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Bubbles, droplets or particles in flowing complex media such as foams, emulsions or suspensions follow highly complex paths,
with the relative motion of the constituents setting the energy dissipation rate. What is their dynamics, and how is this connected
to the global rheology? To address these questions, we probe the statistics and spatio-temporal organization of the local particle
motion and energy dissipation in a model for sheared disordered materials. We find that the fluctuations in the local dissipation
vary from nearly Gaussian and homogeneous at low densities and fast flows, to strongly intermittent for large densities and slow
flows. The higher order moments of the relative particle velocities reveal strong evidence for a qualitative difference between
two distinct regimes which are nevertheless connected by a smooth crossover. In the critical regime, the higher order moments
are related by novel multiscaling relations. In the plastic regime the relations between these moments take on a different form,
with higher moments diverging rapidly when the flow rate vanishes. As these velocity differences govern the energy dissipation,
we can distinguish two qualitatively different types of flow: an intermediate density, critical regime related to jamming, and a
large density, plastic regime.

1 Introduction

Flowing complex media exhibit both highly nontrivial macro-
scopic rheology and spatiotemporally heterogeneous micro-
scopic fluctuations1, and understanding, linking and predict-
ing the micro and macro behavior remains a formidable chal-
lenge2–6. In this paper we will focus on the microscopic fluc-
tuations and micro-macro link for a model which describes
the wide class of complex yield-stress fluids that consist of
discrete constituents which interact through short range inter-
actions, such as foams, emulsions, granular media, (colloidal)
suspensions and Lennard-Jones glasses7,8.

At sufficiently low density, such disordered materials lose
their yield stress and are unjammed. The rheology for di-
lute systems is Newtonian, and the particle motions lack com-
plex features2. At sufficiently high density, such materi-
als are jammed — they have a finite yield stress, and their
rheology is then necessarily non-Newtonian2,3. For slow,
dense flows, a phenomenological elasto-plastic scenario has
emerged, where the central role is played by localized, plastic
events, called shear transformation zones, T1 events or Es-
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helby inclusions9–13. During flow, episodes of elastic load-
ing of the system are punctuated by these plastic events which
lower the shear stresses, so that the rate and magnitude of the
stress drops together with the rate of elastic loading govern the
steady state. Many models have been developed that capture
this phenomenology9,14,15. In particular the collective organi-
zation and buildup of correlations, where one event triggers
the next, leading potentially to the formation of large scale
avalanches, have received much attention16.

In between these two extremes, i.e., with densities closer to
the jamming transition, the phenomenological scenario is far
less clear. For static packings, the jamming transition has a
critical nature as evidenced by power law scaling of response
quantities and diverging time and length scales17,18. How this
static critical point influence the dynamics is far from under-
stood. Just above jamming, the system has a low yield stress
and the material becomes exceedingly fragile19–24. The elastic
shear modulus vanishes, the elastic response becomes strongly
non affine, and the strain scale for which an elastic description
is valid vanishes17,18. Nevertheless, these systems are suffi-
ciently crowded that particle motion must be strongly corre-
lated. The question of the nature and role of fluctuations and
plastic events in flows of disordered media close to jamming
is wide open — at the very least their very weak elastic re-
sponse suggests that episodes of elastic loading will be short
lived, if they even can be distinguished. The crucial question
is whether, close to jamming, we find the same type of physics
— elastic loading punctuated by localized plastic events — as
far away from jamming.

Here we address this question for one of the simplest
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models for the flow of disordered media, the Durian bubble
model8. In this over-damped, athermal model, originally de-
veloped for the flow of foams or emulsions, particle interac-
tions combine harmonic repulsion — as in many models for
jamming17 — with viscous like dissipation2,3. In the version
of this model used here, the dissipative forces are linear in the
relative motion ∆v of two particles in contact. The two crucial
control parameters are the shear rate γ̇ and packing fraction ϕ,
and by varying these we can probe two qualitatively different
flow regimes. For moderate densities, the static yield stress is
low, and the flow dynamics is complex and presumably gov-
erned by the proximity of the (static) critical jamming point,
whereas for large densities, the static yield stress is large and
deformations take the form of well-delineated elastic loading
and plastic relaxation events known as elasto-plastic flows.

To make progress, we note that the microscopic particle mo-
tion and macroscopic rheology remain intimately connected:
in steady flows, the energy supplied to the system must be
balanced by dissipation25. The power input is set by the prod-
uct of shear stress σ and strain rate γ̇. The dissipation rate
is governed locally by interactions between the constituents.
In particular, for the bubble model the energy dissipation rate
is given by the sum of ∆v2 over contacts3,25. Hence, power
balance takes the form σγ̇ ∼ Σ∆v2 — we will determine the
exact relation below. The crucial point is that this powerful
and precise connection has strong implications for the magni-
tude of the local fluctuations: in particular this underlies the
finding that in many weakly jammed media the local fluctua-
tions decay sub-linearly with flow rate, such that the relative
fluctuations diverge for slow flows25,26.

Powerful as this link is, it only predicts the 2nd moment of
the distribution P (∆v), and most aspects of the microscopic
fluctuations in flows near jamming are completely open. Is
P (∆v) essentially Gaussian or do their probability distribu-
tion functions exhibit additional structure? Are these fluctua-
tions intermittent in time and/or localized in space? What are
the systematic variations with strain rate and density?

Here we address these questions and characterize the dis-
sipative fluctuations, focusing on the higher moments of ∆v
which directly characterize deviations from Gaussianity, and
also probe spatiotemporal heterogeneities. We first show that
the probability distribution P (∆v) varies from near Gaussian
in the critical regime to near power law in the yield stress
regime. Similarly, the spatiotemporal distributions vary from
essentially homogeneous near jamming to strongly heteroge-
neous in the yield stress regime. Second, we find that the non-
trivial 4th and 6th moments of ∆v can be related to the 2nd
moment via nontrivial scaling relations which are reminiscent
of multiscaling in turbulence. Crucially, these scaling rela-
tions take on a different form in the intermediate density, jam-
ming and large density, yield stress regimes, which suggest an
objective criterion to separate these two. As the velocity dif-

ferences govern the energy dissipation, this qualitative differ-
ence in their statistics points to an important difference in the
nature of energy dissipation. The broad picture that emerges is
that we can both distinguish and connect two qualitatively dif-
ferent regimes: the yield stress regime that exhibits the well
know elasto-plastic phenomenology seen in many other sys-
tems, and the near jamming regime with qualitatively different
and new features.

2 Numerical Model

We perform simulations on Durian’s bubble model in 2D, for
systems of N = 1024 particles in a 50/50 mixture of disks of
diameter 1 and 1.4. The contact force fij between particles i
and j is only nonzero when the particles are in contact, when it
is the sum of a repulsive linear elastic force fe

ij and a linearly
viscous damping force fv

ij , where:

fe
ij = −k r̂ij δij , (1)

fv
ij = −b (∆̂vij) ∆vij . (2)

Here, r̂ij is the unit vector pointing from the center of particle
i to j, δij is their overlap, ∆vij is their relative velocity, and k
and b are the elastic and viscous constants.

The particles are massless so that their motion is over-
damped and the contact forces remain in balance. The veloci-
ties are then determined by solving a matrix equation at each
time step3. Simulations become much faster for the well stud-
ied ’mean field’ variant of the bubble model, where the dis-
sipative forces are calculated with respect to a mean flow27.
However this model is less realistic and leads to anomalous
results for the fluctuations and their spatial correlations2,3,28.

The shear stress σ is calculated from the contact forces via
the Born-Huang formula29:

σ =
1

2V

∑
⟨ij⟩

rxij f
y
ij , (3)

where V is the volume of the simulation box and the sum runs
over all contacting bubbles. As the contact forces are the sum
of elastic and viscous forces, we can also define the elastic and
viscous stresses σe and σv by only including the appropriate
forces in Eq. (3); of course, their sum equals the total stress
σ, and for the strain rates studied here, σv ≪ σe

3. In the
remainder, we express stresses in units of k, lengths in units
of the average bubble diameter, times in units of b/k and strain
rates in units of k/b.

We perform numerical simulations at constant strain rate γ̇
between 10−5 and 3×10−3, and for our system we previously
estimated that ϕc ≈ 0.84233. We focuss on excess packing
fractions ∆ϕ := ϕ−ϕc from 10−4 to 0.16 but also show some
results for runs below jamming. All runs have a duration of
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20/γ̇ so that the total strain is 20, and σ and ∆v are sampled
each 0.67 percent of strain; transients are less then 1.5 units of
strain and are excluded from the averaging.

3 Power Balance and Phenomenology

The power supplied to the system by driving it must be dissi-
pated by the relative motion of the particles. As the injected
power is the product of strain rate and stress, and the dissi-
pated power is set by the local particle motion, power balance
sets up a powerful relation between the macroscopic rheology
and microscopic fluctuations that we explore here.

The time averaged power injected into the system is

Pin = V γ̇ ⟨σ⟩t , (4)

where brackets denote temporal averaging. The only source of
dissipation is the relative motion of particles, so that the rate
of energy dissipation is equal to the sum of the square of their
relative velocities, ∆v2, taken over all NZ/2 contacts, where
z is the average number of neighbors:

Pout =
N

2
⟨z ∆v2⟩xt ≈

N

2
⟨z⟩xt ⟨∆v2⟩xt := Nc⟨∆v2⟩xt ,

(5)
where brackets denote averages over space and time, Nc :=
Nz/2 is the total number of contacts, and we have assumed
that the fluctuations in contact number z and velocities ∆v
are uncorrelated. To check that this assumption is correct and
Eq. (5) holds, we present in Fig. 1a the scatter plot of Pin vs
Pout. Clearly, Eq. (5) is correct to within a few percent.

In our simulations, ⟨∆v2⟩xt varies over several orders of
magnitude whereas the contact number z only varies between
3.5 and 6. Moreover, the elastic stresses σe remain much
larger than the viscous stresses σv. Hence, the simplified scal-
ing σeγ̇ ∼ ⟨∆v2⟩, which was used in earlier work to describe
the scaling behavior of the rheology of this model near jam-
ming3, captures the dominant trend well as shown in Fig. 1b.

3.1 Trends with ∆ϕ and γ̇

Power balance has important consequences for the nature of
the velocity fluctuations. Defining the relative velocity ∆v :=
∆v/γ̇, the power balance equation can be written as

C⟨∆v
2⟩xt =

⟨σ⟩xt
γ̇

, (6)

where C := Nc/V is the mean contact density. This form
clarifies that the relative velocity fluctuations are set by the
ratio of the shear stress σ and the strain rate.

Previous results for the stress as function of density and flow
rate distinguish (at least) three qualitatively different regimes:
the regime below jamming (∆ϕ < 0), the critical regime near

Fig. 1 (a) Scatter plot of Pin := V γ̇⟨σ⟩ vs Pout := Nc⟨∆v2⟩.
Straight lines indicate equality, red (light) symbols denote high
density and blue (dark) symbols denote low density. The inset
shows that in our simulations Pin and Pout never differ more than a
few percent. (b) The simplified version of the power balance
equation, used in 3, ignores the variation of the contact number and
the contribution of the viscous stress. When we fix the contact
number at four, we find that this simplified version works well for
scaling, and that R := (2N⟨∆v2⟩)/(V γ̇⟨σe⟩) is within a factor two
of unity.

jamming (∆ϕ ≈ 0) and the yield stress regime above jamming
(∆ϕ > 0)2,3. Using these results we can now understand the
following trends in ⟨∆v

2⟩: (i) Below jamming, the rheology
becomes Newtonian (σ ∼ γ̇) so that from Eq. (6) it follows
that the relative fluctuations ⟨∆v

2⟩ are essentially independent
of the flow rate. (ii) In the critical regime, the material is shear
thinning: the stress scales as γ̇β , with different groups2,3,6 re-
porting different values of β between 0.2 and 0.5. For any
β < 1, power balance implies that ⟨∆v

2⟩ diverges as γ̇ β−1

when γ̇ → 0. (iii) In the yield stress regime, the stress reaches
a finite yield stress when γ̇ → 0, and ⟨∆v

2⟩ diverges as γ̇ −1.
The divergence of the relative velocity fluctuations in the

critical and yield stress regimes implies a breakdown of the
quasistatic limit. For a meaningful quasistatic limit to exist,
characteristics of the particle positions as function of strain
should not depend on strain rate, and ∆v and γ̇ have to scale
similarly, but as discussed above, power balance forbids this
near and above jamming. Similar divergencies have been ob-
served in experiments on flowing two dimensional foams26,
and we note that for other models (such as the “mean field”
versions of the bubble model8), similar arguments also imply
the breakdown of the quasi-static limit2,25.

4 Non-Gaussianity and Heterogeneity

Power balance does not dictate the detailed statistics of ∆v,
nor its spatial or temporal homogeneity. For amorphous, plas-
tic flow, one expects the energy dissipation to be heteroge-
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Fig. 2 The shape of the probability density function of the
normalized velocity differences, |∆v|/⟨∆v2⟩1/2, varies strongly
with packing fractions and strain rates as indicated. In this
representation, a Gaussian appears parabolic and an exponential
becomes a straight line.

neous in space and time, with concomitant non-Gaussian be-
havior of ∆v. Near jamming, plastic rearrangements have
been shown to be related to quasi-localized modes30,31 which
suggest a heterogeneous picture; on the other hand, many
quantities such as the connectivity near jamming remain fairly
homogeneous3,32–34. Here we show that near jamming ∆v is
Gaussian and homogeneous in space and time, whereas for
larger densities, progressively stronger deviations from Gaus-
sian statistics and concurrent spatiotemporal heterogeneity is
observed. As the velocity differences govern the energy dis-
sipation, this qualitative difference in their statistics points to
an important difference between the nature of energy dissipa-
tion: near jamming, this energy is homogeneously dissipated,
whereas far above jamming the energy dissipation becomes
increasingly localized. As we will discuss at the end of the
paper, this suggests two distinct flow phenomenologies.

In Fig. 2 we show the distribution of the normalized ve-
locity differences, P (|∆v|/

√
⟨∆v2⟩), for a range of densities

and strain rates. The variations in the shape of this distribu-
tion with ∆ϕ and γ̇ immediately show that the second mo-
ment of ∆v is not sufficient to fully characterize the velocity
fluctuations. In the critical regime, i.e., for low ∆ϕ and large
γ̇, these distributions are narrower than an exponential distri-
bution and approach Gaussians (Fig. 2). In contrast, in the
yield stress regime, i.e., for large ∆ϕ and low γ̇, the tails of
P (|∆v|) become significantly fatter than exponentials — in
the most extreme case (∆ϕ = 10−1, γ̇ = 10−5) the tail may
tend to a power law, although our range of data is insufficient
to establish this with certainty. Be that as it may, the distribu-
tions clearly indicate a change from homogeneous to hetero-
geneous velocity distributions when ∆ϕ is increased and γ̇ is
decreased.

Fig. 3 The strain dependencies of the normalized energy dissipation
Dp := ⟨∆v2⟩x/⟨∆v2⟩xt and of the inverse participation ratio
IPR := ⟨∆v4⟩x/⟨∆v2⟩2x exhibit systematic trends with ∆ϕ and γ̇.

To get insight into the temporal and spatial structure of the
velocity differences we have studied two quantities. To eluci-
date the temporal heterogeneity of the energy dissipation, we
calculate the ratio of instantaneous to mean energy dissipation:

D := ⟨∆v2⟩x/⟨∆v2⟩xt , (7)

where temporally homogeneous behavior corresponds to D =
1. To quantify the spatial homogeneity, we calculate the in-
verse participation ratio which measures the spatial hetero-
geneity of the instantaneous energy dissipation:

IPR =
⟨∆v4⟩x
⟨∆v2⟩2x

. (8)

We recall that the IPR can vary from 1 for completely spatially
uniform ∆v, to O(N) when ∆v is concentrated on a single
contact.

As illustrated in Fig. 3, in the critical regime, both the en-
ergy dissipation and IPR are fairly constant in time, with both
D and the IPR being of order one indicating both spatial and
temporal homogeneity. In contrast, in the yield stress regime,
the energy dissipation rate varies over many orders of mag-
nitude. In episodes when D ≪ 1, little energy is dissipated,
which means that all the work done on the system is stored as
elastic energy; when D ≫ 1, this stored energy is released.
Concomittant with this increase in temporal heterogeneity, the
IPR values become larger. Hence, in the yield stress regime,
the energy dissipation occurs in bursts that are localized in
both space and time.
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Fig. 4 False color plots showing the normalized dissipation per
particle Dp for two sets of parameters, and each at the lowest and
highest IPR of a run. For γ̇ = 10−3 and ∆ϕ = 10−3 (left column),
the dissipation does not show much distinct spatial structure, and
temporal fluctuations are small. The top panel has
IPR ≈ 3.42, ⟨DP ⟩x ≈ 0.96, and the bottom panel has
IPR ≈ 6.34, ⟨DP ⟩x ≈ 1.06. In contrast, for γ̇ = 10−5 and
∆ϕ = 10−1 (right column), the dissipation is strongly intermittent
in space and time. The top panel shows a homogeneous, elastic
loading state when the IPR has a local minimum (IPR ≈ 5.4) and
the mean dissipation is very low ⟨Dp⟩x ≈ 0.021. The bottom panel
shows a localized plastic event; here the IPR has a local maximum
(IPR ≈ 286, ⟨Dp⟩x ≈ 0.70), with the central particle of the plastic
event having Dp ≈ 188.

In Fig. 4 we illustrate the underlying spatiotemporal inter-
mittent behavior by showing snapshots of the normalized ve-
locity differences per particle

Dp := ⟨∆v2⟩p/⟨∆v2⟩xt . (9)

Here ⟨∆v2⟩p := Σj ∆v2ij/z, the sum runs over all contacts of
a single particle j, and ⟨Dp⟩x = D. In Fig. 4, left column, we
show representative examples of the essentially homogenous
case that we encounter for low density and large flow rates
(γ̇ = 10−3 and ∆ϕ = 10−3). For this particular snapshot we
selected a local minimum and maximum of the IPR, but for
these flow parameters the IPR does not vary much with time.
Moreover, the spatial fluctuations are short ranged and lack
any distinct features, and essentially appear like random noise.
In contrast, in Fig. 4, right column, we show Dp for large den-
sity and slow flows (γ̇ = 10−5 and ∆ϕ = 10−1). Here, the

Fig. 5 Multiscaling relates ⟨Γ4⟩ and ⟨Γ6⟩ to ⟨Γ2⟩. (a) If the energy
dissipation rate ⟨Γ2⟩ was normally distributed, ⟨Γ4⟩/⟨Γ2⟩2 = 3
(dashed line), and we see significant deviations of Gaussianity for
large fluctuations ⟨Γ2⟩. (b) Scaling collapse for ⟨Γ4⟩/⟨Γ2⟩α4 as
function of ∆ϕβ4/γ̇, for α4 = 2.33± 0.05 and β4 = 1.3± 0.1.
The dashed line has slope 1/2. Inset: data for ∆ϕ < 0. (c) If the
energy dissipation rate ⟨Γ2⟩ was normally distributed,
⟨Γ6⟩ = 15⟨Γ2⟩3 (dashed line), and we see significant deviations of
Gaussianity for large values of ⟨Γ2⟩. Inset: data for ∆ϕ < 0. (d)
Scaling collapse for ⟨Γ6⟩/⟨Γ2⟩α6 as function of ∆ϕβ6/γ̇, for
α6 = 3.85± 0.1 and β6 = 1.1± 0.2. The dashed line has slope 1.
Inset: data for ∆ϕ < 0.

IPR varies significantly, and we show both snapshots where
the IPR is in a local minimum and in a local maximum. For
the low IPR snapshot, the amount of dissipation is very low,
and the material is therefore in an elastic loading episode; for
the large IPR snapshot, the dissipation is strongly localized
around a core where DP reaches almost 200, i.e. more that
two orders of magnitude larger than the mean Dp which is of
order one. Around this highly active ”core”, we can observe
a quadrupolar structure familiar for dense flows. This type of
intermittency is familiar for slow, dense flows, but the striking
observation is that signatures of such localized events essen-
tially disappear near jamming. In the supplementary material,
we provide four movies, showing Dp and the evolution of D
and the IPR, at ∆ϕ = 10−3 and 10−1 and γ̇ = 10−5 and
10−3, that illustrate the trends with density and strain rate in
more detail†.

† Electronic Supplementary Information (ESI) available: [4 videos showing
Dp and the evolution of D and the IPR for two different densities and two
different strain rates.]. See DOI: 10.1039/b000000x/
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5 Scaling of Higher Order Moments of ∆v

Can we capture the qualitative changes in the statistics be-
tween the Gaussian, critical regime and the intermittent yield
stress regime? Here we show how the aforementioned spa-
tial and temporal heterogeneity manifests in the higher mo-
ments of ∆v, which we show to exhibit nontrivial scaling re-
lations that allow us to quantify the statistics of ∆v in detail.
These scaling relations between the higher moments are rem-
iniscent of multiscaling in turbulence35,36. Moreover, these
scaling relations allow us to distinguish two distinct scaling
regimes, which suggest objective criteria to separate the criti-
cal/jamming and yield stress/plastic phenomenology.

We will focus on even moments of the velocity differences
⟨∆v2n⟩ as these are scalar37, and restrict ourselves to n = 1, 2
and 338. The second moment of ∆v is equal to the second
moment of what we call the dissipation rate Γ :=

√
C dv, and

the 4th and 6th and standardized moments of dv can be written
as ⟨Γ4⟩/⟨Γ2⟩2 and ⟨Γ6⟩/⟨Γ2⟩3, where all averages are over
both space and time. To probe deviations from Gaussianity,
we recall that when Γ2 is normal distributed, Γ4/⟨Γ2⟩2 equals
3 and Γ6/⟨Γ2⟩3 equals 15.

As shown in Fig. 5a, where we plot the 4th standardized
moment of Γ as function of ⟨Γ2⟩, we approach the Gaussian
limit in the critical regime where ⟨Γ2⟩ is small. However, the
4th standardized moment of Γ reaches values exceeding 100
for large ⟨Γ2⟩, which corresponds to strongly non-Gaussian
behavior as observed in Fig. 2. We note that the data does
not collapse when plotted simply as function of ⟨Γ2⟩ (in par-
ticular data at a single, fixed strain rate, does not follow the
overall trend). Inspired by the success of scaling approaches
near jamming2–4,32,39,40, we attempt to rescale all our data by
introducing a standard scaling function of the form

⟨Γ4⟩ = ⟨Γ2⟩α4 F4

(
∆ϕβ4/γ̇

)
(10)

where the exponents α4 and β4 need to be determined numeri-
cally by requiring scaling collapse, after which the form of the
scaling function F4 follows.

As shown in Fig. 5b, we find good data collapse for α4 =
2.36 ± 0.05 and β4 = 1.3 ± 0.1. Crucially, the scaling func-
tion F4 reveals the existence of two distinct scaling regimes
depending on the magnitude of ∆ϕβ4/γ̇ — in both, F4 takes a
particularly simple form, with F4(x) → cnst for x < 10 and
F4(x) ≈

√
x for x > 100.

The situation for the 6th standardized moment is analogous
to that of the 4th. As shown in Fig. 5c, we approach the
Gaussian limit for small ⟨Γ2⟩, but strongly deviate from Gaus-
sian behavior, reaching values of ⟨Γ6⟩/⟨Γ2⟩3 of order 105 for
larger ⟨Γ2⟩. Using the scaling form

⟨Γ6⟩ = ⟨Γ2⟩α6 F6

(
∆ϕβ6/γ̇

)
(11)

we find good data collapse for α6 = 3.85 ± 0.1 and β6 =
1± 0.2 as shown in Fig. 5d. F6 is reminiscent of, but different
from, F4: F6(x) → cnst for x < 10, and F (x) ≈ x for
x > 100.

We note that β4 and β6 are not particularly sensitive to the
precise choice of ϕc: when we adjust ϕc by up to ±10−3,
i.e., far beyond our estimate of its error bar, our estimates for
βi are not significantly affected; moreover, our estimates for
αi are essentially independent of the choice of ϕc. We have
run exploratory simulations in smaller systems (N = 64) to
see whether the crossovers in F4 and F6 are due to finite size
effects, but have found no indications for this.

Finally, to see if the scaling regimes expressed in
Eqs. (10,11) extend below jamming, we have also analyzed
data for ∆ϕ < 0. As shown in the insets of Fig. 5, the
data for 4th and 6th moment of ⟨Γ⟩ for small |∆ϕ| scale as
⟨Γ4⟩ = ⟨Γ2⟩α4 and ⟨Γ6⟩ = ⟨Γ2⟩α6 as long as ∆ϕ is not
too negative. Some deviations for the 6th moments for rel-
atively large γ̇ can be seen in the plateau region — whether
these are physical, or due to numerical artefacts (the code was
developed for ∆ϕ > 0) we cannot determine. Nevertheless
we believe that the plateau region extends into the ∆ϕ < 0
regime — when crossing the ∆ϕ = 0 boundary at finite flow
rate, nothing dramatic occurs in the nature of the fluctuations,
consistent with the analysis of a robust powerlaw elastic cor-
relation length across ∆ϕ = 0 shown recently13.

6 Conclusion and Outlook

We have probed the statistics, spatial and temporal organi-
zation of the local energy dissipation in a model for sheared
disordered materials, and observe strong variations with the
control parameters ∆ϕ and γ̇. Broadly speaking, for low den-
sities and/or fast flows, the fluctuations become nearly Gaus-
sian, and spatial and temporal fluctuations are small. The rhe-
ology in this regime is that of a powerlaw fluid, and may be
amenable to simple, mean-field modeling2,3. In contrast, for
large densities and/or slow flows, the fluctuation distributions
become very wide, and strongly heterogeneous in space and
time. This broad trend is intuitive: for large densities, the
material can be deformed elastically over a substantial range,
and the dynamics is a mix of elastic loading and plastic, dis-
sipative events, whereas for low densities near jamming, the
elastic range vanishes and the dynamics becomes more homo-
geneous.

Surprisingly, our results for the scaling of the fluctuations
(Eqs. (10-11)) show that, in addition to these overall trends,
we can clearly distinguish two qualitatively different regimes,
which we now refer to as a critical and a plastic regime. As
shown in Fig. 6, where we sketch a schematic state diagram,
these regimes are connected via a smooth crossover, governed
by the ratio ∆ϕβ/γ̇ (pink, dashed line). The distinction be-
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Fig. 6 Regimes in the (∆ϕ, γ̇) plane based on our scaling results for
the moments of Γ. Our data indicates a crossover, at γ̇ ∼ ∆ϕβ for
β ≈ 1 (purple, dashed) which separates the critical and plastic
regime as indicated. The quasistatic regime can smoothly be
reached from the plastic regime. Our data clearly evidences critical
behavior for ∆ϕ < 0 at finite flow rate, although the nature and
location of the crossover to the deeply unjammed regime is unclear.
Note that while the jamming point (red dot) plays a crucial role in
organizing the physics, the line ∆ϕ = 0 has no particular
significance for γ̇ > 0.

tween these regimes and the form of this crossover follows
from the crossovers observed for both ⟨Γ4⟩ and ⟨Γ6⟩. Even
though our best estimates for the exponents β4 and β6 are
slightly different, they are equal to within error bars, and we
suggest that both scaling relations Eqs. (10-11) point to the
same crossover, with β ≈ 1. We further suggest that the
crossover between the plastic and critical regimes is related
to rheological crossovers observed previously2,3.

We now briefly summarize the phenomenology in the criti-
cal and plastic regimes, and discuss the relation to quasistatic
flows as well as to the quasistatic jamming point.

Critical regime: In the critical regime, Eqs. (10-11) reduce
to a simple form, reminiscent of multiscaling of higher mo-
ments of the velocity differences observed in turbulence:

⟨Γ4⟩ = ⟨Γ2⟩α4 , (12)
⟨Γ6⟩ = ⟨Γ2⟩α6 . (13)

For large γ̇ and small |∆ϕ|, where Γ is small, this predicts that
the fluctuations approach a Gaussian, consistent with what is
shown in Fig. 2, and as shown in Fig. 3 and Fig. 4, the tempo-
ral and spatial fluctuations become small here. However, the
fluctuations become increasingly non-Gaussian when one ap-
proaches the jamming point from the critical regime. As dis-
cussed above (see Fig. 1), the combination of powerlaw rhe-
ology and power balance dictates that the 2nd moment of the
relative velocity fluctuation distributions ⟨Γ2⟩ diverges when
γ̇ →. In that case, Eqs. 12-13 imply that the fluctuations be-

come strongly non-Gaussian, although the ratio ⟨Γ4⟩/⟨Γ2⟩α4

remains finite and fixed.
Plastic regime: In the plastic regime, the (simple) expres-

sions of F4(x) ∼
√
x and F6(x) ∼ x (see Eqs. 10-11), indi-

cate a very rapid growth of the non-Gaussian behavior when
γ̇ → 0: the ratio between, e.g., ⟨Γ4⟩ and ⟨Γ2⟩α4 , diverges, in
stark contrast to what happens in the critical regime. This di-
vergence is consistent with the avalanche-like phenomenology
observed in strongly jammed quasistatic or very slow flows,
that have been studied extensively11,16,43. Such flows proceed
by a sequence of plastic events localized in space and time,
which are referred to as shear transformation zones, T1 events
or Eshelby events, with concomitant sharp drops in the stress
just after such a plastic event.

Outlook: We close by putting our results in a wider context.
Earlier work on a probe particle pushed through a packing at
densities below, near and above jamming, evidenced multi-
scaling of the particles fluctuations41. At present it is an open
question if and how these and our observations are related.
Fluctuations of flowing matter have also received widespread
interest in the context of dynamical heterogeneities42 — how
to relate those observations to ours is an important open ques-
tion. Our results are obtained for a simple viscous model
where the dissipative forces scale as ∆v. In more realistic
systems, dissipation can take a more complex form such as
∝ ∆vξ, where ξ ≈ 2/3 in foams5, and ξ tends to zero in
frictional systems. As long as ξ remains positive, the power
balance suggest a divergence in the limit of vanishing strain
rates, and it would be interesting to see what types of multi
scaling this yields. Intriguingly, the frictional case is marginal
as far as power balance is concerned, and it is an open ques-
tion whether a similar divergence of the strength of the relative
fluctuations arises then.

Finally we briefly discuss the role of the static jamming
point at ∆ϕ → 0, γ̇ → 0. Even though this point appears
to organize much of the rheology and fluctuations of disor-
dered media, we note here that the nature of the crossover be-
tween the critical and plastic regime in both the present and
prior studies strongly indicate that the approach to the point
depends on the order of limits. For example, quasistatic simu-
lations performed at the jamming density35,43 require a very
careful analysis. More generally, the relation between the
purely quasistatic, linear response phenomenology near jam-
ming17, and the rheology near jamming needs clarification.
For example, for flows near jamming, power-balance dictates
that at fixed γ̇ the fluctuations grow in magnitude when ∆ϕ
is increased. In the case of elastic deformations near jam-
ming, various measures of randomness and non-affinity di-
verge when decreasing the density towards the jamming den-
sity17,18. These completely opposite trends highlight that the
relation between elastic and viscous quantities is highly intri-
cate near jamming.
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8 Supplemental Material

We provide four movies, showing time traces of the mean en-
ergy dissipation D and the IPR, as well as the time evolution
of the the dissipation per particle Dp, as in Fig. 4. This data
is taken for ∆ϕ = 10−3 and 10−1 and γ̇ = 10−5 and 10−3.
These movies illustrate the trends with density and strain rate
in detail. Each frame corresponds to a strain step, which
means the γ̇ = 10−5 video is 100x sped up compared that
with γ̇ = 10−3.
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