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Dimensional Reduction of Duplex DNA Under Confinement to

Nanofluidic Slits

Fernando Vargas–Lara∗a, Samuel M. Stavisb, Elizabeth A. Strychalskic, Brian J. Nablod, Jon Geistd,

Francis W. Starre, and Jack F. Douglas∗a

There has been much interest in the dimensional properties of double–stranded DNA (dsDNA) confined to nanoscale environ-

ments as a problem of fundamental interest in both biological and technological fields. This has led to a series of measurements

by fluorescence microscopy of single dsDNA molecules under confinement to nanofluidic slits. Despite the efforts expended

on such experiments, and the corresponding theory and simulations of confined dsDNA, a consistent description of changes in

the radius of gyration of dsDNA under strong confinement has not yet emerged. Here, we perform molecular dynamics (MD)

simulations to identify relevant factors that may account for the observed experimental variability. Our simulations indicate a

significant amplification of excluded volume interactions under confinement at the nanoscale due to the reduction of the effec-

tive dimensionality. Thus, any factor influencing the excluded volume interaction of dsDNA, such as ionic strength, solution

chemistry, and even fluorescent labels, can greatly influence the dsDNA size under strong confinement conditions. These factors,

which are normally less important in bulk solutions of dsDNA at moderate ionic strengths because of the relative weakness of

the excluded volume interaction, must therefore be under tight control to achieve reproducible measurements of dsDNA under

conditions of dimensional reduction. By simulating semi–flexible polymers over a range of parameter values relevant to the

experimental systems, and exploiting past theoretical treatments of the dimensional variation of swelling exponents and prefac-

tors, we have developed a novel predictive relationship for the in-plane radius of gyration of long semi–flexible polymers under

slit–like confinement. Importantly, these analytic expressions allow us to estimate the properties of dsDNA in a range of contour

length that is not currently accessible by the state–of–the–art MD simulations, but is experimentally and biologically relevant.

An understanding of the many factors influencing the size of

dsDNA under nanoscale confinement is highly relevant to ra-

tionally designing measurement technologies for genomic se-

quencing and medical sensing, and for accurately describing

crowding effects on dsDNA organization in living systems.

Consequently, there have been many recent theoretical and ex-

perimental studies of this phenomenon1–15. In particular, it

has been possible for two decades to image individual fluores-

cently labeled dsDNA under conditions of nanoscale confine-

ment in nanofluidic devices with slit–like geometries. In this

way, the in–plane radius of gyration of dsDNA as a function of

slit height has been recently measured. Figure 1 summarizes

the results of these experimental measurements, which exhibit

a puzzling scatter under nominally similar experimental con-

ditions. Scaling arguments and continuum chain models have

dominated the majority of the recent theoretical treatments of

this problem, which generally ignore polymer–surface inter-
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actions and have the more serious problem of a breakdown

at the continuum limit under strong confinement16. It should

then come as no surprise that these theoretical treatments are

inadequate to describe dsDNA under such conditions.

Here, we perform molecular dynamics (MD) simulations of

a simple model of double–stranded DNA (dsDNA) which in-

corporates excluded volume, polymer–surface, and polymer–

polymer interactions. Our simulations indicate that the largest

underappreciated effect in previous modeling is the excluded

volume interaction, which becomes amplified under condi-

tions of strong confinement due to the reduction of the effec-

tive spatial dimensionality. In addition, attractive polymer–

polymer and polymer–surface interactions appreciably influ-

ence the polymer size.

We organize our paper as follows. In Section 1, we briefly

review the experimental and theoretical situation to clearly de-

fine the scientific problem, and the interactions and properties

that are relevant to our calculations. In Section 2, we develop

a molecular model of dsDNA as a semi–flexible polymer hav-

ing fixed persistence length and variable effective diameter,

given the range of suggested values for the effective diameter.

In Section 3, we use this model to perform MD simulations

over a wide range of values of slit height, contour length, and

effective diameter, and we deduce suitable mathematical ap-

proximants for the polymer dimensions in terms of these ba-
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sic variables. Additionally, we perform MD simulations that

include attractive polymer—surface and polymer–polymer in-

teractions to assess the qualitative importance of these interac-

tions on polymer size. In Section 4, we directly compare our

computational results with the experimental measurements de-

scribed in Section 1. In this comparison, we find good agree-

ment for a range of effective diameters which are fully con-

sistent with standard estimates from molecular biology. This

comparison also indicates that inadvertent variation in the ex-

cluded volume interaction, which is less significant for dsDNA

in bulk solution than under confinement, probably contributes

to the variability of the experimental measurements. We also

discuss details of the experimental systems to clarify uncer-

tainties in both the experimental measurements and input pa-

rameters for models of dsDNA molecules under confinement.

We conclude in Section 5.

1 Brief Review of Previous Studies of Polymers

Under Confinement to Slits

We begin by giving a brief overview of recent experimental

studies of dsDNA under confinement to nanofluidic slits. Fig-

ure 1 compares the results of several experimental measure-

ments and inferences, and Table 1 presents measurement pa-

rameters of the experimental systems. The upper panel of Fig-

ure 1 summarizes single–molecule measurements of the in–

plane radius of gyration Rg‖ of dsDNA obtained from refer-

ences 3,5,6,8,11–13. The lower panel of Figure 1 presents the

in–plane size of the dsDNA normalized by an estimate of the

most probable (mode) value in bulk solution Rg‖(bulk). Al-

though this dimensionless measure of dsDNA size in terms of

the chain size in bulk solution is theoretically attractive, there

are significant uncertainties in estimating Rg‖(bulk) that com-

pound experimental uncertainties in estimating Rg‖(h) under

confinement. In addition, there are other factors that have not

been tightly controlled or precisely characterized that might

account for the variability of the experimental results, as well

as the proposed models of dsDNA under confinement. For

example, there has been little attention given to the effects of

strong slit–like confinement on excluded volume interactions

of semi–flexible polymers, or the effects of solution conditions

on the balance of attractive polymer–polymer and excluded

volume interactions. Moreover, previous studies have scarcely

considered the influence of polymer-surface interactions in

strong slit–like confinement on the size of semi–flexible poly-

mers. Considering these idealizations, it is perhaps remark-

able that the measurements and predictions are as consistent

as they are.
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Fig. 1: The upper panel compares experimental measurements and

inferences of the size of dsDNA under confinement to nanofluidic

slits; Tang et al. 8 (in green circles), Strychalski et al. 5,11(5 : 1 in

red squares, 20 : 1 in black diamonds), Dai et al. 12 (purple up-

right triangles), and Lin et al. 13 (maroon sideways triangles), Bon-

thuis et al. 6 (brown inverted triangles). In these experimental mea-

surements, the relevant metric of dsDNA size is the most probable

(mode) value of the component of the radius of gyration parallel to

the slit, abbreviated as Rg‖. The lower panel presents this in–plane

size of dsDNA under slit–like confinement, normalized by estimated

values of the size of dsDNA in bulk solution. This normalization con-

tributes additional experimental uncertainty. For these experimental

systems, the transition between strong and moderate confinement oc-

curs around slit heights h of twice the dsDNA persistence length 2 lp,

h ≈ 100 nm, while the transition between moderate and weak con-

finement occurs around slit heights h ≈ 1000 nm.
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Scaling arguments have long been applied to predict the di-

mensions of polymers under confinement19. The classic work

of Daoud and de Gennes20 considered the case of a swollen

flexible polymer, modeled as a self–avoiding walk confined

between repulsive walls. This scaling argument predicts that

the size of a swollen polymer confined to such a slit scales

as Rg ∼ M3/4(h/lp)
−1/4, where M is the polymer mass,

h is the slit height, and lp is the polymer persistence length.

This scaling argument for Rg has been highly influential in

experimental investigations of confined polymers, but Odijk

questioned the applicability of this argument in the strong

confinement regime, h ≤ lp, because of the emergence of a

new length scale associated with the proposed folding of poly-

mers induced by geometrical confinement7,21. Below, we find

that there is indeed a distinct regime of strong confinement to

which scaling arguments no longer apply, but we find no evi-

dence for the type of folding suggested by Odijk. Instead, we

observe an amplification of the effect of excluded volume in-

teractions on the polymer dimensions. A simple relation of

(h/lp) to an invariant exponent cannot describe this effect,

since the effective dimensionality of the system varies with h.

Similarly, continuum theory does not apply if the scale of con-

finement is on the order of the largest coarse–graining scale of

the molecular model, in this case the persistence length. The

transition into this regime of strong confinement is a matter

of primary interest in many experimental studies of confined

dsDNA, and we develop a model to investigate this transition.

2 Minimal Model for Computation

The formulation of a predictive model for this system requires

the introduction of a theoretical framework to guide the or-

ganization of simulation results into useful mathematical ap-

proximants. To proceed with this program, we must recog-

nize that we confront two fundamentally difficult problems –

the intricate problem of polymer excluded volume and the in-

herent problem of describing strong confinement based on a

continuum theory for which the confinement scale is on the

order of the coarse–graining scale of the model. These two

problems are coupled for confined polymers, which demands

a numerical rather than an analytical treatment. Even the most

powerful analytical method, such as renormalization group

theory22, cannot help us with solving the problem of dimen-

sional reduction, as Douglas and Freed16 discussed in the re-

lated context of the adsorption of a flexible end–tethered poly-

mer onto a planar surface. In particular, Douglas and Freed

solved the problem of the adsorption of a single random walk

polymer onto a planar surface based on both continuum and

discrete lattice models. In these models, the confinement de-

rives from the polymer–surface interaction, which localizes

the polymer to an interfacial region if the attractive interac-

tion is sufficiently large to adsorb the polymer. This attractive

interaction is analogous to slit height for polymers between

two non–adsorbing surfaces. An exact calculation based on

the continuum polymer model, described as a Gaussian coil

polymer, as a function of an increasingly attractive polymer–

surface interaction corresponding to confinement, was found

to be inconsistent with the corresponding exact lattice random

walk calculation for the in–plane size of an ideal polymer.

Douglas and Freed identified the discrepancy between these

formally equivalent calculations as the breakdown of the con-

tinuum limit on which the conventional Gaussian polymer

model is based. The same difficulty must arise in the worm–

like chain model, since this model does not account for ex-

cluded volume interactions. Actually, this is a problem for

any field theory or continuum polymer model under strong

confinement. Douglas and Freed, however, were able to offer

a practical solution to this problem of dimensional reduction

by demanding the equality of the results obtained from the

continuum and lattice based–models. This consistency crite-

rion requires that the effective spatial dimensionality become

a function of the geometrical confinement. This is an effect

that we must incorporate in our modeling of confined dsDNA.

The change in size of ideal polymers in the absence of ex-

cluded volume interactions under strong confinement is rela-

tively small. In Section 3.2, we briefly consider such a model

in comparison to polymers with excluded volume interactions,

which show a much larger change in size, because the swelling

exponent ν governing the mass M scaling of the mean size of

the polymer, Rg ∼ Mν , depends strongly on the spatial di-

mension; ν = 0.58–0.59 for three–dimensional self–avoiding

polymers and ν = 0.75 for two–dimensional self–avoiding

polymers23–27 ∗. A change in ν as a result of dimensional re-

duction must then translate into a significant change in molec-

ular size if the polymers are not perfectly ideal. Our predictive

model must take into account this effect of dimensional reduc-

tion on not only the swelling exponent ν, but also on the pref-

actor A, in the relation Rg = A Mν . Both model parameters

are then relevant metrics of dimensional reduction. Exact enu-

meration26 and renormalization group theory22 provide guid-

ance in the limits of three dimensions and two dimensions for

comparison to our calculated values of ν and A describing the

results of dimensional reduction.

∗The swelling exponent ν in two dimensions is equal to 0.75 for nearest–

neighbor excluded volume interactions, but we expect the interaction range

to influence the value of ν, as in the case of spin models in two dimensions.

For example, in the case of the closely related 8–vertex model, an extension

of the Ising model that includes both the nearest –and next nearest–neighbor

interactions, ν depends continuously on the ratio of the strength of these inter-

actions 28. Douglas et al. discuss the ν estimates for self–interacting polymers

in quasi–two dimensions 25.
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2.1 Coarse–Grained Model of dsDNA Under Confine-

ment to Nanofluidic Slits

We model the dsDNA as a chain of connected beads29 inter-

acting through a shifted 12–6 Lennard–Jones potential U12−6
LJ ,

U12−6
LJ (r) = 4ǫ

[

(

σ

r −∆

)12

−

(

σ

r −∆

)6
]

r < rc +∆,

(1)

where σ and ǫ are the LJ length and energy parameters, re-

spectively, ∆ is a shift factor that controls the bead size, and

rc is a cutoff distance. We use rc = 2
1

6 σ for steric bead–bead

interactions, and rc = 2.5 σ to include an attractive interaction

of strength ǫ among the beads that form the chain. To connect

the beads along the chain, we add a Lennard–Jones potential,

shifted by ǫ and truncated at rc = 2
1

6 σ, to a finitely extensi-

ble, nonlinear elastic (FENE) anharmonic–spring potential,

Ubond(r) = U12−6
LJ (r) + ǫ+ UFENE(r), (2)

where,

UFENE(r) = −
kR2

poly0

2
ln

[

1−

(

r −∆

R0

)2
]

. (3)

Here, k = 30 ǫ/σ2 is the bond strength, and R0 = 1.5 σ
yields a maximum bond length = 1.5σ + ∆. In this way, the

shape of the bonding potential Ubond(r) for all the effective

diameters is the same, but we translate the bonding potentials

by ∆ along the radial axis.

We model the chain stiffness by a three–body bending po-

tential,

Ubend(γ) = kbend(1− cos γ), (4)

where kbend defines the bending constant of the chain, and γ is

the angle formed by three consecutive beads along the chain.

To obtain the persistence length lp of the chain, we compute

the orientational correlation function of the beads from the

scalar product of two unitary vectors 〈−→ui .
−→uj〉 where −→ui is de-

fined by the bond connectivity bases i and i + 1. The ori-

entational correlation function decays with increasing |i − j|
and we identify the persistence length lp as the length where

〈−→ui .
−→uj〉 = 1/e.

The chain interacts with the surfaces of the confining slit by

a 9–3 Lennard–Jones potential U9−3
LJ :

U9−3
LJ (r) = ǫs

[

2

15

(

σ

r −∆

)9

−

(

σ

r −∆

)3
]

r < rc+∆.

(5)

For this potential, we take rc = (2/5)
1

6 σ and rc = 2.5 σ
for repulsive and attractive interactions, respectively, and con-

sider ǫs as a measure of polymer–surface attractive interac-

tion. We generate 10 different initial configurations for every

chain with a given effective diameter d, contour length L, or

slit height h. We allow each chain to reach thermal equilib-

rium by performing MD simulations for 107 time steps, after

which we compute the dimensional properties for 107 differ-

ent chain configurations. We perform all simulations using

the Large–scale Atomic Molecular Massively Parallel Simu-

lator (LAMMPS)30. We fit simulation results to theoretical

and empirical models using non–linear least–squares estima-

tion implemented by the Levenberg–Marquardt algorithm. We

report uncertainties as one standard deviation. Figures show

uncertainty only if the value is larger than the data marker.

2.2 Selection of Input Parameters

The predictive utility of any model depends on a proper selec-

tion of input parameters. For our model, the persistence length

lp, effective diameter d, and contour length L of the chain, as

well as the slit height h, minimally describe the experimen-

tal systems discussed in Section 1. In addition, we vary the

strength of the polymer–surface and polymer–polymer inter-

actions to qualitatively explore the effect on Rg‖. The values

of these input parameters are more or less certain, however,

motivating a brief discussion here and extended discussions in

following sections.

Duplex DNA is a polyelectrolyte, having electrostatic inter-

actions that couple to excluded volume interactions within the

chain31. The value of lp is relatively certain at the experimen-

tal values of ionic strength, however, which effectively screen

charge interactions. We fix the persistence length to a nominal

value of lp ≈ 54 nm8 in all of our simulations.

In contrast, the effective diameter of dsDNA is relatively

uncertain in magnitude, as we discuss in detail in Section 4.

Therefore, we consider a wide range of values of d in our

simulations. In particular, we vary ∆ = −0.75, − 0.5, 0,
or 1 corresponding to chains having d = (1.55, 3.1, 6.2, or

12.4) nm. Through a comparison of computational results to

experimental measurements, we infer that d has a value which

is consistent with the standard estimate from molecular biol-

ogy, d = 2.4 nm.

To make this comparison, we take L = 24.3 µm as a

representative value of the contour length. This assumes a

nominal dsDNA–dye stoichiometry and ignores experimental

uncertainties associated with the number of fluorescent dye

molecules. The use of fluorescent dye also potentially affects

the persistence length and the effective diameter. We discuss

these issues in Section 4.

For reference, we first establish the behavior of our model

with different effective diameters in bulk solution. We then

extend our simulations to the same model under confinement

to a slit, with the slit height h varying from regimes of strong,

h < 2 lp, to moderate confinement, 2 lp < h < 6 lp.

To explore the effect of an attractive dsDNA–surface inter-
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action on Rg‖, we consider an attractive polymer–surface in-

teraction with strength ǫs = 0.7, which is smaller than the crit-

ical value for chain adsorption, ǫ∗s = 0.75 where d = 6.2 nm

and L = 40 lp. To explore the effect of an attractive dsDNA–

dsDNA interaction, we select a polymer–polymer attractive

interaction strength of ǫ = 0.2, which is smaller than the crit-

ical value for chain collapse, ǫ∗ = 0.44 for chains having an

effective diameter d = 6.2 nm and contour length L = 40 lp.

In Section 4, we discuss experimental conditions relevant to

these input parameters.

3 Results and Discussion of Computation

3.1 Influence of Chain Diameter on Swelling Exponent

We begin an analysis of our model by considering the radius

of gyration of a chain in bulk solution. In Figure 2, we show

how the effective diameter d affects the value of Rg of chains

of the same contour length L in bulk solution. Clearly, Rg

increases as d and the excluded volume interaction increase.

We obtain the effective swelling exponent νbulk(d/lp) and the

prefactor A(d/lp) from a fit of the data in the main panel of

Figure 2 to a power law relation,

Rg (L/lp, d/lp) = A

(

L

lp

)νeff

lp, (6)

where A = A(d/lp) and νeff = νeff(d/lp) are dimension-

less parameters. The effective swelling exponent νeff varies

by only ≈ 1% over the range of contour lengths that we inves-

tigate, which is small in comparison to the effects of confine-

ment, so we approximate νeff to be independent of L.

The blue solid triangle in the inset of Figure 2 denotes re-

cent MC calculations37 which assumed an effective diameter

of 2.4 nm. Again, we note that a variable reduction, performed

by dividing ν, Rg and L by the persistence length lp, does not

lead to a universal reduced variable description required by

the worm–like chain model without excluded volume interac-

tions. Therefore, we dispense with this dsDNA model below

for predicting the size of dsDNA under strong slit–like con-

finement. Instead, we calculate Rg for a range of effective

diameters d = (1.55, 3.1, 6.2, and 12.4) nm, and different

contour lengths L ranging from ≈ 10 lp to ≈ 200 lp. The

inset in Figure 2 shows that νbulk (d/lp) increases with d. The

solid line is given by the empirical relation,

νbulk (d/lp) = νRW +∆ν∗
d/d∗

1 + d/d∗
, (7)

which describes this variation rather well, with a correlation

coefficient R2 = 0.998. Here, νRW = 0.5 is the theoreti-

cal value for ideal chains, and the change in the swelling ex-

ponent ∆ν∗ = 0.08 ± 0.001 represents the deviation of ν
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R
g
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n
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diameter =   3.1 nm
diameter =   1.5 nm

2 4 6 8 10 12
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ν ef
f(d

 / 
l p

)

Fig. 2: The main panel shows the radius of gyration Rg as a function

of contour length L for chains with different effective diameters d
in bulk solution. We fix the persistence length of the chain to lp =
54 nm in all these calculations. The symbols are data obtained by MD

simulations and the solid lines are fits to Eq. (6). The inset shows

the effective swelling exponent νbulk (d) as a function of d. The

red circles are data obtained by MD simulations, and the blue solid

triangle is data from Monte Carlo (MC) calculations 37. The red solid

line is a fit to Eq. (7).

from this theoretical value. For chains with d ≫ d∗, the ef-

fective swelling exponent νbulk ≈ 0.58 is that predicted for

self–avoiding walks22. This analysis indicates a crossover ef-

fective diameter d∗ = 6.23 ± 0.07 nm, for lp = 54 nm, at

which the excluded volume interaction becomes appreciable

even for dsDNA in bulk solution. Coincidentally, this value

is similar to that suggested in recent experiments8,12 for ds-

DNA labeled with YOYO–1 dye. Using Eq. (7) we predict

νbulk(d) for a wide range of effective diameters in the fol-

lowing simulations. We find that the prefactor Abulk(d/lp)
varies slowly with d. Specifically, Abulk(d/lp) = (0.4332 ±
0.01, 0.426±0.008, 0.44±0.02, 0.4120±0.01) for effective

diameters d = (12.4, 6.2, 1.55, 3.1) nm, respectively.

3.2 Influence of Slit Height on Swelling Exponent

We now consider the main topic of simulating dsDNA con-

fined to a nanofluidic slit. The upper panel of Figure 3 shows

the radius of gyration Rg as a function of contour length L for

chains in the transition between moderate and strong confine-

ment. As expected, Rg increases as h decreases. We fit the

data from the upper panel of Figure 3 to Eq. (6) to obtain A
and ν for confined chains. The correlation coefficients R2 for

all of the fits in this panel are ≥ 0.998. As the surfaces of a

nanofluidic slit strongly confine a dsDNA molecule, the spa-
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tial dimensions available to the molecule to explore decrease.

We quantify the effect of this dimensional reduction by com-

puting νeff (d/lp, h/lp) over a range of h that corresponds to

the regimes of strong and moderate confinement in the lower

panel of Figure 1.
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Fig. 3: The upper panel shows the radius of gyration Rg for a chain

with a fixed effective diameter d = 6.2 nm as a function of contour

length L for chains ranging from 11.5 lp to 75 lp under confinement

to a slit of height h. As expected, Rg increases as h decreases. The

symbols are the simulation results and the solid line is a fit to Eq. (6).

The lower panel shows the in–plane radius of gyration normalized by

its bulk value Rg‖(h)/Rg‖(bulk) as a function of the slit height h
normalized by the persistence length lp. The solid symbols represent

the MD simulations and the dashed lines serve to guide the eye. The

gray solid line is the result of MC calculations for an ideal random

walk chain model, and the red solid line is the exact prediction for the

change in chain size for a strongly confined random walk polymer 16,

Rg‖(h)/Rg‖(bulk) =
√

3/2.

The upper panel in Figure 4 shows the influence of con-

finement on the prefactor A (d//lp, h/lp) and the lower panel

shows the effective swelling exponent νeff (d//lp, h//lp) for

chains having different effective diameters: d = (1.55, 3.1,

and 6.2) nm. The solid lines for the upper panel are described

0.33

0.36

0.39

0.42

A
 (

 d
 / 

l p
 , 

h
 / 

l p
 )

 

diameter = 1.55 nm
diameter = 3.1 nm
diameter = 6.2 nm

1 2 3 4
h / lp

0.5

0.6

0.7

ν ef
f (

 d
 / 

l p
 , 

h
 / 

l p
 )

Fig. 4: The upper panel shows the prefactor A and the lower panel

shows the effective swelling exponent νeff for chains having different

effective diameter d as a function of the slit height h normalized by

the persistence length lp. We fit the data using Eq. (8) and Eq. (9),

for A and νeff , respectively. Both A(d/lp, h/lp) and νeff(d/lp, h/lp)
change with decreasing h.

by,

A (d/lp, h/lp) = ∆A (d/lp) +
0.14

1 + exp (−h/lp + 4.5)
, (8)

with ∆A (d/lp) = (0.33 ± 0.02, 0.33 ± 0.02, 0.32 ± 0.02)
for d = (1.55, 3.1, 6.2) nm respectively. The solid lines

in the lower panel are a fit to the effective swelling exponent

νeff(d/lp, h/lp) for the confined chains,

νeff (d/lp, h/lp) = νbulk (d/lp) + ∆ν (d/lp) exp (−h/h∗) ,
(9)

where ∆ν(d/lp) = (0.19±0.04, 0.205±0.04, 0.245±0.04),
and h∗ = (1.73 ± 0.05, 1.82 ± 0.06, 2.07 ± 0.05) nm

for d = (1.55, 3.2 or 6.2) nm, respectively. Both A(d, h)
and νeff(d, h) change substantially with decreasing h/lp. The

correlation coefficients R2 for all of the fits in Figure 4 are

≥ 0.97.
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To emphasize the importance of excluded volume interac-

tions under strong confinement, we compare our MD simu-

lation results to MC simulation results and renormalization

group theory results in the lower panel of Figure 3. We show

the results of an off–lattice MC calculation of the mode value

of the Rg‖ distribution for a random walk chain of contour

length 400 lp confined between two reflective boundaries. In

this case, we only observe a modest change in Rg‖. The solid

red line is the exact prediction of the change in Rg‖ for a ran-

dom walk chain under strong confinement discussed by Dou-

glas and Freed16. These discrete random walk chains exhibit

effects of dimensional reduction that do not exist for contin-

uum Gaussian chains, but the changes are much smaller in this

type of model than those with excluded volume interactions.

Cifra10 performed MC calculations using a similar model,

and his results are in qualitative agreement with ours. Hsu and

Binder39 performed MC calculations of semi–flexible poly-

mer chains with substantial contour lengths, but the effective

diameter could not be varied on a lattice. Other simulations

aimed at describing dsDNA under confinement12, apart from

Cifra10 and Hsu and Binder39, have not made realistic as-

sumptions about the effective diameter of dsDNA, as we intro-

duced in Section 2.2 and discuss in more detail in Section 4.

3.3 Influence of Polymer–Surface and Polymer–Polymer

Interactions on Chain Size Under Confinement

So far, our simulations have focused on the confinement of

semi–flexible chains with excluded volume interactions by

two impenetrable boundaries, to model the steric interactions

of dsDNA molecules under confinement to nanofluidic slits.

However, dsDNA in solution has a propensity to adsorb onto

surfaces40,41, and measurements of second virial coefficients

from X–ray scattering from bulk solutions of dsDNA sug-

gest the existence of attractive dsDNA–surface and dsDNA–

dsDNA interactions42 under experimentally relevant circum-

stances. It is then important to consider the relevance of at-

tractive dsDNA–surface and dsDNA–dsDNA interactions to

the size of confined dsDNA. We investigate these effects us-

ing the model described in Section 2.1. For specificity, we fix

the contour length of the dsDNA to be L = 40 lp and the ef-

fective diameter d = 6.2 nm. We return to the discussion of

the best estimate of the effective diameter in Section 4.

In Figure 5, we first explore the effect on chain size of an at-

tractive polymer–surface interaction in the presence of the ex-

cluded volume interaction under confinement. We find that the

attractive interaction increases the chain size over a large range

of h/lp in moderate confinement, reducing the effective value

of h and enhancing the effect of dimensional reduction. In

contrast, the transition into strong confinement terminates this

enhancement. We next consider how an attractive polymer–

polymer interaction influences the chain size. For this type

of attractive interaction, which is weak in comparison to the

adsorption point the chain size decreases over the entire h/lp
range. In summary, we find that attractive polymer–polymer

and polymer–surface interactions can also have an appreciable

effect on the chain size, but the effect of these interactions is of

second order in comparison to the dominant excluded volume

interaction. Of course, this analysis applies only to a thermo-

dynamic regime in which dsDNA is neither adsorbed onto the

surface nor collapsed into a compact state.
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Steric excluded volume interaction
Polymer-surface attractive interaction
Polymer-polymer attractive interaction

Fig. 5: This plot shows the normalized in–plane size for chains hav-

ing an effective diameter d = 6.2 nm and contour length L = 40 lp
as a function of slit height normalized by persistence length, h/lp.

The black circles are chains with excluded volume interactions in

steric confinement, for reference. The red squares are chains with

an attractive polymer–surface interaction, having a strength ǫs = 0.7
that is below the threshold value of adsorption ǫ∗s = 0.75. The effect

of this interaction is appreciable and, can increase or decrease the

size of the chain depending on the regime of confinement. The blue

diamonds are chains with an attractive polymer–polymer interaction,

having a strength ǫ = 0.2 that is insufficiently attractive to cause

chain collapse ǫ∗ = 0.44. The effect of this interaction is always to

decrease the size of the chain. Dashed lines guide the eyes.

This results in a complex coupling problem, because the

attractive polymer–surface and polymer–polymer interactions

are competitive. Therefore, the adsorption and collapse transi-

tions depend strongly on the strength of these interactions, as

well as the effective diameter, persistence length, and contour

length. We will investigate this coupling problem in the future.

Here, we emphasize the main qualitative effects of these inter-

actions, in relation to the following comparison of computa-

tional results and experimental measurements. Since these in-

teractions are competitive, the strength of the interactions are

unknown, and the experimental measurements do not show

clear evidence of adsorbing or collapsing dsDNA molecules,
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we return to a model of the system considering only the steric

confinement of model chains with excluded volume interac-

tions.

4 Comparison of Computational Results and

Experimental Measurements

4.1 Quantitative Comparison of Computed and Mea-

sured Sizes

To directly compare our computational results to the experi-

mental measurements described in Section 1, we must solve

a computational problem – it is not feasible to model dsDNA

having a contour length L ≥ 400 lp using either MD or MC

calculations. This is a practical concern, because the exper-

imental studies have used lambda phage dsDNA as a refer-

ence sample. Human genomic dsDNA, which is biologically

relevant, is even longer. To solve this problem, we use our

estimate of the change in ν and A with dimensionality to pre-

dict the ratio Rg‖(h)/Rg‖(bulk) for chains in the experimen-

tal regime. Figure 6 shows Rg‖(h)/Rg‖(bulk) for chains with

different d = 1.55 nm, 3.1 nm or 6.2 nm and L = 450 lp.

The computational results and the experimental measurements

are in good agreement for effective diameters ranging from

d = 1.55 nm to 3.1 nm.

Molecular biology studies indicate that dsDNA exhibits

three common forms: an anhydrous A–form, and a hydrated

B–form that are both right–handed helical structures, and an

exotic Z–form that forms a left–handed helix. The B–form

is most common in solutions of dsDNA. Standard estimates

of the bare diameter of those forms of dsDNA are 2.3 nm,

2.0 nm, 1.8 nm, respectively32. It is normal to add a hydration

layer thickness of about 0.5 nm to these bare diameters, lead-

ing to an estimate of 2.4 nm, for B–dsDNA in solution. How-

ever, we encounter experimental estimates of the effective di-

ameter ranging from d ≈ 2.0 nm8 to d ≈ 27 nm33,34. Stigter

attributed this relatively large range to the charge of the ds-

DNA chains35. Smith and co–workers36 have recently argued

that these large effective diameter estimates of d are consis-

tent with measurements of diffusion coefficients of dsDNA,

but Mansfield and co–workers37,38 have found that a effec-

tive diameter of 2.4 nm provides a self–consistent description

of dsDNA self–diffusion, sedimentation coefficient, radius of

gyration, and intrinsic viscosity, so that this effective diameter

renormalization is apparently unwarranted.

The results of our comparative analysis indicate that the

standard estimate suggested by molecular biology accurately

models the effective diameter of dsDNA molecules under con-

finement to nanofluidic slits. This consistency supports our

model of dimensional reduction, and emphasizes the ampli-

fication of the excluded volume interaction of semi–flexible

polymers under slit–like confinement. In the following sub-

sections, we further connect our input parameters with the ex-

perimental systems, and discuss additional experimental un-

certainties that are outside the scope of our simple model.
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Fig. 6: The upper panel shows a comparison between the experi-

mental measurements described in Section 1 and our computational

results. The symbols are the experimental measurements and the

blue lines are the simulation data for chains having different d. The

lower panel shows the upper panel data normalized by the in–plane

size in bulk solution. This normalization introduces additional uncer-

tainties in the experimental results, systematically shifting the data.

The computational results and the experimental measurements are in

good agreement for effective diameters ranging from d = 1.55 nm

to 3.1 nm. This range is consistent with estimates from molecular

biology of the effective diameter of dsDNA.

4.2 Fluorescent Dyes

Imaging dsDNA by fluorescence microscopy commonly in-

volves labeling the molecules with bis–intercalating dimeric

cyanine dye, resulting in a dsDNA–dye complex. This poten-

tially alters the persistence length and effective diameter of

native dsDNA, and nominally increases the contour length.

Of the experimental measurements discussed in Section 1,
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Strychalski et al.11 tested two dsDNA–YOYO–1 complexes

with different stoichiometries, discussed related uncertainties

in actual numbers of dye molecules, and concluded that a de-

creased persistence length or effective diameter might have

compensated for an increased contour length. Other measure-

ments focused on this topic have indicated that the persis-

tence length is invariant to the presence of YOYO–1 at equilib-

rium44? ,45. Gel chromatography and sedimentation mobility

of dsDNA molecules under similar experimental conditions

have also been insensitive to the presence of the dye, sug-

gesting little change in the effective diameter36. In any case,

imaging measurements with molecular resolution would help

to understand exactly how the dye influences the structure of

the dsDNA, but at present we conclude that any effect of the

dye on the persistence length and effective diameter of dsDNA

is of second order. However, the YOYO–1 dye does increase

the contour length of dsDNA45 by as much as 50%, and we

use a representative value of the contour length of a dsDNA–

dye complex as an input parameter.

4.3 Measurements and Inferences of dsDNA Size

Direct imaging measurements of Rg‖ in bulk solution, for nor-

malizing measurements of Rg‖ under confinement to nanoflu-

idic slits, are inherently uncertain. In particular, the diffusion

of segments of an anisotropic dsDNA molecule above and be-

low the depth of field of an imaging system introduces mea-

surement errors that are difficult to quantify. Such measure-

ments are then less accurate than direct imaging measurements

of dsDNA molecules under confinement to nanofluidic slits

with heights that are less than or equal to the depth of field.

In this case, direct imaging errors due to optical diffraction

and camera pixilation increase the apparent size of dsDNA

molecules by < 10 %, as Strychalski et al.11 estimated and

corrected by simulation. In an alternate approach to avoiding

these direct imaging errors, the value of Rg‖ in bulk solution

reported by Tang et al.8 and Dai et al.12 was an inference indi-

rectly from a diffusivity measurement as an input to a modified

Stokes-Einstein equation, while the confined dsDNA sizes es-

timates by Tang were measured by direct imaging. In partic-

ular, Dai et al.12 inferred Rg‖ from diffusivity measurements

as inputs into a blob scaling argument using an assumed rela-

tionship between RH and Rg. This inference of dsDNA size

introduces uncertainties that are difficult to quantify, and we

briefly discuss this problem.

One of the many problems in inferring Rg‖ in bulk solu-

tion from a hydrodynamic model is the assumption that the

radius of gyration Rg scales in direct proportion to the hy-

drodynamic radius RH
37. This scaling ansatz incorrectly as-

sumes that hydrodynamic interactions among segments of a

dsDNA molecule are infinitely strong37. By implication, RH

scales with contour length L differently than Rg for the con-

tour length and range of ionic strengths in the dsDNA mea-

surements discussed in Section 1. In particular, the effec-

tive swelling exponent for Rg of dsDNA in bulk solution is

ν ≈ 0.52, as we discussed in Section 2, but the effective scal-

ing exponent for RH is νH ≈ 0.637. In summary, Rg and RH

are inherently different measures of polymer size.

Scattering measurements of Rg for massive macro-

molecules are inherently difficult36,46, motivating novel imag-

ing measurements to estimate the value of Rg‖ in bulk solu-

tion. For example, more reliable estimates of Rg‖ could be

made by tethering one end of a dsDNA molecule to a non–

adsorbing surface to limit the diffusion of molecule36. Cal-

culation by renormalization group methods of Rg for random

walk chains and and chains with excluded volume indicate that

end–tethering should only slightly perturb Rg
47, on the order

of an increase of 3 % from bulk solution, provided the chains

are not adsorbed48.

4.4 Solution Conditions

Tang et al.8 and Strychalski et al.11 have discussed differences

between the buffer systems. We extend this discussion within

the framework of our model. Several of the buffer solutes have

been implicated in causing variations in dsDNA size. Mono-

valent cations of both conjugate acids and electrolytes tend

to associate with dsDNA49. The interaction of Na+ with ds-

DNA is similar to but weaker than that of the acidic form of

Tris (Tris+)50, which was present in all of the experimental

systems. Therefore, the presence of Na+ in the experiments

of Bonthuis et al.6 and Lin et al.13 probably did not signifi-

cantly influence the dsDNA size. With regard to anions, how-

ever boric acid probably did significantly influence the dsDNA

size51. In particular, Tang et al.8 found that the absence of

boric acid in the experimental system of Bonthuis et al.6 re-

sulted in moderate changes in dsDNA size relative to the other

experimental systems8,11–13.

The various oxygen scavenging additives used to mitigate

the photobleaching of YOYO–1 and the photodegradation of

dsDNA are also a concern. In the presence of dissolved oxy-

gen, the enzymatic oxygen scavenging system comprised of

glucose, glucose oxidase, and catalase produced gluconic acid

(pKa ≈ 3.86). This may have reduced the pH of the buffer

system and change the dsDNA size52. Even at saturated lev-

els of dissolved oxygen at room temperature and pressure

(≈ 9 mg/mL), however, only ≈ 0.3 m mol/L solution of glu-

conic acid would have been produced which is < 1 % of the

buffer capacity of Tang et al.8 and Lin et al.13. The chemical

oxygen scavenging system of β-mercaptoethanol had a weak

reducing capability (0.26 V at pH = 7) and is not expected to

have directly influenced dsDNA size. As a weak acid (pKa ≈
9.63), however, β-mercaptoethanol significantly contributed

to the buffer at the concentrations used by Tang et al.8 (≈
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570 m mol/L), Strychalski et al.11 (≈ 430 m mol/L), and Lin

et al.13 (≈ 430 m mol/L). The addition of β–mercaptoethanol

probably increased the pH of the experimental buffer systems

above that expected for a buffer system comprised only tris

base, boric acid, and ethylenediaminetetraacetic acid11. This

may have influenced the dsDNA–dsDNA interaction. We con-

clude that there is a clear need for tighter control and better

characterization of buffer chemistry and solution additives.

4.5 dsDNA–Surface Interactions

Non–steric interactions between dsDNA molecules and the

surfaces of nanofluidic slits have been mentioned, but not sub-

stantiated, as having a potential influence on dsDNA size13.

Here, we explore this issue in greater detail. For nanofluidic

slits with fused silica surfaces, dsDNA molecules interact with

the slit surfaces by silanol groups (SiOH), which cover the slit

surfaces at a density5,53 of (4 to 5) nm−2. In the case of pla-

nar fused silica, there are three categories of silanol groups.

Isolated silanols deprotonate freely (pKa ≈ 4.9) to form SiO

and comprise ≈ 19 % of the silanol population54. Geminal

and vicinal silanols deprotonate under more basic conditions

(pKa ≈ 8.5) and comprise ≈ 81 % of silanol population54.

Through a variety of mechanisms55–58, protonated silanols in-

teract attractively with the solution constituents. For relatively

simple electrolyte buffers, such as those used by Bonthuis et

al.6 and Strychalski et al.11, the pH of the solution strongly

influenced the value of ǫs
55,56,58. More acidic buffer systems

result in slit surfaces enriched with protonated silanols and de-

pleted in negative charge. Both effects increase ǫs. In partic-

ular, the 12–base single–stranded segments at both 5 ends of

double–stranded lambda phage dsDNA, also known as sticky

ends, interact attractively with the protonated silanols of pla-

nar fused silica surfaces40. If present, single–stranded seg-

ments in locally melted regions of double–stranded dsDNA

also interact attractively with protonated silanols56. Bonthuis

et al.6 did not report the pH of the buffer system used, but we

infer this as pH ≈ 8 from the study of Ren and Stein17,18,

which used methods that “followed those described by Bon-

thuis et al.”6. The actual pH of the solution of Bonthuis et

al.6 may also have been lower, depending on the concentra-

tion of ethylenediaminetetraacetic acid used. With access to a

significant number of protonated silanols at pH < 8.5, single–

stranded segments of dsDNA may have interacted attractively

with the slit surfaces of Bonthuis et al.6 to a significant ex-

tent. In contrast, Strychalski et al.11 used a buffer system

that was sufficiently basic (pH = 8.7) to have reduced the

concentration of protonated silanols and suppressed attractive

surface interactions. In addition, the presence of boric acid in

the buffer system of Strychalski et al.11 resulted in dsDNA

molecules with increased negative charge density and elec-

trostatic repulsion from the slit surfaces. Alternatively, more

complex buffer systems suppressed attractive surface interac-

tions by masking surface silanols through the competitive non-

specific adsorption of other soluble species, such as proteins,

glucose oxidase and catalase, as used by Tang et al.8, Dai et

al.12, and Lin et al13, as well as in proprietary blends of poly-

mers and surfactants such as POP–6, as used by Lin et al.13.

The quantitative effects of these diverse experimental condi-

tions on dsDNA size are not known, however, our model indi-

cates the possible relevance of these effects.

4.6 Hydrodynamic Flow

Hydrodynamic flow significantly changes the behavior of ds-

DNA under confinement to nanofluidic slits. It is difficult to

realistically model the combined effects of confinement and

flow, but Brownian dynamics simulations of long chains in a

microchannel with flow have provided some insight into this

problem61,62. Hydrodynamic polymer–surface interactions

substantially distort the chains, even in the simple case that

the thermodynamic polymer–surface interactions are repul-

sive. Other simulations and measurements have indicated that

hydrodynamic polymer–polymer interactions due to a steady

flow significantly distort the chain62,63. Even without fluid

flow, simulations have found a strong influence of hydrody-

namic polymer–surface interactions on the diffusion of con-

fined dsDNA64. Bonthuis et al.6 reported residual fluid flows

of less than 1 µm s−1, resulting in hydrodynamic interactions

that our model does not treat. We conclude that it is not appro-

priate to directly compare these experimental measurements

with hydrodynamic flow to experimental measurements and

computational results at thermodynamic equilibrium.

5 Conclusions

The disturbing variability of recent measurements by fluores-

cence microscopy of single dsDNA molecules under confine-

ment to nanofluidic slits has motivated our use of a simple

model to explore the factors that might explain this variabil-

ity. Our computational results indicate that strong confine-

ment highly amplifies polymer excluded volume interactions

through dimensional reduction of the system. These interac-

tions, which have a limited significance in bulk solution, be-

come highly relevant in a nanofluidic slit. Therefore, greater

experimental control of factors influencing the excluded vol-

ume interaction is necessary to improve experimental repro-

ducibility. Attractive polymer–surface and polymer–polymer

interactions can also influence the dsDNA size appreciably,

but the polymer–surface interaction only has a limited effect

under non–adsorbing conditions. Our computational results

are qualitatively consistent with previous simulations and the-

oretical arguments for semi–flexible polymers under confine-
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ment20,65,66 that shows similar amplification of excluded vol-

ume interactions.

Importantly, our computational results are novel in the in-

troduction of quantitative swelling exponents and prefactors

that vary with the scale of confinement, allowing the predic-

tion of the behavior of long dsDNA molecules that are not cur-

rently accessible by state–of–the–art MD simulations. This

utility is important not only for assessing the experimental

measurements of concern, but also for predicting the behav-

ior of even longer molecules, such as human genomic dsDNA,

under nanoscale confinement. However, such predictions will

be sensitive to the input value of the effective diameter. Our

computational methodology can be generalized for other types

of polymers with different values of persistence length.

Based on insights from our simulations, we assess the ex-

perimental measurements of concern with an aim of inform-

ing how to better control the relevant experimental variables

for future measurements. The measurements of Tang et al.8,

Strychalski et al.11, Lin et al.13, and Dai et al.12 are all qual-

itatively consistent with each other and our computational re-

sults, although there are influences related to solvent quality

and polymer–surface interactions that clearly need to be under

better control to improve experimental reproducibility.

While our simulations have focused on linear dsDNA under

confinement to nanofluidic slits, other chain topologies and

confinement schemes are of interest for future study. For ex-

ample, circular dsDNA, which has been studied much less in

experiments but is nonetheless highly relevant to various ap-

plications, has shown interesting trends in size variation under

confinement to nanofluidic slit. In particular, the combina-

tion of nanofluidic devices with high confinement resolution

around the transition from strong to moderate confinement, 67,

with an empirical, statistical analysis68 identified a localized

influence of topology on the size variation of circular dsDNA

at a slit height of ≈ 3 lp. The same analysis did not resolve

a similar transition for linear dsDNA, but such a transition

remains a possibility. These observations motivates simula-

tions to discern the underlying physical mechanisms, as well

as the development of nanofluidic devices with even higher

confinement resolution around these critical slit heights. Such

devices would also be relevant to studying and applying non–

equilibrium dsDNA dynamics induced by complex slit–like

confinement schemes69.

Finally, we note that many measurements and applications

of dsDNA under strong confinement conditions involve rect-

angular channels or cylindrical pores. The effect of dimen-

sionality reduction should have an even larger effect for this

type of geometries, since ν equals 1 for one-dimensional

semi–flexible chains. Consistent with this expectation, large

swelling of dsDNA molecules has been observed in this type

of channel where the magnitude of the effect is sensitive to the

salt concentration70. In the future, the same methodology of

the present article can apply to study these more extreme cases

of confinement.

6 Disclaimer

This article identifies certain commercial materials, equip-

ment, or instruments to specify experimental procedures.

Such identification implies neither recommendation or en-

dorsement by the National Institute of Standards and Technol-

ogy nor that the materials or equipment identified were neces-

sarily the best available for the purpose.
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