sway for other components of H.

weighing of the normal and the parallel component are deviating

systematically from the experimental data in the range of vol-

ume fractions, where the virial approach should hold. Only at

very high volume fractions, where the virial approximation is cer-

tainly not valid the experimental data appear to agree with it.

This is probably due to the effect that first cumulants obtained

at Qa = 4.58 are not a good approximation for the self-diffusion

properties. Actually simulations of bulk properties 52,52 show that

even at moderate volume fractions, both the structure factor and

the hydrodynamic function are significantly different from their

value at Q∗a = 4.02. For the sake of completeness we also show

predictions for the self-diffusion constants in Fig. 8, which are av-

eraged according to 〈Ds
w〉κ = (2〈Ds

‖〉κ + 〈Ds
⊥〉κ)/3. These agree

reasonably well with the earlier experimental data, which is prob-

ably a coincidence.

Nevertheless, we confirm the earlier conjecture that particle-

particle hydrodynamic interactions in the presence of a wall are

diminished at high volume fractions as compared to bulk dynam-

ics. However, here we can show that effect influences the diffu-

sion parallel to the wall and normal to the wall differently. As

discussed in Ref.33, the anisotropic self-diffusion coefficients have

the following virial expansion

〈
Ds

‖,⊥

〉
κ

D0
= G

(1)

‖,⊥(κd) + φG
(2)

‖,⊥(κd) +O(φ2). (41)

The coefficients of this expansion have been presented graphi-

cally in Fig. 3 of Ref.33. Here we have tabulated them for a selec-

tion of penetration depths in Table 1. The coefficients have a clear
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Fig. 7 Comparison of experimental data (full circles) obtained from

ASM470 (RH = 98 nm, φ = 0.1) and ASM540 (RH = 144 nm)

suspensions, virial calculations (full line, the dashed dotted line

represents virial calculations in a range of volume fractions where the

approximation is not considered valid) and simulation results (triangles)

for the self-diffusion coefficient parallel to the wall. Experimental

parameters are at Q⊥d = 2.36 and κd = 2.08 for all cases.

Table 1 The coefficients of the virial expansion of anisotropic

self-diffusivity, defined in Eq. (41). The decay of the ⊥ elements is faster

with increasing penetration depth, indicating that both single- and

two-particle mobilities are hidered more for motion in the direction

normal to the interface.

κd G
(1)
⊥ (κd) G

(2)
⊥ (κd) G

(1)
‖

(κd) G
(2)
‖

(κd)

0 1.0 -1.832 1.0 -1.832
0.2 0.781 -1.371 0.884 -1.535
0.5 0.644 -1.117 0.810 -1.357
1.0 0.516 -0.871 0.736 -1.160
2.0 0.383 -0.588 0.654 -0.903
5.0 0.227 -0.250 0.547 -0.550

interpretation: G
(1)

‖,⊥ refers to single-particle dynamics at infinite

dilution, while G
(2)

‖,⊥ bears information on the effect of the wall on

two-particle interactions. All coefficients decrease with increas-

ing κd, but the effect is stronger for the motion perpendicular to

the wall. The behaviour of G
(1)

‖,⊥ follows from the single-particle

physical picture17, in which motion normal to the interface is sup-

pressed more than in the parallel direction. This is due to the

fact that perpendicular motion generates ’squeezing’ flows which

lead to stronger hydrodynamic resistance as compared to ’shear-

ing’ flows induced by parallel motion53. The particle-particle HI

are affected in the same way, which explains the faster decay of

G
(2)
⊥ as compared to G

(2)

‖ . Thus, the coefficients corresponding

to the normal motion are affected more strongly. However, the

near-wall self-diffusivity is frequently written in the form

〈
Ds

‖,⊥

〉
κ〈

D‖,⊥

〉
κ

= 1− α‖,⊥(κd)φ+ . . . , (42)
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Fig. 8 Comparison of virial predictions for the self-diffusion coefficient

with experimental data by Michailidou et al 30 measured at κd = 0.89.

The predicted data for normal and parallel contribution were averaged

as indicated in the legend.

with
〈
D‖,⊥

〉
κ
= D0G

(1)

‖,⊥(κd). The coefficient

α‖,⊥(κd) =
G

(2)

‖,⊥(κd)

G
(1)

‖,⊥(κd)
, (43)

becomes a result of an interplay between the single- and two-

particle effects. In Fig. 9 we show normalized ratios of 〈Ds
‖〉κ

and 〈Ds
⊥〉κ over the bulk self-diffusion as a function of volume

fractions for two different penetration depths of the evanescent

wave. The curves are calculated using the virial approach up to

a volume fraction of 25%. First we observe that the self-diffusion

coefficient (averaged over the illumination profile) normal to the

wall is smaller than that parallel to the wall and that both compo-

nents increase with penetration depth κ−1, similarly to the com-

ponents of the near-wall diffusion coefficients at infinite dilution.

The variation of these ratios over the range of volume fractions

covered is indicated by the numbers on the far right of Fig. 9,

which are the ratios of the values obtained at φ = 10−3 and

φ = 0.25. It is important to note, that although
〈
Ds

‖

〉
κ
/Ds

b varies

stronger with increasing φ as compared to 〈Ds
⊥〉κ /Ds

b , this does

not imply that the wall diminishes the particle-particle HI more

in the parallel direction, as we discussed above.

7 Conclusions

In this paper we describe our EWDLS investigations of the near

wall dynamics of colloidal hard spheres in suspensions with vol-

ume fractions up to φ = 0.3 We thoroughly compare experimental

data for the dependence of the first cumulant on the scattering

vector components parallel and normal to the interface to cor-

responding predictions based on a second order virial approxi-

mation and to simulation results, where the full hydrodynamic

interaction is taken into account. Up to volume fractions of about
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Fig. 9 Calculated data for the self-diffusion coefficients parallel and

normal to the wall for different penetration depths: κd = 2.08 full lines

and κd = 1.3 dashed dotted lines. The numbers on the far right

represent the ratio of the values at φ = 10−3 over φ = 0.25, which are

an indication that the diminishing of hydrodynamic interaction is more

pronounced for particle motion parallel to the wall than normal to the

wall.

fifteen to twenty percent we find perfect agreement between the

three methods. Above this range, the predictions by the virial

approach deviate discernibly from the simulation data33, how-

ever this deviation is still in the range of experimental error bars.

Therefore we conclude that the virial approach provides a good

approximation for the prediction and analysis of experimental

data up to a volume fraction of about 25%, which is much less

time consuming and elaborate than full scale simulations. Only

at φ ≥ 0.3 the virial approximation is clearly not anymore able

to capture the details of the dependence of the first cumulant

on the scattering vector. Further we introduce a new method to

assess the particles’ near wall self-diffusivity from experimental

data. This method follows the same line of argument, which is

used to assess bulk self-diffusivity in cases where the limit of suf-

ficiently high scattering vector cannot be reached experimentally.

We identify an isosbestic point of the near-wall structure factors

right to the first maximum, where near wall structure factor and

hydrodynamic function attain their asymptotic values. Diffusion

data measured at the scattering vector of the isosbestic point are

a good approximation for the self-properties. Comparison of ex-

perimental data with predictions, based on the virial approach

and on simulations, show that this method yields better estimates

of the self-diffusivity as methods used earlier. Finally we confirm

earlier data which show that the diminishment of particle-particle

hydrodynamic interactions due to the presence of the wall is less

pronounced at high volume fraction compared to bulk dynamics.

Beyond that, we show (see Table 1)that the observed effect is

weaker for the mobility parallel to the wall as compared to mo-

tion in the normal direction. In conclusion, with the virial approx-

imation, we have a method at hand, which qualitatively supports
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earlier data, but provides significant further insight into the near

wall dynamics of colloidal hard spheres. This is especially impor-

tant since this approach can be easily adopted to systems with

long ranging static interaction, providing a quick and non-costly

method for the prediction and analysis of EWDLS results obtained

from e. g. charged colloids.
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Comparing to EWDLS-experiments and simulation shows a virial approximation for colloidal near-wall 

dynamics to be valid up to intermediate densities.   
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