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Particles in structural glasses rattle around temporary equilibrium positions, that seldom change through a process which is much

faster than the relaxation time, known as particle jump. Since the relaxation of the system is due to the accumulation of many

such jumps, it could be possible to connect the single particle short time motion to the macroscopic relaxation by understanding

the features of the jump dynamics. Here we review recent results in this research direction, clarifying the features of particles

jumps that have been understood and those that are still under investigation, and examining the role of particle jumps in different

theories of the glass transition.

1 Introduction

Structural glasses, which are formed by many liquids cooled

below their crystallization temperature, provide an array of

questions that is challenging researchers since many years.

In particular, as a liquid is supercooled one observes a strik-

ing difference between the temperature dependence of the dy-

namical and of structural properties. From the dynamical

viewpoint one observes the relaxation time of these systems,

which is of the order picoseconds at the melting temperature,

to sharply increase on cooling. Conventionally, one considers

the supercooled liquid to fall out of equilibrium when the re-

laxation time reaches the value of 100s, and defines the corre-

sponding temperature as the glass transition temperature, Tg.

This only slightly depends on the cooling rate. At the glass

transition temperature the dynamics is so slow that the liquid

is in all respect an amorphous solid. As the temperature de-

creases towards Tg a class of supercooled liquids, known as

fragile, also exhibits qualitative changes in the relaxation dy-

namics. In particular, above a temperature Tx > Tg the dynam-

ics satisfies the Stokes–Einstein (SE) relation, the diffusivity

being inversely proportional to the viscosity, while below that

temperature the SE relation is violated. Despite these reach

dynamical features, the structural properties of these systems

are found to be almost temperature independent. This is the

‘glass conundrum’. From the thermodynamic viewpoint, a

signature of the dynamical slowdown is only observed close to

the glass transition temperature, Tg, where the system falls out
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of thermal equilibrium and the specific heat exhibits a jump.

The investigation of the single particle dynamics of super-

cooled liquids and structural glasses offers a way to reconcile

the temperature dependence of dynamical and of structural

quantities. Indeed, on the one side the motion of a particle

is affected by the local structure, on the other side macro-

scopic relaxation occurs as particles eventually diffuse. Par-

ticle motion in supercooled liquids has been previously inves-

tigated, and intermittency has emerged as a universal feature.

In supercooled liquids, particles rattle for a long time around

a temporary equilibrium position, as in crystals, until at some

time they jump and start rattling around a slightly different

equilibrium position. This intermittent motion is apparent in

Fig. 1, that illustrates experimental results on the motion of

colloidal particles in suspensions obtained by E.R. Weeks and

D.A. Weitz1. This intermittent motion is referred as a cage–

jump motion. It is usually described by saying that the parti-

cles, caged by their neighbors, rattle in their cage for a while

before jumping to a different cage, even though this is a gross

oversimplification of the actual physical process taking place.

Here we review recent results on the cage–jump motion of

supercooled liquids. We have two goals. On the one side, we

want to emphasize attempts to relate the cage–jump motion to

the macroscopic relaxation of the system, which would allow

to connect the micro to macro scale. For instance, we will

see that it is possible to easily relate the diffusivity and the

relaxation time to features of the cage–jump motion, within

the so called continuous time random walk approximation. In

addition, we will see that there are attempts to relate other

features of the dynamics of supercooled liquids, such as dy-

namical heterogeneities, to the jumps. On the other side, we

want to clarify what is the role of the single–particle jumps in
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different theories of the glass transition, including dynamical

facilitation approaches, the mode coupling theory, the random

first order theory and elastic models of the glass transition.

Reviewing previous works that have investigated this question

we suggest that a better understanding of the features of the

cage–jump motion could actually allow to reconcile some of

these theories. In this respect, the main open question results

to be the degree of localization of a jump.

We found it convenient to illustrate the key features of the

cage–jump motion by describing results obtained investigat-

ing a single system, the prototypical Kob–Andersen Lennard–

Jones three dimensional binary mixture2. We thus refer to

our own data, that mostly reproduce earlier results obtained

by others investigating different systems. The paper is orga-

nized as follows. Sec. 2 describes the jump process, and shows

results clarifying that jumps occur in cluster of few particles,

which implies that a single particle jump is the projection of

a cooperative process on the trajectory of a particle. Sec. 3

compares the clusters of jumping particles with other dynam-

ical particle clusters characterizing the relaxation of structural

glasses, namely dynamical and elastic heterogeneities. Sec. 4

considers successes and limitations of a jump–based kinetic

description of the relaxation of glass formers, the continuous

time random walk framework. Finally, in Sec. 5 we comment

on the role of these jumps in different theories of the glass

transition. Future research directions and open problems are

summarized in the conclusions.

2 Jumps identification and properties

The introduction of jumps in the description of the dynamics

of liquids traces back to the classical hole model by Frenkel3,

where liquids are depicted as sitting on distorted lattices in an

attempt to describe their short ranged order. The presence of

a lattice suggests the introduction of localized excitations as-

sociated to lattice vacancies and of an hopping dynamics in

between lattice sites, the jumps. Indeed, early works4 mod-

eled the relaxation dynamics of liquids as resulting from a

sequence of jumps triggered by the presence of holes. This

dynamical process is clearly inspired by the hopping diffusion

observed in crystals5, where (i) a jump involves a single parti-

cle and an hole, (ii) the typical jump length is the interatomic

spacing, which is roughly temperature independent, (iii) a par-

ticle that jump changes its neighbors, and (iv) jumps are un-

correlated, which implies that holes perform a random walk.

Subsequent works, however, clarified that the jumps iden-

tified in supercooled liquids differ from those characterizing

crystals in almost all of these features. Perhaps the most im-

portant difference between the jumps observed in crystals and

those observed in liquids, is that the latter does not involve a

single particle exchanging its position with an hole. Rather,

one observes a small number of close particles to perform a

jump at the same time6–8; accordingly, a single–particle jump

is the projection of a cooperative motion on the trajectory of

a single particle. The number of particles involved in such a

cooperative rearrangement is less than ten, and does not vary

with temperature6–8. Because of this, jumps are considered

localized excitations, even though ascertaining their degree of

localization is an important open issue, as discussed in Sec. 5.

A second important difference concerns the jump length

and its temperature dependence. Indeed, studies that have

identified jumps via coarse–graining procedures allowing for

the determination of the jump length, found this to be expo-

nentially distributed, with an average size slightly decreas-

ing on cooling9,10. The typical jump length, however, is al-

ways much smaller than the typical interparticle distance (see

Fig. 1), as opposed to the jumps occurring in crystals. The

decrease of the jump length with temperature makes the iden-

tification of jumps problematic at low temperature. Further-

more, the small jump length implies that a particle that per-

forms a jumps does not usually change neighbors6, as in crys-

tals. Accordingly, local structural rearrangements associated

with the change of one or more neighbors11–14 are likely to

occur through a sequence of jumps.

Successive jumps of a single particle could be either corre-

lated, or uncorrelated; in an energy landscape perspective15,

correlated and uncorrelated jumps correspond to transitions

between inherent structures belonging to the same energy

metabasin and to different energy metabasins, respectively.

Fig. 1 (a) Single particle cage–jump motion revealed from the

trajectories of particles in the bulk of an hard–sphere colloidal

suspension, at a volume fraction φ = 0.52. Axes are labeled in

microns, and the circle illustrates the particle size. (b) and (c) are

magnifications of two of the trajectories, with tick marks indicating

spacings. Reprinted from Chemical Physics, 284, E.R. Weeks and

D.A. Weitz, Subdiffusion and the cage effect studied near the

colloidal glass transition, Pages No. 361–367, Copyright (2002),

with permission from Elsevier.
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Ascertaining whereas jumps are correlated or uncorrelated is

a delicate task, and the degree of correlation most probably

depends on the operative definition of jumps. For instance,

jumps can be identified16,17 by requiring a particle to move

more than a threshold a; in this case, they will be certainly

identified as uncorrelated if a is large enough, as this proce-

dure corresponds to the coarse graining of the trajectory of a

particle that moves diffusively at long times. Conversely, if

jumps are identified via coarse graining procedures of particle

trajectories that do not constraint the jump length, then their

correlation needs to be checked. A literature survey suggests

that jumps may be correlated in the aging regime18, and in

polymer melts due to the topological constraint provided by

the polymer chain9 (and references therein). Conversely, in

thermal equilibrium jumps appears to be uncorrelated8,10 if

not in the deeply supercooled regime.

Three timescales characterize the jump motion. The longest

timescale is the average time a particle persists in its location

before performing its first jump, given an initial observation

time. This is known as the persistence time, tp. The other

timescales are the time tw a particle waits in a cage, as mea-

sured from the time the particle entered that cage, and the jump

duration, ∆tJ. Fig. 2 illustrates the probability distributions of

these time scales for the LJ Kob-Anderson mixture, as well as

the temperature dependence of their average values and of the

α relaxation time, τ . Similar results are found for other sys-

tems19. We note that the persistent time and the waiting time

coincide at high temperature and do not differ much at low

temperature, although they have a different temperature de-

pendence. Sec. 4 shows how these quantities allow to model

the relaxation dynamics of the system within the continuous

time random walk approximation, and how the breakdown of

the SE relation is related to these timescales.

A detailed investigation of the dynamics of the jump pro-

cess has not yet been accomplished. A question of interest

that has been clarified concerns the kind of motion performed

by a particle while jumping. For instance, one might expect

that a particle jumps as its local environment slightly change,

giving rise to a net force acting on the particle. If this is the

case, particle motion during a jump should be superdiffusive.

Conversely, one might expect that in order to jump a parti-

cle should overcome a free energy barrier21, in which cases

the motion should be subdiffusive. This question has been ad-

dressed by studying how the squared jump length scales with

the jump duration. Results obtained investigating the standard

Kob-Anderson Lennard Jones mixture, illustrated in Fig. 3,

and analogous results obtained investigating a system of Har-

monic spheres8, show that jumps are diffusive at high temper-

ature, and become subdiffusive on cooling.

We conclude this section by noticing that there is an aspect

of the jump motion that has not yet been properly investigated:

its degree of localization. Indeed, a small and temperature in-
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Fig. 2 Probability distribution of the persistence waiting time (a),

of the cage waiting time (b), and of the jump duration (c), for the LJ

Kob–Andersen mixture. Different curves refer to the different

temperatures as specified in the legend of panel (c). Panel (d)

illustrates the temperature dependence of the average values of these

time scales. The figure also shows the temperature dependence of

the relaxation time τ identified from the decay of the self–scattering

correlation function, F(q,τ) = 1/e, where q is that corresponding to

the maximum of the total structure factor. Adapted form Ref. 10.

Similar results have been observed in other atomistic models of

structural glasses6,16 and gels20, and are commonly observed in

facilitated lattice models (see Sec. 5).

dependent number of close particles is always seen to jump at

the same time, suggesting that jumps are localized over a typi-

cal and small temperature independent length scale. However,

it is also possible that these process requires the cooperation

of particles surrounding those that perform a jump. If this is

the case, the size of this surrounding region defines a coop-

erative length scale associated to the jumps. We name this

length scale ‘cooperative jump length’ for ease of reference.

Indeed, as discussed in Sec. 5, ascertaining the existence of

the cooperative jump length and its temperature dependence

might allow to contrast kinetic and thermodynamic theoretical

descriptions of the glassy phenomenology.

3 Connection with other localized excitations

Particles performing a jump at the same time or in a short time

interval can be considered as a localized excitation. Here we

consider what is the relation between this excitation and the

localized excitations identified by the dynamical and elastic

heterogeneities. Dynamical heterogeneities22 are clusters of

particles with correlated motion, that are commonly identified

via the investigation of the time dependence of the distribution

of particle displacements, the van–Hove distribution function.

In supercooled liquids, the van Hove distribution has the Gaus-
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Fig. 3 Dependence of the squared jump length on the jump

duration, for the Kob–Andersen LJ mixture, for different

temperatures as in Fig. 2. The figure reveals that the jumps become

increasingly subdiffusive on cooling. Analogous results have been

reported for different model systems8. Due to the exponential

distribution of the jump duration, illustrated in Fig. 2c, the number

of long–lived jumps is small, which is why data are noisy at large

values of the jump duration. Adapted from Ref. 10.

sian shape expected in homogeneous systems at short times,

when particle displacements reflect the velocity distribution,

and at long times, when particles move diffusively. At an in-

termediate timescale the van Hove distribution is not Gaus-

sian, but has long tails indicating that some particles moved

much more than the average. These particles can be identi-

fied using different approaches. A possible approach23 is to

identify them with the 5% of the particles with the largest dis-

placement, where this percentage is arbitrarily fixed. A dif-

ferent approach is to identify them24,25 with those particles

whose displacement is larger than a threshold, which is fixed

by comparing the actual van-Hove function with that expected

should the particles move diffusively. Either case, particles

contributing to the tail of the van Hove function are found to

be arranged in clusters, which we will refer to as dynamical

heterogeneities.

While there are similarities between dynamical hetero-

geneities and the cluster of particles that have performed a

jump, these should not be identified. First, dynamical het-

erogeneities involve particle displacements of the order of the

interparticle distance. Indeed, they have been observed to lead

to a string motion, whereby a particle occupies the position

previously occupied by a different particle24,25. Conversely,

the length of the jumps is much smaller. For instance, for the

usual LJ KA mixture, at a density ρ = 1.2, the squared jump

length 〈∆r2
J〉 decreases from 0.25, at T = 0.575, to 0.1, in the

deeply supercooled regime at T = 0.45. Assuming successive

jumps to be uncorrelated, this implies that to move of a dis-

tance comparable to the interparticle spacing, a particle must

perform a number n = ρ−2/d/〈∆r2
J〉 of jumps varying from

n ≃ 4, at high temperature, to n ≃ 11, at low temperature. Sec-

ond, the typical size of dynamical heterogeneities increases as

the dynamics slow down23, at the point that these clusters have

been associated to the growing cooperatively rearranging re-

gion22,24, while conversely the size of the clusters of jumping

particles is constant. Possibly, the size of DHs could be re-

lated to that of the cooperative jump length introduced in the

previous section. Finally, the typical time scale of dynamical

hetergoeneities is larger than that of the jump dynamics. All

of these results suggest that dynamical heterogeneities result

from a sequence of jumps.

The connection between particle jumps and dynamical het-

erogeneities is not fully understood. An important observation

is the presence of a facilitation mechanism, whereby a jump

triggers jumps of nearby particles, in an avalanching process.

This mechanism explains how DHs emerge from a sequence

of correlated jumps6–8,26,27. Facilitated models28–30 offer a

vivid picture of this process, as they associate particles that

jump to defects, and the avalanches to the diffusion of these

defects. However, the precise mechanism by which this fa-

cilitation mechanisms occurs is not precisely understood. In-

deed, one would expect the avalanche that develops through

the facilitation process to spread like an infection, leading to

a fast relaxation of the system. Conversely, avalanches are

confined, as they only grow until reaching a size of the or-

der of the dynamical heterogeneities. Indeed, some particles

appear immune to the facilitation process, at least for a long

time, as if requiring a large change to their environment be-

fore being able to jump. In kinetically constrained models

(see Sec. 5), these particles are those that belong to the core of

clusters of particles that cannot perform jumps due to kinetic

constraints30. In the continuum, these particles are expected to

be embedded in regions of high mechanical strength, or with

high structural order. The size of these regions has been ob-

served to grow on cooling31.

Research in this direction should certainly consider the

presence of a third definition of cluster of localized particles,

that emerges from the analysis of the spatial properties of the

soft vibrational modes of amorphous materials. Indeed, in

amorphous materials there are soft vibrational modes that are

localized: in the corresponding eigenvectors, only few parti-

cles have a not negligible displacement, and these few par-

ticles are localized in space. Earlier works called jumps the

displacements associated to these modes, and found them to

comprise 10 or more particles32,33. The soft modes are re-

lated to the spatial elastic heterogeneity of the system, as they

are localized in regions of the system characterized by small

values of the local shear modulus, or where the amplitude of

vibration is large6,12,34,35. These regions are known as ‘soft

spots’36. Connections between dynamical heterogeneities and
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soft spots, and between soft modes and jumping particles, sug-

gest an interplay between particle motion and evolution of the

local elastic properties. Such an interplay, and particularly the

evolution of the local elastic properties, has not been yet care-

fully investigated. Recent works in these direction showed that

soft spots survive many elementary structural rearrangements,

i.e. many jumps, so many that their life time is correlated with

the relaxation time of the system37. This might open the way

to a coarse grained description of the relaxation dynamics of

supercooled liquids and structural glasses in term of soft spots.

The open question is that of determining the coarse–grained

dynamical rules governing the evolution of the soft spots, in-

cluding their interaction, diffusion, annihilation and creation.

Finally, we consider that jumps have also been observed

to play a role in the dynamics of amorphous glassy systems

under shear. In these systems the relaxation occurs through

a sequence of relaxation events known as shear transforma-

tion zones38,39 (STZs). STZs are extremely close to clusters

of jumping particles. Indeed, both involve few particles, both

aggregate at long times giving rise to DHs40, and both occur

where the soft spots are localized36. This analogy suggests

that results obtained investigating STZs could also hold for

the cluster of jumping particles. This analogy is of interest

because the STZs, that occurs at zero temperature, can be in-

vestigated in an energy landscape approach41. Research in

this direction allowed to associate to the STZs a size related

to the number of particles involved in the rearrangement, of

order41,42 100. This number is sensibly larger than the num-

ber of particles undergoing large displacements in a jump, of

order 10. Given the analogy between clusters of jumping par-

ticles and STZs, this finding supports the idea that jumps do

actually require cooperative rearrangements in their surround-

ing regions, and therefore the existence of a jump cooperative

correlation length.

4 Continuous time random walk

The continuous–time random walk formalism allows to make

predictions concerning the relaxation dynamics of super-

cooled liquids by assuming the absence of spatial and tem-

poral correlations between the jumps. Before describing these

predictions, let us stress that the jumps are actually correlated,

even at high temperature. Indeed, uncorrelated jumps give

rise to particles with uncorrelated spatial positions, while con-

versely liquids have short ranged correlations. Furthermore,

at low temperature successive jumps of the same particle are

expected to be anticorrelated, as particles will jump back and

forth between nearby positions before entering the diffusive

regime. Similarly, correlations between successive waiting

times of a single particle are expected. Despite these obser-

vations, it is interesting to consider what predictions can be

obtained for the relaxation dynamics when all of these corre-

lations are neglected. This strong approximation leads to the

continuous time random walk (CTRW) description of the re-

laxation dynamics of structural glasses.

The CTRW is a particle diffusion model, originally in-

troduced by E.W. Montroll and G.H. Weiss43, that general-

izes random walk processes by introducing stochastic wait-

ing times and stochastic jump lengths. With respect to

other stochastic diffusion models, e.g. Levy flights, the

distribution of jump lengths is assumed to have finite mo-

ments. The CTRW proved useful to describe a variety of

physical processes, including electronic transport in disor-

dered systems44,45, diffusion in porous media or biological

systems46–48, blinking quantum dots49, seismicity50, spin

glasses51. Notice that some of these processes are clearly out–

of–thermal equilibrium. Out–equilibrium phenomena con-

cerning supercooled liquids that have been described in this

framework include aging19, and the diffusion of driven parti-

cles52.

These diverse systems share a similar dynamics consisting

in subsequent jumps between energy (or free energy) minima.

The most important quantity fixing the time evolution is the

distribution of the waiting time in between jumps, P(tw), that

in the case of supercooled liquids has finite moments, as all

of the particles eventually jump. This distribution is expo-

nential if jumps originate from a Poissonian process. In su-

percooled liquids, this is only observed at high temperatures.

Conversely, as the temperature decreases, P(tw) develops a

power law regime at short tw and a stretched exponential de-

cay at large tw, as in Fig. 2b. This non–exponential behavior

leads to a distinction between the probability distribution of

the persistence time, F(tp), which is the time at which a parti-

cle perform its first jump as measured form an arbitrary initial

observation time, and the waiting time distribution, P(tw), the

two distributions being connected by the Feller relation53,54,

F(tp) = 〈tw〉
−1

(

1−
∫ tp

0 ψ(tw)dtw

)

.

Within the continuous time random walk framework, it is

straightforward to relate the diffusion coefficient, D, and the

relaxation time at every wavevector q= 2π/λ smaller than the

average jump size, to 〈tw〉, 〈tp〉 and to the average jump length

〈∆rJ〉. One finds

D = 6
〈∆r2

J〉

〈tw〉

τλ ∝ 〈tp〉+(mλ −1)〈tw〉+mλ 〈∆tJ〉, (1)

where τλ is estimated as the average time a particle needs to

make mλ (T ) = λ 2/〈∆r2
J(T )〉 jumps. In the above estimation

of τλ we have taken into account that jumps have a finite aver-

age duration 〈∆tJ〉, which is actually negligible at low temper-

atures as illustrated in Fig. 2. There have also been attempts

to describe the full time dependence of relaxation function55

within the CTRW framework.
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Fig. 4 Panels (a) and (c) show that the CTRW predictions (see text)

reproduce measurements of the diffusion coefficient and of the

relaxation time at different wavectors of the KA Lennard–Jones

mixture, if not at very low temperatures. The failure at low

temperature occurs as successive jumps of a same particle becomes

anticorrelated, as exemplified by the transient subdiffuive

dependence of the mean square displacement of the particles on the

number of jumps, illustrated in panel (b).

We have recently observed that these predictions work well

for the KA LJ model systems10, as illustrated in Fig. 4, for a

system of harmonic spheres56, as well in experiments of col-

loidal suspensions57. This is an unexpected result given the

expected presence of correlations between jumps of a same

particle and between jumps of different particles. These cor-

relations appear to be relevant only in the deeply supercooled

regime, where deviations from the CTRW predictions are ob-

served.

The CTRW can also be related to DHs and to breakdown

of the SE relation. To clarify the relation with DHs, as mea-

sured for instance by the dynamical susceptibility, we consider

that DHs have both a temporal and a spatial contribution22.

The temporal one originates from fluctuations in the jumping

time, while the spatial ones reflect the spatial correlation of the

jumping particles. The CTRW approach captures the tempo-

ral heterogeneity, as it allows for not exponential waiting time

distributions. This implies the temporary coexistence of par-

ticles that have performed many jumps, and of particles that

have performed few jumps10. Spatial correlations are not cap-

tured as the CTRW approach nothing says about the spatial

correlations of the particles that have performed many jumps.

The temporal heterogeneities also allow to interpret the break

down of the SE relation (Dτλ = const.). Indeed, from Eq. 1

one understands that this breakdown is mainly due to the de-

coupling of the two timescales 〈tw〉 and 〈tp〉, even though the

temperature dependence of the squared jump length 〈∆r2
J〉 also

plays a role.

5 Jumps and theories of the glass transition

Since particle jumps are an ubiquitous feature of supercooled

liquids, it is interesting to consider their role in theories de-

scribing their slow dynamics and the glass transition.

5.1 Jumps in kinetically constrained models

The cage-jump motion inspired the development of purely ki-

netic theories of the glass transition, exemplified by kinetically

constrained lattice models28,29 (KCMs). In particle based

models, particles sit on a lattice and move by hopping into

nearest neighbors empty sites. While this dynamics resembles

the hopping motion of particles in crystals (see Sec. 2), these

models are characterized by a kinetic constraint, according to

which a jump is allowed provided the local environment sat-

isfies some condition. This kinetic constraint play a vital role,

as it implies that a jump is not a local process involving a par-

ticle and an hole, but rather a cooperative process involving

few lattice sites. Because of this, a jump changes the local en-

vironment of nearby particles, and might allow or inhibit their

jumps. This process, termed kinetic facilitation28, creates cor-

relations between subsequent jumps, and allows to rationalize

the super Arrhenius temperature dependence of the relaxation

time26,58. The jumps introduced in kinetically constrained

models differ from those observed in supercooled liquids, as

they imply particle displacements of the order of the interpar-

ticle distance, the lattice cell size. While this could be a mi-

nor difference, it is also possible that these models overlook

structural reorganizations occurring at small length scales, that

might introduce a correlated dynamics mediated by an elastic

coupling. To overcome this difficulty, one might consider the

KCMs as a coarse grained description of an actual physical

system, in which case each site represents a spatial region, a

jump inducing the structural relaxation of that region. Regard-

less of the physical interpretation, KCMs offers a simple and

appealing picture of the dynamics slowdown of supercooled

liquids, but have two disadvantages. First, these models are

extremely schematic so that it is difficult to quantitatively re-

late them to different physical systems. Second, since kineti-

cally constrained models have a trivial Hamiltonian, they are

by definition unable to describe the large specific heat jump

occurring at the glass transition temperature. Proposed reme-

dies to this deficiency involve a better description59,60 of small

scale jump processes. In this line of research, Odagaki61,62

first connected the relaxation dynamics of supercooled liquids

to their thermodynamic properties in a jump framework, by
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assuming each jump to involve n ∝ 1/sc(T ) particles, where

sc(T ) is the excess entropy per atom of the supercooled liquid.

5.2 Jumps in the free volume theory

The cage–jump motion has also been the primary source of

inspiration of less schematic theories of the glass transition,

starting from the free volume theory by Cohen and Turn-

bul63–65. In this theory the probability for a particle to es-

cape from its cage only depends on its free volume. Specif-

ically, the theory assumes (a) that the total free volume Vf

of an N particle system is redistributed independently among

the particles, so that the single particle free volume prob-

ability distribution is p(v f ) = 〈v f 〉
−1 exp(−v f /〈v f 〉), where

〈v f 〉 = Vf /N, (b) that a particle is not able to jump out of

its cage if its free volume is smaller than a threshold, i.e.

if v f < v∗f , (c) that the probability for a particle to perform

a jump does not depend on v f , as long as v f > v∗f . From

these assumptions, one finds the escaping probability to be

P =
∫

∞

v∗f
p(v f )dv f , and can estimate the relaxation time τ to

be τ = τ0/P = τ0 exp(v∗f /〈v f 〉), with τ0 a microscopic time.

Cohen and Turnbull estimated 〈v f 〉= A(T −T0), and thus pre-

dicted a super-Arrhenius Vogel–Fulcher–Tamman (VFT) be-

havior for the relaxation time.

The free volume theory is extremely appealing due to its

simplicity. We note that it considers jumps to be collective

processes, as in order to jump a particle needs to have enough

free volume, which is a property of the particle and of its im-

mediate neighbors. However, the theory also implicitly as-

sumes that there is a small length scale process that allows for

the redistribution of free volume. Because of this process, the

free volume of all particles change in time; sooner or later, all

particles will have enough free volume to perform a jump. As

the free volume theory does not model this free volume redis-

tribution process, it does not consider the presence of spatial

correlations between jumping particles, and says nothing as

concern dynamical facilitation and dynamical heterogeneities.

5.3 Jumps in the Mode Coupling Theory

The idea that particles in supercooled liquids spend most of

their time rattling in the cage formed by their neighbors played

a primary role in the development of the mode coupling the-

ory66–68 (MCT) of the glass transition. The MCT, which is

considered to provide a mean-field description of the dynam-

ics of structural glasses, is a first–principle theory that suc-

ceed in making specific predictions for the time evolution of

correlation functions of a liquid starting from its Lagrangian,

using a projection operator approach (see Ref. 69 for a re-

view). These predictions work well at high enough tempera-

ture, while they fail at lower temperatures. In particular, MCT

predicts a power law divergence of the relaxation time instead

of the observed super-Arrhenius behavior, and does not allow

to rationalize the breakdown of the Stokes–Einstein relation.

To go beyond this mean field description fluctuations are taken

into account via the introduction of activated events, generally

identified with hopping events. In the mode coupling frame-

work, this has been done either modifying the memory ker-

nel introducing an addition relaxation channels associated to

these jumps70,71, as well as developing a dynamic free en-

ergy describing the escaping process21,72,73. While also called

jumps, the activated processes invoked within this extended

MCT theory have not a clear connection with the jumps dis-

cussed in this review. Indeed, particle jumps are observed in

the slightly supercooled regime, where standard MCT works

and no additional relaxation channels are considered. In addi-

tion, both approaches used to extend the MCT have not a clear

relation with the jumps. Indeed, when MCT is extended by

modifying the memory kernel70,71, one actually simply intro-

duces a new relaxation channel without making reference to

its physical nature. That is, there is no reason to identify this

new relaxation channel with the jumps described in the review.

Similarly, when the MCT is extended developing a dynamic

free energy describing the escaping process one finds the typ-

ical length of this escaping process to grow on cooling21, or

to have a non monotonic temperature dependence72,73. Con-

versely, all estimates of the single particle jump length suggest

that this decreases on cooling. The contrast between these

two scenarios could be resolved whether jumps were found

to be characterized by a growing cooperative jump correlation

length, related to the size of the region involved in the rear-

rangement rather than to the actual particle displacement, as

discussed in Sec. 2. The connection between a localized re-

laxation event and properties of the system on a large length

scale has also been recently suggested in free volume mod-

els74.

5.4 Jumps in the Random first order theory

The random first order theory (RFOT) of the glass transi-

tion75–80 introduced activated events to extend the mean filed

description suggested by the analogy with p–spin models.

Simply put, in this picture a glassy system is seen as a collec-

tion of droplets, associated to the cooperatively rearranging

region introduced by Adam and Gibbs81, that continuously

reconfigure through activated processes82. The random first

order theory models this process through a free energy for the

reconfiguration of a droplet, introducing a bulk and a surface

free energy in analogy with the free energy of nucleation of

droplets in second order phase transitions. There is, however,

not a consensus regarding the temperature and droplet size de-

pendence of this free energy. Possibly, this question could be

settled through a better understanding of the dynamical pro-

cess by which a droplet relax, that is expected to involve cor-
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related single particle jumps. In this respect, the contrast to be

resolved is that existing from the length scale characterizing

the jumps, which is not temperature dependent, and the typi-

cal size of the droplets, that conversely grows on cooling. An

appealing scenario involves, once again, the elastic properties

of the system and the cooperative jump length, as a jump may

involve the deformation of a surrounding region. The size of

this region, associated to the droplet size, could be related to

point–to–set correlation lengths83–87.

5.5 Jumps in Elastic models

In Dyre’s shoving model88 the relaxation of supercooled liq-

uids is postulated to occur through localized structural rear-

rangements involving the overcoming of a free energy barrier.

The model is termed elastic, as the free energy barrier is asso-

ciated to the plateau shear elastic modulus of the system89,90,

Gp. This association allows to predict that the relaxation time

should scales as τ ∝ exp(Gp(T )/T ), in remarkable agreement

with experimental data. The dependence of the activation en-

ergy on the shear elastic modulus suggests that a localized

event actually involves the deformation of the system on a

large length scale. Since the model does not make specific

assumptions regarding the features of the relaxation events, it

is hard to say whether these can be connected to the jumps.

However, in particular if the jumps are found to be character-

ized by a growing length scale, their identification is certainly

tempting. In this line of research, it would be interesting to

investigate how the energy barrier overcome during a jump is

related to the plateau shear modulus.

6 Conclusions

In summary, we have reviewed results on the cage–jump mo-

tion of supercooled liquids, and clarified that jumps are pro-

cesses involving the sensible displacement of a small group of

particles. The size of these groups is temperature independent,

and each particle of the group move a distance which is much

smaller than the interparticle distance, and that decreases on

cooling. The mechanism by which these jumps accumulate

leading to the relaxation of the system, and to the glass phe-

nomenology, is not fully understood, even tough it certainly

involves a facilitation process.

More work is needed to clarify the connection between the

jumps and different theories of the glass transition. In this

respect, we notice that the extent to which jumps can be con-

sidered as localized events has not yet throughly investigated.

Indeed, it is certainly plausible that in order for a jump to oc-

cur particles in a surrounding region need cooperate. The size

of this region would provide an estimate of a jump coopera-

tive length. The investigation of the features of this length,

and particularly of its temperature dependence, could allow to

relate kinetic, elastic and thermodynamic theories of the glass

transition.
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