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Journal Name

Effect of Mechanical-Driven Volumetric Change on In-
stability Patterns of Bilayered Soft Solids

Shan Tang,∗a‡ Ying Li,b‡, Yang Yang,a and Zaoyang Guo∗c

If a soft solid is compressible, its volume changes with imposed loading. The extent of the volume
change depends on its Poisson’s ratio. Here, we study the effect of mechanical-driven volumetric
change on buckling and post-buckling behaviors of a hard thin film perfectly bound on a compli-
ant substrate through theoretical analysis and finite element method. The Poisson’s ratio of the
substrate has been chosen to be in the range of −1 to 0.5, allowing its volume change during
deformation. We find that the Poisson’s ratio cannot only shift the critical strain for the onset of
buckling, but also affect the buckling modes. When the Poisson’s ratio of the substrate is close to
−1, the surface instabilities of the thin film can be suppressed and delayed to large deformation.
The present study demonstrates a new way to control surface instabilities of a bilayered system
by changing the Poisson’s ratio of the material.

1 Introduction
When a semi-infinite hyperelastic (neo-Hookean) material is un-
der compression, its free surface would become unstable and
form sinusoidal waves (wrinkles) upon a critical strain εBiot =

0.461, according to Biot’s linear perturbation analysis with plane
strain condition. However, experimental2–4, theoretical4,5 and
computational6,7 studies reveal that sharp creases happened on
the surface at the critical strain εcrease = 0.35. The creases, other
than wrinkles, are usually observed when a block of an elastomer
is bent since εcrease < εBiot. However, when a stiff thin film at-
tached on a compliant thick substrate is under compression, wrin-
kles are usually occurred to release the stress (cf. Fig. 1)8,9. Wrin-
kles are surface undulations in the space with infinitesimal strain,
while creases are localized self-contacted regions with large strain
relative to its initial homogeneous state. Therefore, the cross sec-
tion of a crease has a very sharp tip, which is distinct from that of
a wrinkle. These surface instabilities have been widely applied to
control biomolecular pattern and enzymatic activity10, biofoul-
ing11, interfacial adhesion12 and cellular behavior13. Neverthe-
less, these instabilities may also lead to failure of materials, such
as buckling of microelectromechanical systems14,15 and compos-
ite materials16,17. Therefore, it raises a critical question: How
these surface instabilities can be controlled and suppressed?
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As an attempt to answer above question, Cao and Hutchinson
have computationally and theoretically studied a bilayer struc-
ture with a stiff elastomer film on a polymeric substrate18. Their
results demonstrate that the critical strain for the onset of wrin-
kles εwrinkle can be easily tuned via the Young’s modulus ratio be-
tween the film and substrate E f /Es, where E f and Es are the mod-
uli for the film and substrate, respectively. For instance, when
E f /Es = 20, εwrinkle = 0.07 (refer to Fig. 9 therein)18. How-
ever, εwrinkle has been dramatically increased to 0.3 for E f /Es = 2,
which is much smaller than εBiot and εcrease (refer to Fig. 2
therein)18. An unified phase diagram for different surface insta-
bilities of compressed film/substrate systems has been obtained
by Wang and Zhao19, by considering the moduli of the film and
substrate, the interfacial adhesion strength, the film thickness and
the pre-stretch of the substrate. Although these studies can be
used to control the different surface instabilities, the related ma-
terial failure still cannot be prevented. Very recently, Jin and Suo
have shown that the surface creases can be suppressed by the
strain-stiffening materials20. When the material stiffens deeply
at large strains, its surface is initially smooth, then forms creases,
and finally becomes smooth as the compressive strain increases.
If the material stiffens deeply at small strains, the creases will
never occur and be completely suppressed20. According to au-
thors’ knowledge, the work of Jin and Suo20 is first study at-
tempted to suppress surface instabilities of materials under large
compression, although it relies on the intrinsic mechanical prop-
erties of materials, indicating it may not be applicable to many
other materials without strain-stiffening.

Growth-induced surface instabilities of layered soft solids at-
tract great interested recently. For a bilayered system with a thin
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stiff layer and a thick compliant substrate, the mismatch of the
volume expansion between these two layers can lead to compres-
sive stress in a layer, then the free surface of the system is wrin-
kled to minimize the system energy. For instance, Yin et al.21,22

simplified the natural fruits and vegetables as a core/shell system
with stiff exocarp (shell) and compliant carcocarp (core). The
different undulating morphologies found in variety of fruits and
vegetables are explained by the volume growth of the inner core.
Li et al.23,24 studied the volumetric growth of mucosal layer in
the inner layer of soft tissues such as esophagus, pulmonary air-
way and many animal lumens. The folding or wrinkling of mu-
cosal layers is explained through the buckling analysis, account-
ing for the volumetric growth of mucosal layer. The folding or
wrinkling pattern may serve as the clinical symptoms of diseases
in these organs. Ciarletta et al.25 further established morpholog-
ical phase diagrams for pattern selection of tubular tissues due
to the growth process by the initiate epithelial differentiation or
pathological condition. In these studies, the volumetric change of
a layer is described by an extra growth tensor Fg, induced by the
molecular diffusion during this process. Then, the total deforma-
tion gradient is formulated as F = FeFg, with Fe representing the
elastic deformation without volumetric change.

Here, we discuss another mechanism of volumetric change on
the surface instabilities of a bilayered system under compression.
This mechanism origins from the compressibility of polymeric ma-
terials. For isotropic materials, the Poisson’s ratio ranges from
−1 to 0.5. Polymeric materials are usually assumed to be in-
compressible with Poisson’s ratio 0.5. Thus, its volume is con-
served under external loadings. However, it is well known that
the soft polymeric materials can be compressible, the extent of
which depends on the temperature T or its microstructure. For
instance, polymers at a temperature T above their glass transi-
tion temperature Tg behave like incompressible materials; while
they act compressible when T < Tg, as elaborated in a recent re-
view by Greaves et al.26. The temperature dependent Poisson’s
ratio for polymeric materials has also been recently conformed
by our molecular simulations27. Besides, many polymeric mate-
rials with negative Poisson’s ratio are designed and invented re-
cently26,28–30. Polymer gels such as hydrogels can absorb or dis-
charge water molecules, resulting dramatic volumetric changes.
Previous study also demonstrated that gels can exhibit negative
Poisson’s ratio close to −1 near the phase transition31. Inspired
by these phenomena, we can roughly simplify these materials as
hyperelastic soft solids with compressibility. To consider the volu-
metric changes of these soft solids, the deformation energy of the
material is decomposed into the deviatoric and volumetric strain
energy parts, which have been discussed in the previous study32.
Here we should emphasize that all the previous theoretical1,4,5,8

and computational6,7,18,19 studies assume that the elastomer is
incompressible with Poisson’s ratio fixed to be 0.5 for simplifying
the surface instability problem.

In this work, we provide a new way to tune the surface insta-
bility of a bilayer structure under large compression by changing
the compressibility of the substrate. A thin stiff film is coated on a
thick compliant substrate for the bilayer structure. Through theo-
retical analysis, we find that the surface wrinkles can be delayed

to a large compressive strain (εBiot), if the substrate has a nega-
tive Poisson’s ratio. Inspired by the theoretical results, we develop
a finite element analysis (FEA) model to quantitatively study the
surface instability of the thin film/substrate system under com-
pression, with related morphological transition during this pro-
cess. The FEA results further conform that creases, wrinkles, pe-
riod doubling and folds (secondary bifurcations after the initial
instability, cf. Fig. 1), and other surface instability forms, can be
suppressed and delayed to a very large compressive strain εBiot.
However, these instabilities cannot be delayed when Poisson’s ra-
tio of the substrate is positive. Therefore, the Poisson’s ratio of
the substrate is identified as the key to tune and suppress the sur-
face instabilities of materials during compression. The present
study also opens a new way to understand the surface instability
behaviors of the thin film/substrate systems, which can be uti-
lized to design stretchable electronics and laminates of packaging
materials.

Non-Wrinkle instability forms

Periodic Wrinkles

Periodic Doubling

Tripling

Folds and Creasing

A1A2

A3

Fig. 1 Typical surface instability patterns for a stiff thin film on a
compliant substrate under compression.

2 Model and Methodology
Here we consider a model bilayered system for a thin film coated
on a substrate, as shown in Fig. 2. The initial thicknesses of the
film and substrate are h and H, respectively. Unless otherwise
stated, the thickness ratio h/H is taken to be 1/100. Both the
thin film and substrate are assumed to be homogeneous materi-
als. Note that auxetic materials can be made through introducing
the microstructure, such as voids, into polymeric solids or gels.
Even with the microstructure, we still assume they behave like
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X1

X2
H

h

Es,νs (can be auxetic)

Ef ,νf

Fig. 2 Schematic of a thin film-substrate system. Both the thin film and
substrate are polymeric materials. The Young’s modulus and Poisson’s
ratio are denoted as E and ν , respectively. The subscripts ‘s’ and ‘f’
represent the substrate and film, respectively. h and H are the thickness
of the film and substrate, respectively. Here, we consider that the
substrate may has specifically designed microstructure, such as voids.
Thus, −1 < νs < 0.5. The Poisson’s ratio of the film is taken to be 0.499,
mimicking the nearly incompressible behavior.

hyperelastic materials. Then, both the thin film and substrate are
modeled as compressible neo-Hookean solids with Young’s mod-
ulus E and Poisson’s ratio ν . We adopt the compressible neo-
Hookean model with the free energy density:

W H =
µ

2
(Ī1−3)+Km (J−1)2 (1)

where J = detF, F̄ =J−1/3F and Ī1 = J−2/3I1. I1 is the first invariant
of the left Cauchy-Green tensor C = FT F and F is the deformation
gradient. µ and Km are the shear and bulk moduli, respectively. In
the small deformation regime, a hyperelastic material will behave
like a linear elastic material. Through the above model, the differ-
ent Poisson’s ratio can be realized by adjusting the ratio between
µ and Km, as Young’s modulus E and Poisson’s ratio ν can be re-
lated to µ and Km through a classical relationship E = 2µ(1+ν),
ν = (3Km−2µ)/[2(3Km +µ)] for linear elastic materials. The first
Piola-Kirchhoff (PK) stress can be obtained by33:

Pi j =
∂W H

∂Fi j
, . (2)

for compressible hyperelastic solids. To explore the effect of Pois-
son’s ratio of the substrate on the surface instability, we fix the
Poisson’s ratio of the thin film to be 0.499 (nearly incompress-
ible), and vary the Poisson’s ratio of the substrate from −1 to 0.5.

Baru et al.34 investigated the nearly incompressible thin
film/substrate system under compression. The wrinkles are firstly
formed on the surface of the thin film. With the compressive
strain further increasing, the surface wrinkles evolve into very
complex non-wrinkle patterns such as period doubling, localized
folds, creasing and ridges (cf. Fig. 1). These surface instabil-
ity patterns can be controlled by the modulus ratio between the
thin film and substrate18,35. In many applications, the thin film
is much stiffer than the substrate, with the modulus ratio as high
as 105. However, when the thin film and substrate are both soft
solids, their modules ratio can be moderate, as studied by Cao
and Hutchinson18. Thus, we mainly focus on the lower stiffness
ratio range in present study.

A semi-theoretical algorithm has been proposed for the analy-
sis and prediction of surface instability of multilayered compress-
ible polymer plates and sheets under large deformation and plane

strain conditions, abandoning the assumption that polymeric ma-
terials are incompressible36. The proposed algorithm is verified
by comparing its predictions with published results in literature
for thin films with polymer/metal substrates. This algorithm is
adopted to study the instability of the bilayered structure under
compression in present study. The analysis is a two-step proce-
dure. We first apply the uniform stretch λ along X1 direction.
Then, the perturbation with all the wavelengths is imposed on
the current configurations. Then, the critical strain for the onset
of instability with corresponding wavelengths can be obtained.
The relevant technique details with mathematical formulations
are given in our recent work36.

To fully understand the other patterns of surface instability,
such as period doubling and folds (creasing), during the post-
buckling stage, we also carry out the finite element analysis (FEA)
by using the commercial finite element software, ABAQUS. We
adopt the two-step analysis: (1) linear perturbation (buckling)
analysis, followed by (2) post-buckling analysis. The buckling
analysis for finite sized domain has been described elsewhere, for
example, Refs.6,27,37,38. After the buckling modes have been de-
termined from the linear perturbation analysis, an imperfection in
the form of the most critical eigenmode (the lowest eigenmode)
is introduced into the initial finite element mesh. In this study,
the initial mesh is perturbed by the first eigenmode v̂1, scaled
with factor w = 0.05h. All the finite element meshes have been
refined to conform that our simulation results are not sensitive to
the mesh size.

3 Results and Discussion

symbols
critical strain for non-wrinkle
forms of instability in FEA
postbuckling

critical strain through
theoretical solution

III

νs

εc
ri
t

critical strain through
FEA buckling analysis

Fig. 3 Critical strain εcrit vs. Poisson’s ratio of the substrate νs for the
fixed modulus ratio E f /Es = 5.

We first set the modulus ratio E f /Es = 5. We stress again
that the elastic stability analysis is performed by solving the
incremental equilibrium equations DivṖ = 0 with appropriate
boundary conditions, where Ṗ is the incremental nominal stress.
The theoretical solution is obtained by the recently proposed
semi-theoretical algorithm36 to solve the incremental equilibrium
equations with appropriate boundary conditions. The theoreti-
cally predicted critical strain for the onset of instability is pre-
sented in Fig. 3 as a solid line. Here the critical strain is defined as
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εcrit = 1−λ crit , which is consistent with the previous study given
by Biot1, Cao and Hutchinson18. The critical strain obtained from
FEA is also given in Fig. 3, denoted by star symbols, which is con-
sistent with our theoretical prediction. It is clearly shown that the
critical strain monotonically decreasing with νs increasing from
−1 to 0.5, signaling that the substrate with negative Poisson’s ra-
tio can dramatically delay the surface instability. When the Pois-
son’s ratio of the substrate is positive, the Poisson’s ratio effect on
the critical strain is not pronounced; while the critical strain has
been dramatically increased from 0.23 to 0.46 when νs is reduced
from 0.0 to -1. If the Poisson’s ratio of the substrate approaches
-1, the limitation for the isotropic materials, the critical strain will
also reach the limit εBiot = 0.46. Although we only show the re-
sults for E f /Es = 5, other cases with different modulus ratios still
follow the same trend. All these theoretical results demonstrate
that the substrate with a negative Poisson’s ratio can help to sup-
press and delay the surface instability of the attached thin film
during compression. However, it is impossible to pass the critical
strain εBiot = 0.46 without instability. Although we do not have an
exact physical explanation on this phenomenon, we suspect that
the reduced Poisson’s ratio is equivalent to the increased effective
modulus E/(1− ν2) under plane strain condition. The effective
modulus will be extremely large as the Poisson’s ratio of the sub-
strate is approaching −1. When the modulus of the substrate is
equal or larger than the thin film, the critical strain will be Biot’s
solution18.

The effect of substrate Poisson’s ratio νs can be qualitatively
understood in the following way. When νs > 0, both the thin
film and substrate are compressed along the X1 direction, while
stretched along the X2 direction due to the Poisson’s effect (cf.
Fig. 2). Up to certain value of the compressive strain, the sur-
face of the thin film undulates to minimize the free energy of the
system15,39. However, if the substrate has a negative Poisson’s
ratio with νs < 0, the thin film and substrate will be stretched and
compressed along the X2 direction, respectively. In this way, the
undulation of the thin film will be canceled out due to the com-
pression of the substrate and compatibility between the film and
substrate (assuming the thin film is perfectly bound to substrate).
Therefore, the surface instability can be dramatically suppressed
and delayed, when the Poisson’s ratio of substrate is close to −1,
as observed by our above theoretical and numerical analysis.

The non-wrinkle patterns of surface instability are examined
through the post-buckling analysis. In this post-buckling anal-
ysis, the initial periodic wrinkles lose their original periodicity
through period doubling or folds (creasing) after a secondary crit-
ical strain. The secondary critical strain has been recorded as ε pw

in our FEA. ε pw is plotted against the Poisson’s ratio of the sub-
strate µs in Fig. 3 with circle symbols. Comparing with the critical
strain at the onset of the periodic wrinkling with ε pw, we can sep-
arate the curve of critical strain into two regimes. In the regime
I, the critical strain at the onset of instability is lower than ε pw.
Thus, the periodic wrinkles occur earlier than the non-wrinkle in-
stabilities, such as period doubling under compression, and gives
a way to non-wrinkles at a larger compressive strain. Through
the prescription of the cell size and initial imperfection, Auguste
et al.35 compared the energies of periodic wrinkles with period

doubling, period quadrupling or tripling for a hard thin film on a
compliant substrate with modules ratio E f /Es = 50. They found
that period doubling, period quadrupling or tripling had lower
energy than that of period wrinkles. However, in the regime II,
the critical strain at onset of instability is nearly the same as ε pw,
indicating that the thin film/substrate system is in a bistable state.

Here we should emphasize that the buckling analysis is a dif-
ferent procedure from the post-buckling analysis. In the post-
buckling analysis, the imperfection, obtained from the buckling
analysis, is introduced in the initial mesh. As discussed in the pre-
vious study by Cao and Hutchinson18, the critical strain obtained
from FEM is imperfection sensitive. The critical strain predicted
from the post-buckling analysis can be lower than that predicted
from the buckling analysis, as shown in Fig. 3.

ε = 0.20

ε = 0.184

ε = 0.23

νs = 0.4

ε = 0.3

ε = 0.35

ε = 0.36

νs = −0.5

Fig. 4 Evolution of surface morphologies for the thin film/substrate
system under compression. The modules ratio E f /Es is fixed to be 5.
Two different values for the Poisson’s ratio of the substrate are
considered, 0.4 and -0.5, corresponding to the regimes I and II in Fig. 3,
respectively.

Baru et al.34 studied the secondary critical strain ε pw for a pla-
nar bilayered system of hard thin film on soft substrate. ε pw

is found to vary with the Poisson’s ratio of substrate as ε pw =

0.02(1− νs)
2/(1− 2νs)

2. This equation gives a singular solution
when the substrate is nearly incompressible with νs = 0.5. The
trend of ε pw versus νs is not consistent with present FEA results.
Note that ε pw is increasing with decreasing νs is current study.
The discrepancy may arise from the simplification of thin film as
a shell and the interaction between the film and substrate is sim-
ply imposed by a pressure, which is just a linear function of the
shell slope in the study by Baru et al.34. Although their simplified
model can predict the onset of periodic doubling for a stiff film
on a complaint substrate, the effect of Poisson’s ratio νs is not ac-
curately captured. In contrast, our present model does not intro-
duce any simplification on the thin film and interaction between
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the film and substrate has been correctly represented, which will
enable us to accurately predict the secondary critical strain ε pw.
To further clarify this issue, we have theoretical derived the re-
lationship between the critical strain and Poisson’s ratio of the
substrate in the appendix, though small deformation assumption.
The obtained trend follows well with the results given in Fig. 3
(cf. Fig. 9).

We then illustrate the typical instability patterns with differ-
ent Poisson’s ratio of the substrate under a fixed modulus ratio
E f /Es = 5. The evolution of surface morphologies with two dif-
ferent Poisson’s ratios νs = 0.4 (regime I) and −0.5 (regime II) is
given in Fig. 4. For νs = 0.4, the periodic wrinkles occur around
0.18, which is consistent with above theoretical and FEA predic-
tion through linear perturbation analysis (cf. Fig. 3). The pe-
riodic wrinkles evolve into the doubling-period and folds after-
wards. The observed trend is similar to that given by Cao and
Hutchinson18 for a thin stiff film on a thick compliant substrate,
while both the thin film and substrate are incompressible. How-
ever, when νs = −0.5, the surface still maintains flat under large
compressive strain. When the compressive strain is close to the
critical strain for periodic wrinkles (0.36), the surface wrinkles
with very small amplitude have been observed. Note that 0.36
is comparable with the critical strain εcrease = 0.35 for a homoge-
neous neo-Hookean solid under compression4,5. This is greatly
different from what has been observed for the case with νs = 0.4.

νs

E
f
/E

s

State I State II

Fig. 5 Phase diagram for a hard thin film on a soft substrate under
compression. According to different modulus ratio E f /Es and substrate
Poisson’s ratio νs, two different regimes have been identified (cf. Fig. 3),
which is separated by the dashed line.

According to the above simulation results, we notice that two
dimensionless parameters: modulus ratio E f /Es and the substrate
Poisson’s ratio νs primarily affect the instability patterns. To ex-
plore how the instability pattern varies with these two parameters
E f /Es and νs, a phase diagram is given in Fig. 5. Two different
regimes (regimes I and II shown in Fig. 3) have been identified
and marked as the circles and squares, respectively. The phase
boundary between these two regimes is denoted by a dashed line.
When the modulus ratio E f /Es is fixed, with the increasing νs, the

periodic doublings and folds are more pronounced after initial pe-
riodic wrinkles. When E f /Es is less than 5, it is always observed
that the instability pattern within regime II. In consistent with
Baru et al.34 and Auguste et al.35, the modulus ratio in their the-
oretical analysis and experiments is larger than 5 to observe the
evident periodic doublings and folds.

A
1
/h
,A

2
/h
,A

3
/h

Ef/Es = 5νs
seondary burfication

Before After

0.4

0

−0.5

Macroscopic engineering strain

Fig. 6 Amplitude of surface instabilities (A1, A2, A3) as a function of the
imposed strain with three different Poisson’s ratios of the substrate. A1,
A2 and A3 are defined in Fig. 1.

In the above section, we have examined the instability patterns
and the critical strain for the onset and evolution of the periodic
wrinkles and non-wrinkles caused by the volumetric change of the
substrate. We then explore how the volumetric change can affect
the amplitude of surface wrinkles. The amplitude of these wrin-
kles (A1, A2 and A3, cf. Fig. 1) is given in Fig. 6 with fixed mod-
ules ratio E f /Es = 5 and three different Poisson’s ratios νs = 0.4, 0,
−0.5. According to the previous study by Baru et al.34, when the
imposed macroscopic strain is larger than the secondary critical
strain ε pw, periodic doubling always occurs. Therefore, the ampli-
tude of surface wrinkles bifurcates into two different values. One
represents large wrinkles and the other denotes superimposed
small wrinkles (cf. Figs. 1 and 4). With imposed compressive
strain further increases, some of large wrinkles evolve into folds.
The amplitude of folds is even larger than these wrinkles, which
is several times of the film thickness h. These observations are
correct for the case with νs = 0.4 and 0, as shown in Fig. 6. When
νs =−0.5, the small surface wrinkles cannot evolve into the folds
with large amplitude. Thus, the amplitude of the surface instabil-
ity is comparable with the film thickness h.

Recent experimental and computational studies suggest that
wrinkling patterns may vary strongly with the surface curva-
ture40. To explore the surface curvature effect, we further in-
vestigate the effect of Poisson’s ratio on the instability pattern of
the bilayered structure with another surface curvature. A model
of the polymeric cylinder with a core/shell structure under com-
pression is given in Fig. 7. The length of the cylinder in the initial
and current configurations are L0 and L, respectively. The thick-
ness of the shell layer is δ . The inner and outer radii are Ri and
Ro, respectively. We fix L0/Ro = 3. FEA has been carried out to
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νs

εc
ri
t

Ef/Es = 20
νf = 0.5

D

L

Ri
Ro

L/Ro = 3
Ri/Ro = 0.95

Fig. 7 Critical strain εcrit vs. the Poisson’s ratio of inner core νs for a
cylindrical core/shell system under compression. The modulus ratio
between the shell and core layers is fixed to be 20.

explore the buckling and post-buckling behaviors of the cylinder
under compression. The Poisson’s ratio for the shell is set to be
0.499 (nearly incompressible) and the value for the core layer is
varied in FEA. The modulus ratio between the shell and core lay-
ers is fixed to be 20. The top of the cylinder is under compression,
while the bottom is fully fixed in the simulation.

The obtained critical strain at the onset of surface wrinkles is
given in Fig. 7 as a solid line. The critical strain is also defined
as εcrit = 1−λ crit . Again, the critical strain is monotonically de-
creasing with the Poisson’s ratio of the core layer increasing from
−1 to 0.5, similar to the thin film/substrate system given in Fig.
3.

The buckling modes with four different Poisson’s ratios of the
inner core, eigenmode I to eigenmode III, are given in Fig. 9a.
For Poisson’s ratio of the inner core as 0.5 and −0.5, the cylinder
exhibits instability patterns with periodic wrinkles along its axial
direction. Bigoni and Gei41 theoretically studied the instability
of incompressible core/shell systems. The obtained instability pat-
tern is consistent with present study on the short cylinder with
L0/Ro = 3. However, for the Poisson’s ratio −0.8, we observe that
tilting buckling dominates (cf. Fig. 9a). More interestingly, the
eigenmode III exhibits wrinkling patterns along the circumferen-
tial direction, instead of the axial direction. When the Poisson’s
ratio is further reduced to −0.9, we cannot obtain the buckling
modes under compression through the linear perturbation analy-
sis. In summary, the Poisson’s ratio of the core can be used to tune
the buckling models for the bilayered system with curved surface.

After the buckling modes have been determined through the
linear perturbation analysis, an imperfection in the form of the
most critical eigenmode (the lowest eigenmode) is introduced to
the mesh for post-buckling analysis. The initial mesh is perturbed
by the first eigenmode v̂1 with scale factor w = 0.05δ (for the in-
ner core with Poisson’s ratio −0.9, we impose the buckling modes
from that with Poisson’s ratio −0.8). The deformation morpholo-
gies at the moment when the buckling takes place in the post-
buckling analysis are demonstrated in Fig. 9b, with four differ-
ent Poisson’s ratios. Consistent with previous buckling analysis,

νs Mode I Mode II Mode III

−0.9

−0.8

−0.5

0.5

(a) Buckling analysis

(b) Postbuckling analysis
ν = −0.9 −0.8 −0.5 0.5

E = 0.38 0.29 0.21 0.16

Fig. 8 (a) Buckling modes I - III for four different Poisson’s ratios of the
inner core; (b) instability patterns at the moment where buckling takes
place from the FEA in the post-buckling analysis.

the critical strain at onset of buckling increases with decreasing
Poisson’s ratio of the inner core. Periodic wrinkles along the ax-
ial direction give way to the tilting buckling patterns, when the
Poisson’s ratio of inner core is reduced. In comparison with the
planar bilayered system, we do not observe the secondary buck-
ling during the post-buckling analysis, even for incompressible
inner core. This may suggest the curved surface can prevent the
secondary buckling. A thorough study will be performed to illus-
trate the surface curvature effect, as we only consider one ratio of
length over diameter in this study.

4 Concluding Remarks
Through the theoretical analysis and finite element simulation,
we explore the effect of volumetric change on surface instabil-
ity of a bilayered system under compression. The thin film and
substrate are taken to be incompressible and compressible, re-
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spectively, to reveal the effect of substrate Poisson’s ratio. We find
that the surface instability of the thin film/substrate system can
be suppressed and delayed, when the substrate Poisson’s ratio is
negative. The post-buckling behaviors of the bilayered system is
also greatly affected by the Poisson’s ratio of the substrate. Thus,
the mechanical-driven volumetric change of the substrate can be
used to tune the surface instability patterns of the bilayered sys-
tem under compression.

In previous studies, the polymeric substrate has been used to
enhance the stretchability of metallic and semiconducting thin
films42–44. For example, the copper thin films deposited on Kap-
ton substrates can be stretched beyond 0.542, since the strain lo-
calization in the thin film can be retarded by the substrate. In
another way, by attaching the silver thin films on the elastomer
substrates with sinusoidal (‘wavy’) surface features, they can be
easily stretched up to 0.4643. All these studies can be used for the
design of stretchable electronics45. In contrast to these studies,
we provide a new way to enhance the compressibility of elastomer
thin films by suppressing and delaying their surface instabilities
under compression. With the help of an auxetic substrate, which
has a very small negative Poisson’s ratio (−1), the elastomer thin
films could be compressed up to 0.46 without occurring evident
surface instabilities. It opens a way for the design of stretchable
electronics, since compression is as important as tension46.

Appendix: Linear Elastic Theory on Surface
Instability of a Bilayered Structure with Pois-
son’s Ratio Effect

In the main text, the theoretical analysis was formulated accord-
ing to the strict finite deformation theory36. It is very difficult
to obtain a close mathematic expression even when both the
film and substrate are incompressible, as discussed by Cao and
Hutchinson18. To provide a detailed insight into the effect of
Poisson’s ratio on instability of a bilayered structure, we drive a
mathematic expression for the critical strain as a function of the
material and geometric parameters, according to the small defor-
mation assumption.

When an uniform compressive deformation e0 is imposed on
the bilayered structure without buckling, the deformation energy
of the thin film/substrate with length L takes the following form
under plane strain deformation:

Wuni =
1
2

E f e2
0(

1− v2
f

)Lh+
1
2

Ese2
0(

1− v2
s
)LH

where h and H are the thickness of thin film and substrate, re-
spectively. Note that we use the subscript f and s denoting the
thin film and substrate, respectively.

Upon a critical compressive strain, the uniform deformation
gives a way to the wrinkling. Let’s assume that perturbation de-
formation fields are given in the following:

x = X

y = Y +F (Y )g(X)

where (x,y) and (X ,Y ) are the coordinates in the current and orig-
inal configurations, respectively. F is a function of Y and g is
a function of X . Under the small deformation assumption, the
strains are given by

εxx = 0 εyy = F
′
g εxy =

1
2

Fg
′

(3)

where the ′ represents the derivatives. Then, the stored elastic
energy for the perturbation deformation fields is:

Wbuck =
∫ 1

2
σi jεi jdV

=
∫ 1

2

Es (1− vs)
(

F
′
g
)2

(1+ vs)(1−2vs)
+Gs

(
Fg

′)2
dVs + (4)

∫ 1
2

E f
(
1− v f

)(
F
′
g
)2(

1+ v f
)
(1−2v f )

+G f

(
Fg

′)2
dV f

where Vs and V f represent the domains of substrate and thin film,
respectively. The perturbation deformation results in

e0 =−
1
2
∫

g
′2dx

L
.

If we further assume that F and g take

F (y) =

{
A0− A0−AI

h2 (H +h− y)2 in the thin film
AI exp

[
−β
(
1− y

H
)]

in the substrate

g = sin(
2nπx

L
)

where A0 and AI are amplitudes of wrinkles on the top of free
surface and interface between the thin film and substrate, respec-
tively. β is a introduced coefficient. The assumed F and g satisfy
the boundary conditions (traction free on the top surface; dis-
placement and traction continuity at the interface), as on the top
surface y = H +h

F
′
= 0

and at the interface y = H

F
∣∣y→H+ = F

∣∣y→H− (5)

Et (1− vt)F
′ ∣∣y→H+ g

(1+ vt)(1−2vt)
=

Eb (1− vb)F
′ ∣∣y→H− g

(1+ vb)(1−2vb)

With the assumed deformation fields, the stored elastic energy
(Eq. 4) becomes:

Wbuck =
1
2

Es (1− vs)

(1+ vs)(1−2vs)

A2
0γ2β 2

H2
L
2

H (1− exp(−2β ))

2β

+GsA2
0γ

2 2π2n2

L
H (1− exp(−2β ))

2β
+

E f
(
1− v f

)(
1+ v f

)
(1−2v f )

(1− γ)2 A2
0L

3h
+G f A2

0
2π2n2

L
3γ2 +4γ +8

15
h
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where γ = AI/A0 is determined from the Eq. (5)

γ =
1

1+β
h
H

Es(1−vs)(1+v f )(1−2vs)
2E f (1−v f )(1+vs)(1−2vs)

When the wrinkling takes place,

Wuni−Wbuck = 0

Then

A2
0 =

(
1
2

Es(1−vs)
(1+vs)(1−2vs)

γ2β 2

H2
L
2

H(1−exp(−2β ))
2β

+Gsγ
2 2π2n2

L
H(1−exp(−2β ))

2β

)
+

E f (1−v f )
(1+v f )(1−2v f )

(1−γ)2L
3h +G f

2π2n2

L
3γ2+4γ+8

15 h

1
2

E f π4n4

(1−v2
f )L3 h+ 1

2
Esπ

4n4

(1−v2
s )L3 H

Finally, the critical strain for the onset of wrinkle can be obtained:

ε
crit = −A2

0π2n2

L2 (6)

= −

1
4π2

(1−vs)γ
2β 2

(1+vs)(1−2vs)
L
H

(1−exp(−2β ))
2β

1
n2 +

γ2

(1+vs)
H
L

(1−exp(−2β ))
2β

+ 1
3π2 (1− γ)2 E f

Es

(1−v f )
(1+v f )(1−2v f )

L
h

1
n2 +

E f
Es

1
(1+v f )

h
L

3γ2+4γ+8
15

1
2

E f
Es

1
(1−v2

f )
h
L + 1

2
1

(1−v2
s )

H
L

By using the same material and geometric parameters as
adopted in Fig. 3, the predicted critical strain vs. Poisson’s ra-
tio of the substrate with several different β and n values are given
in Fig. 9. The critical strain is increasing with the Poisson’s ratio
of the substrate decreasing, which follows the same trend shown
in Fig. 3. According to Eq. 6, the term 1/(1+ vs) in the nu-
merator increases much faster than the term 1/

(
1− v2

s
)

in the
denominator when vs is decreasing. Note we did not try to tune
the parameters β and n to match the results from finite element
analysis, since we only want to show the trend. When the sub-
strate is nearly incompressible (vs ≈ 0.5), the predicted critical
strain approaches infinity, similar to the results given by Baru et
al.34. This is not correct as the assumed deformation fields do
not satisfy the incompressible condition in the small deformation
regime εxx + εyy 6= 0. The theoretical analysis obtained from strict
finite deformation theory in the main text gives accurate predic-
tions, comparing with the finite element results. Although the
simplified linear elastic theory needs to be refined to consider the
nonlinearity during finite deformation, it gives a direct physical
insight into the problem.
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