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Depletion, melting and reentrant solidification in
mixtures of soft and hard colloids
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Domenico Truzzolillo,b,e Luca Cipelletti,e Firmin Moingeon, f Mario Gauthier, f

Dimitris Vlassopoulos,b,c Christos N. Likos,∗a and Manuel Camargo∗g

We present extensive experimental and theoretical investigations on the structure, phase behavior, dynam-
ics and rheology of model soft-hard colloidal mixtures realized with large, multiarm star polymers as the soft
component and smaller, compact stars as the hard one. The number and length of the arms in star polymers
control their softness, whereas the size ratio, the overall density and the composition are additional param-
eters varied for the mixtures. A coarse-grained theoretical strategy is employed to predict the structure of
the systems as well as their ergodicity properties on the basis of mode coupling theory, for comparison with
rheological measurements on the samples. We discovered that dynamically arrested star-polymer solutions
recover their ergodicity upon the addition of colloidal additives. At the same time the system displays demixing
instability, and the binodal of the latter meets the glass line in a way that leads, upon addition of a sufficient
amount of colloidal particles, to an arrested phase separation and reentrant solidification. We present evi-
dence for a subsequent solid-to-solid transition well within the region of arrested phase separation, attributed
to a hard-sphere-mixture type of glass, due to osmotic shrinkage of the stars at high colloidal particle con-
centrations. We systematically investigated the interplay of star functionality and size ratio with glass melting
and demixing, and rationalized our findings by depletion of the big stars due to the smaller colloids. This new
depletion potential in which, contrary to the classic colloid-polymer case, the hard component depletes the
soft one, has unique and novel characteristics and allows the calculation of phase diagrams for such mix-
tures. This work covers a broad range of soft-hard colloidal mixture compositions in which the soft component
exceeds the hard one in size and provides general guidelines for controlling the properties of such complex
mixtures.

1 Introduction
Hard colloid-polymer mixtures have attracted the attention of the
scientific community over the last two decades1–4 due to their
extremely interesting and complex phase behavior as a function
of the polymer-to-colloid size ratio q = 2Rg/σc, where Rg is the
average radius of gyration of the polymer, and σc is the colloid di-
ameter. It is possible to distinguish two main limits as a function
of the size ratio q: the q< 1 case is the so-called colloidal limit and
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q > 1 is termed the protein limit. In the colloidal limit, the colloids
are larger than the polymers and the main equilibrium properties
of the system can be rationalized within the depletion picture,
since the macromolecules act as depletants for the larger colloidal
particles. In this case the Asakura and Oosawa approach (AO), in
which the size ratio and polymer concentration can be used to
tune the range and strength of the depletion interaction between
the colloids, still remains the prototype and forms the guiding
paradigm.5,6 Besides the equilibrium phase diagram of the mix-
ture, the AO model has allowed the theoretical description of a
host of other features such as the presence of higher-order glass
transitions, dynamic heterogeneities, and gel formation resulting
from the attractive contribution to the colloid-colloid interaction
potential.7–10

The protein limit is the case in which the radius of gyration of
the polymers becomes larger than that of the colloid; the internal
degrees of freedom of the macromolecules are no longer negli-
gible and the overall polymer shape and its interaction with the
colloid cannot be considered as spherical. Many body interactions
start playing a crucial role, as every single macromolecule might
interact with more than one colloidal particle. As a consequence
of this added complexity, the polymer does not act exclusively as
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a simple depletant for the smaller colloidal particles and the rel-
evant length scale for the depletion potential is defined by the
polymer correlation length.11–13

Historically, colloid-polymer mixtures refer to a combination of
hard colloids and linear polymers interacting via excluded vol-
ume repulsions. Such systems have been widely investigated for
their rheological and dynamic properties, and for the variety of
phase diagrams they present. In recent years, advances in experi-
mental work as well as in theoretical and computational descrip-
tions allowed the consideration of mixtures of star polymers and
colloids. The former are branched polymer made of f chains an-
chored on a common core; such complex macromolecules were
demonstrated to be highly versatile models for soft colloids. De-
pending on their functionality f , stars constitute entities inter-
mediate between linear polymers ( f = 2) and sterically stabilized
(hard) colloids ( f → ∞). Binary mixtures of hard and soft col-
loids present a very rich phase space associated with a wide va-
riety of dynamic responses.14,15 The tunable softness of stars is
responsible for the observation of anomalous structural behaviors
for star polymer solutions, the formation of several crystal struc-
tures and of the re-entrant melting as the density of the system
increases16,17. Moreover, for dense suspensions of high function-
ality stars ( f > 50), a glass-like transition takes place, i.e., a dy-
namic arrest into an amorphous state featuring an extremely long
relaxation time, which is further enhanced by polydispersity.14,18

Due to the complex dynamic picture arising from the study of
solutions of star polymers, mixtures of such macromolecules are
expected to offer greater versatility than their hard counterparts,
both in terms of structural and rheological properties. Investi-
gations of binary mixtures of star polymers with different func-
tionalities and/or size ratios demonstrated the existence of multi-
ple glassy states, ranging from repulsive glasses at low additive
densities to attractive (re-entrant) ones for high additive con-
centrations.19–22 Additionally, mixtures of large stars and small
linear polymers present a rich phenomenology including osmotic
shrinkage of the stars, phase separation (demixing), cluster for-
mation, and melting of the glassy state upon addition of linear
polymers.23–28 Due to the soft nature of the small additives, the
solution behaves similarly to traditional colloid-polymer mixtures
in the colloidal limit and the polymers act as a depletant for the
large soft-colloids.

For the mixtures mentioned above the small-sized additives are
all soft and, in this sense, the systems are analogous to tradi-
tional colloid-polymer mixtures in the colloidal limit. On the
other hand, when small, hard additives are incorporated in dense
star polymer suspensions, the emerging properties are more akin
to those of polymer-colloid mixtures in the protein limit, with
the additional characteristic that the polymer component is not a
semidilute mesh but rather a collection of distinct polymeric soft
colloids. Moreover, such materials are related to nanocomposite
polymeric materials consisting of hard nanoparticles dispersed in
a soft polymeric matrix, and whose thermomechanical properties
may be tailored by modifying the quality of the dispersion and/or
the interfacial interactions.29,30 Likewise, other closely related
systems are (solvent-free) self-suspended hairy nanoparticles sus-
pensions, recently introduced as unique materials allowing nearly

ideal mixing of nanocomposites.31,32

The analysis of mixtures of star polymers and hard colloids in
the limit of small stars has been the subject of investigations in
the early 2000’s,33–35 whereas the opposite limit of large stars
has been addressed in a very recent study.36 It was shown that
the addition of small, hard-like colloids to a star polymer glass
leads to an arrested phase separation. By increasing the con-
centration of the small colloidal units, the previously glassified
system melts; a further increase in the amount of colloidal com-
ponent added leads to the appearance of a reentrant solid state,
the latter being a consequence of the interplay between the struc-
tural arrest line of the repulsive glass and macroscopic demix-
ing, i.e., an arrested phase separation (APS) due to the penetra-
tion of the glass line within the two-phase region delineated by
the demixing binodal.37–40 Experiments carried out on the afore-
mentioned star-colloidal mixture for a specific star functionality,
f = 214, and star-to-colloid size ratio, q = 3, yielded excellent
quantitative parameter-free agreement when compared with the-
oretical predictions on the phase space and with the dynamic
properties of the system. The theoretical study was carried out
by employing a recently introduced coarse-grained description of
the mixture.41 In such a representation both star polymers (S)
and hard colloids (H) are represented by spheres separated by a
center-to-center distance r and interacting through effective po-
tentials Vi j(r) (i, j = S,H). The excellent agreement found in this
approach and that will be pinpointed in the following sections of
this paper, validates the extension of the theoretical analysis to
different functionalities f and size ratios q.

The present work builds upon the previously reported results of
Ref.36, extending them to yet unexplored regions of the param-
eter space and thereby bringing forward novel results, insights
and guidelines for the design of new soft composites with tun-
able flow properties. The purpose of this work is first to further
elucidate the phenomena reported in Ref.36 and, in particular,
the interplay between structural arrest and phase separation be-
tween the two components. New experiments provide evidence
for the phase separation and its location with respect to the dy-
namic arrest line. In addition, we explore the parameter space
of star functionality and star-colloid size ratio to understand the
Physics behind the structure of such mixtures and come up with
design guidelines for such composite materials. Finally, we inves-
tigate the reentrant region and the solid-solid transitions present
in the system, providing evidence and an interpretation for two
distinct kinds of solids observed.

The rest of the paper is organized as follows: In Section 2,
the theoretical approach and the experimental methods are pre-
sented. In Section 3, we focus our attention on the influence of
small colloidal additives on melting of the glassy state of the stars,
by exploring theoretically various combinations of functionalities
and size ratios, and investigating experimentally the reentrance
of solidification upon entering the phase separation region. Mode
coupling theory calculations are compared with rheological linear
viscoelastic measurements, and state diagrams are drawn display-
ing the estimated loci of both the liquid-glass and the demixing
lines. In Section 4 we turn our attention to the demixing transi-
tion, by applying a depletion picture on the theoretical side and

2 | 1–18Journal Name, [year], [vol.],

Page 2 of 18Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



measurements of the correlation length of the mixtures on the ex-
perimental side, thus providing evidence for demixing that com-
pares well with the theoretical predictions. The combined results
are discussed and put in a broader context in Section 5, whereas
in Section 6 we summarize and draw our conclusions.

2 Methods

2.1 Coarse-grained model

We analyze the properties of mixtures of star polymers and col-
loidal additives in the limit in which the colloids are smaller than
the polymers. The theoretical approach used to describe the sys-
tem is based on a previously introduced coarse-grained represen-
tation.34,41 Star polymers are macromolecular colloidal species
consisting of a number f of homopolymers grafted on a cen-
tral core. They can be regarded as soft spherical colloids with
a gyration radius R(g)

S scaling as R(g)
S ∼ f 1/5Nν under good sol-

vency conditions,42 where N is the degree of polymerization per
arm, f the arm number (functionality) and ν = 0.588 ' 3/5 the
self-avoiding Flory exponent. The second component of the mix-
tures are colloids, i.e., hard spherical nanoparticles with radius
RH . Each species is rendered as a spherical object (soft and hard,
respectively) and coarse-grained through its center. Accordingly,
we introduce effective potentials Vi j(r) (i, j = S,H) acting between
the sphere centers at distance r.

The effective interaction potential VSH(r) between star poly-
mers and hard colloids in good solvent conditions depends on
f and on the size ratio q, defined as:

q≡ R(g)
S /RH , (1)

whereby we focus here exclusively on the case q > 1. The coarse-
graining procedure allows the extraction of the effective force be-
tween the star polymer and the colloid by integrating the osmotic
pressure Π(s) exerted by the star polymer on the surface of the
colloid.34,41 In this way, the effective force FSH(z) between the
anchor point of the star and the surface of the hard colloid can be
evaluated as

FSH(z) =
RH

(z+RH)2

smax∫
z

ds
[
z2 +2RHz+ s2

]
[Π(s)−Π(s+ t)] , (2)

where z = r − RH > 0 is the distance from the center of the
star to the surface of the hard colloid, smax =

√
z(z+2RH) and

t(s) =
(
z(2RH + z)− s2)/s. The functional form of the osmotic

pressure Π(s) can be found in Refs.34,41; for the numerical co-
efficient Λ( f ) appearing there, the high- f -limit Λ( f ) = 5/36 has
been employed in this work for all f ≥ 200. We note that the
results for the structure of the mixtures are rather insensitive to
the precise value of Λ( f ), even within a factor of 2 to 3. The
effective force can be readily integrated to yield the theoretical
prediction for the effective potential VSH(r = RH + z), the valid-
ity of which was firmly corroborated via extensive, full-monomer
Monte-Carlo simulations.41

Within the coarse-grained representation the interaction be-
tween hard colloids, VHH(r), is represented by the hard sphere
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Fig. 1 (a) The effective interactions between star-star, VSS(r),
star-colloid, VSH(r), and colloid-colloid, VHH(r), for star functionality
f = 200 and size ratios q = 3 (solid lines) and q = 4 (dashed lines). The
colloid-colloid interactions are of the hard-sphere type and are thus
represented here by vertical lines. (b) The cross-interaction VSH(r) for
fixed size ratio q = 3 and varying functionality f of the star.

potential for particles with diameter σH = 2RH ,

βVHH(r) =

{
∞ r < σH ;

0 r ≥ σH .
, (3)

Finally, for the star-star effective interaction, VSS(r), the effective
potential derived in Ref.16 was employed. The latter features a
crossover from a Yukawa-like tail to a logarithmic behavior as
the star-star separation diminishes. More explicitly, the effective
interaction between two star-polymers whose centers are held at
distance r apart reads as

βVSS(r) =
5
18

f 3/2

− ln
(

r
σS

)
+ 1

1+
√

f/2 r < σS

1
1+
√

f/2

(
σS
r
)

exp
[
−
√

f
2σS

(r−σS)
]

r ≥ σS
(4)

where σS ' (4/3)R(g)
S is the corona diameter of the stars and

β = (kBT )−1, kB being the Boltzmann constant and T the abso-
lute temperature. All the effective potentials used in this work
are fully repulsive and arise in systems whose only microscopic
interactions are excluded volume effects. The set of effective in-
teractions given by Eqs. (2-4) was employed to investigate the
structural and dynamic features of mixtures characterized by
high functionalities f = 214,250,300 and size ratios 2 ≤ q ≤ 8.
The theoretical modeling will be mostly performed in concentra-
tion regimes in which there is no osmotic shrinkage of the stars
due to either other stars or the colloids;43 therefore the inter-
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action parameter σS as well as the size ratio will be treated as
concentration-independent constants.

In Fig. 1, some examples of the effective interactions are shown
for different f and two size ratios q. Since the colloids are consid-
ered as hard spheres, the star-colloid interaction VSH(r) diverges
at r =RH and, as expected, it also diverges at smaller distances for
larger q, since smaller colloids can penetrate the stars more easily
than larger ones. For a given q, the stars become less penetrable
by the colloids as the functionality of the star increases. In this
way, this reliably determined set of effective potentials provides
full and realistic coarse-graining of the complex mixture.

2.2 Experimental techniques

2.2.1 Sample preparation

Suspensions of multi-arm 1,4-polybutadiene (PBD) star poly-
mers with a weight-average functionality fS ≡ f = 214 arms,
having a total weight-average molar mass Mw,S = 14400kg/mol
were treated as the experimental counterpart to the theoretical
soft-colloids presented the previous sections. In order to sup-
press any enthalpic contribution coming from the eventual dif-
ference of chemical composition between hard colloids and stars
that could dictate the thermodynamic behavior of the mixtures,
smaller PBD stars with a higher functionality fH = 1110 and total
Mw,H = 1410kg/mol were considered as effective hard-sphere col-
loidal particles. This choice is justified by the ( f →∞)-limit of the
coarse-grained star-star interaction (see Eq. (4)).16,36 Details on
the synthesis and the characterization of the stars are provided
in Refs.36,44,45. The mixtures of stars and hard-like spheres were
dissolved in squalene, a nearly athermal, non-volatile solvent for
PBD.

2.2.2 Dynamic light scattering

Dynamic light scattering (DLS) measurements were performed
using the Photon Correlation Spectroscopy (PCS) technique,46

which recorded the scattering intensity autocorrelation function
G(Q, t) = 〈I(Q, t)I(Q)〉/|I(Q)|2 over a broad time range (10−7 −
103 s) at different scattering wave vectors Q with an ALV-5000 go-
niometer/correlator setup (ALV, Germany) using a Nd:YAG laser
at wavelength λ = 532nm (Adlas, Germany). The magnitude of
the scattering wavevector is Q = (4πn/λ )sin(θ/2) where n and θ

are the refractive index of the solvent and the scattering angle,
respectively. We performed measurements in the polarized (VV)
geometry under homodyne beating conditions. The intermediate
scattering function C(Q, t) probing concentration fluctuations was
extracted from the experimental intensity autocorrelation func-
tion acquired at the photomultiplier tube, G(Q, t), viz:

C(Q, t) =
[

G(Q, t)−1
f ∗ins

]1/2
, (5)

where f ∗ins ≤ 1 is an instrumental coherence factor.

The analysis of C(Q, t) was performed using the CONTIN soft-
ware47 and proceeded by its inverse Laplace transformation (ILT)

C(Q, t) =
∫

∞

−∞

LQ(lnτ) exp(−t/τ)dlnτ, (6)

LQ(lnτ) being the distribution of relaxation times for a given wave
vector Q. This was particularly useful for higher concentrations,
where more than one relaxation mode could be detected. How-
ever we point out that all the DLS data reported hereafter refer
to samples laying below the glass line of the colloid-free system,
where samples are ergodic and spatial average of the scattering
intensity is not necessary to characterize their structural relax-
ation. A single exponential relaxation process was observed for
dilute solution analysis, from which the hydrodynamic radii were
extracted. The hydrodynamic radii of the soft and hard colloids,
measured in dilute squalene solution at 20◦C, were R(h)

S = 45nm

and R(h)
H = 11.5nm, respectively, which yields a colloid-to-star hy-

drodynamic size ratio ζ = R(h)
H /R(h)

S ' 0.25 and overlap concen-

trations c∗S = 44.5mg/ml and c∗H = 416mg/ml. Since R(h)
S ' σS

for multiarm stars,23,36 and also σS ' 4R(g)
S /3, it follows that

q = 3/(4ζ ) and thus the size ratio q = 3 is obtained for the system
being considered. Based on single particle hydrodynamic sizes,
we also estimated the nominal effective volume fractions for rhe-
ological glass transitions to be φ

(g)
S = c(g)S /c∗S = 1.61 for the stars,

corresponding to ρ
(g)
S σ3

S = 0.327, and φ
(g)
H = c(g)H /c∗S = 0.75 for the

colloids, meaning ρ
(g)
H σ3

S = 10.75.36

In the DLS experiment one can measure both the dynamics (re-
laxation rate) and the intensity of a relaxation mode. Since we
make use of both, below we call this static/dynamic light scatter-
ing. In addition to standard DLS we performed Multispeckle dy-
namic light scattering (MSDLS) experiments for two non-ergodic
samples at φS = 1.625 and two different colloid concentrations, i.e.
samples that explore only a limited portion of the phase space on
the experimentally accessible time scales. For such samples, the
time average usually applied to measure G(Q, t) is practically un-
feasible. To circumvent this difficulty we use the multispeckle
method.48,49 A multi-pixel CCD camera is used as a detector, in-
stead of a single detector such as a phototube, as in traditional
light scattering. The signal of each pixel is treated independently
and the intensity correlation function is averaged over pixels,
rather than over time. More specifically, we calculated G(Q, t)
as:

G(Q, t) =
〈
〈Ip(Qp,τ + t)Ip(Qp,τ)〉p
〈Ip(Qp,τ + t)〉p〈Ip(Qp,τ)〉p

〉
τ

(7)

where Ip(Qp, t) is the intensity at time t for the p-th pixel, Qp is the
scattering vector associated to the light collected by the p-th pixel
and 〈. . .〉p denotes an average over CCD pixels corresponding to a
set of Q-vectors centered in Q = 22.2 µm−1 and such that the rel-
ative change of Q over the pixels is ∆Q/Q < 0.1. We estimate the
experimental observational length scale as 2π/Q = 282 nm' 6σS:
we thus probe collective diffusion. No significant ageing was de-
tected, and the time average yielded the usual G(Q, t)−1, propor-
tional to the squared intermediate scattering function that quan-
tifies the temporal decay of density fluctuations of wave vector
Q.46

2.2.3 Rheology

The linear and nonlinear viscoelastic responses of the star mix-
tures were measured under simple shear flow. The measure-
ments were performed with a sensitive strain-controlled ARES
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100 FRTN1 rheometer (TA, USA) employing a homemade cone-
plate stainless steel geometry (diameter = 7.9mm, cone angle =
0.166rad, truncation = 0.210mm), in order to accommodate min-
imal amounts of samples. The temperature was maintained at
20.00±0.01◦C with a Peltier control system, whereas the sample
was protected from the external environment with a simple teflon
cover.

The experimental protocol involved the following dynamic os-
cillatory measurements: (a) Strain sweeps at frequency ω =

1rad/s, to determine the limits of linear viscoelastic response. (b)
Time sweeps at large strain amplitude γ0 = 200% and frequency
ω = 1rad/s, to shear-rejuvenate the sample (or shear-melt it when
solid-like), typically for trej = 102 s. This protocol allowed eras-
ing the sample history (due to possible residual stresses during
sample preparation and loading) and ensured reproducible initial
conditions for the measurements.36 This approach was used con-
sistently in all the measurements. (c) Time sweeps at low, linear
γ0 (γ0 < 1%), to monitor the aging of the sample and determine its
rheological steady state. The latter is particularly important over
periods exceeding tag = 104 s.36 (d) Frequency sweeps at strain
γ(t) = γ0 sin(ωt), to probe the viscoelastic relaxation spectrum,
i.e., the frequency-dependent storage (G′) and loss (G′′) mod-
uli in the range 10−2−102 rad/s. The measured stress response is
τ(t) = τ0 sin(ωt +δ ) = γ0 (G′ sinωt +G′′ cosωt), τ0 being the stress
amplitude and δ the phase angle δ = tan(G′′/G′).

3 Glass melting and reentrance

3.1 Static structure

Using the set of effective interactions defined above to describe
the system defined, we proceed to the analysis of the static struc-
ture of the mixtures characterized by partial number densities
ρi = Ni/V (i, j = S,H). To determine the correlation functions
between the two species, we employed integral equation theo-
ries and tested their accuracy by Monte Carlo simulations of the
coarse-grained system at selected points. The two-component
Ornstein-Zernike equation was solved with the help of the Rogers-
Young closure (OZ-RY).50 In Fourier space, the former reads as

Ĥ(Q) = Ĉ(Q)+ Ĉ(Q) · D̂ · Ĥ(Q), (8)

where [Ĥ(Q)]i j = ĥi j(Q) and [Ĉ(Q)]i j = ĉi j(Q) are, respectively, the
Fourier transforms of the total and the direct correlation func-
tions, and [D̂]i j = ρiδi j.

To find a solution for Eq. (8) it is necessary to make use of
additional closure relations. In this work, the two-component
Rogers-Young closure was chosen, as it is known to give thermo-
dynamically consistent results for mixtures of star polymers and
hard colloidal particles.51 The RY closure relation is given by

gi j(r) = exp[−βVi j(r)]
(

1+
exp[ fα (r)γi j(r)]−1

fα (r)

)
, (9)

where gi j(r) = hi j(r)+1 is the radial distribution function, Vi j(r) is
the pair interaction potential, and γi j(r) = hi j(r)−ci j(r). The mix-
ing function fα (r) = 1− exp(−α r) enforces thermodynamic con-
sistency of the compressibility and the virial routes by tuning the
parameter α.50 By iteratively solving Eqs. (8) and (9), we calcu-
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Fig. 2 Partial structure factors obtained from the solution of the OZ-RY
equation (lines) and Monte-Carlo simulations (symbols) for f = 30, q = 3,
ρSσ3

S = 0.3, and two different colloidal densities, ρH σ3
S = 0.1 and 1.0, as

indicated in the legends.

lated the radial pair distribution functions gi j(r) = hi j(r)+1, and
the static structure factors Si j(Q) = δi j +

√
ρiρ jĥi j(Q) for different

functionalities f , size ratios q and reduced partial densities ρHσ3
S

and ρSσ3
S . Representative results are shown in Figs. 2 and 3.

In Fig. 2 we show the dependence of the partial structure fac-
tors for f = 30, q = 3 and ρSσ3

S = 0.30 on the density of the col-
loidal additives. As the colloidal density ρH increases, the main
peak of SSS(Q) diminishes in height and its location shifts to larger
wavenumbers; increasing the colloidal density thus reduces the
the star-star nearest-neighbor distance, while at the same time it
also “loosens" the correlations between the stars. Due to the pres-
ence of the colloids, the stars overlap more frequently, they pen-
etrate deeper into each other, i.e., they are “pushed together" by
the colloids. This is a typical depletion effect, present for all func-
tionalities. In fact, the colloid-induced depletion can drive the
system to a demixing instability, as implied by the structural data
for f = 250 in Fig. 3. We can see that even for a small amount of
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Fig. 3 Partial structure factors obtained from the solution of the OZ-RY
equation and Monte-Carlo (MC) simulations for f = 250, q = 3,
ρSσ3

S = 0.3, and ρH σ3
S = 0.1.

additives, ρHσ3
S = 0.1, the colloid-colloid structure factor SHH(Q)

develops a high peak for long wavelengths (Q→ 0) signaling that
the system is approaching the spinodal line, and therefore, phase
separation would take place for further increase of ρH .

The possible existence of a demixing region can be accounted
for by the well-known fact that in the neighborhood of a spin-
odal line, iterative schemes as OZ-RY fail to converge.50 In this
way, an estimate of the phase-separated region can be obtained
by locating the convergence line, i.e., set of points (ρ̃S, ρ̃H) above
which the homogeneous mixture is expected to become unstable
with respect to a demixing transition into colloid-rich and star-
rich fluid phases. At this point, Figs. 2 and 3 indicate that increas-
ing the functionality of the star results in a stiffer particle, which
is less penetrable for the colloidal additive and yields demixing at
lower concentration of the latter, as can be concluded by compar-
ing the values of SHH(Q→ 0) for ρHσ3

S = 0.1.
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Fig. 4 Dependence of the non-ergodicity factor on the density of added
colloids for f = 214, q = 3, and ρSσ3

S = 0.36. Inset: Close-up to the main
peak of the corresponding star-star structure factors.

3.2 Mode Coupling Theory
According to the Hansen Verlet criterion, stating that a liquid will
freeze when the main peak of S(Q) reaches a height above 2.8, the
pure, star polymer fluid would crystallize, i.e., a thermodynamic
fluid-solid transition might take place at high star concentrations
(see Fig. 3 and inset in Fig. 4). However several experimental
studies have shown that a transition to a disordered arrested state
(glassy state) is what actually happens rather than crystal nucle-
ation.24,52,53 To quantify the extent to which this glassy state is
affected by the addition of small, hard colloids, we focused on
the non-ergodicity factor φ(Q) of the stars, which is defined as
the long-time limit of the star-star density autocorrelation func-
tion. In the case φ(Q) 6= 0, the system is considered non-ergodic
and its state is identified as glassy, whereas φ(Q) = 0 corresponds
to an ergodic fluid.

Given the structural data obtained by the OZ-RY approach, the
calculation of the non-ergodicity factor is readily achieved within
the framework of the Mode Coupling Theory (MCT). According
to MCT, φ(Q) fulfills the self-consistent equation:50,54,55

φ(Q)

1−φ(Q)
=

1
(2π)3

∫
d3kV (Q,k)φ(k)φ(k′), (10)

where k′ =Q−k and the kernel V (Q,k) can be expressed entirely
in terms of structural data, i.e.,

V (Q,k) =
ρS(Q)

2Q4

[
(Q ·k′) ĉ(k′)+(Q ·k) ĉ(k)

]2 S(k)S(k′), (11)

and S(Q) = [1−ρ ĉ(Q)]−1.
We evaluated φ(Q) using as inputs the star density and the

star-star structure factor resulting from the solution of the OZ-
RY equation, i.e., S(Q) ≡ SSS(Q) for a given set { f ,q,ρS,ρH} and
ρ ≡ ρS. Focusing exclusively on the dynamics of the large compo-
nent is justified when the size discrepancy and the concomitant
asymmetry in the short-time mobilities of the two components is
large enough.56 We have explicitly checked that this is indeed
the case for the system at hand.36 A representative result of the
dependence of the non-ergodicity factor of the stars on the col-
loidal additive is shown in Fig. 4, for the experimentally relevant
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Fig. 5 Mixture state diagram for f = 214 and different size ratios q as indicated in the legends. Panel (b) corresponds to the system that has also been
analyzed experimentally. The blue circles mark ergodic fluid states while the red squares represent glassy states. The filled triangles indicate the
liquid to glass transition density ρ

(g)
S for the pure star system. The dashed line corresponds to the convergence line above which the mixture is

considered to undergo an arrested phase separation, as explained in the main text.
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Fig. 6 Mixture state diagrams for f = 250 and f = 300 and different size ratios, as indicated in the legends. The blue circles correspond to ergodic fluid
states while the red squares represent glassy states. Above the dashed line, the systems is considered to undergo an arrested phase separation.

combination f = 214, q = 3, ρSσ3
S = 0.36 and increasing colloidal

density. Upon the addition of the colloids, the star-star structure
weakens and for ρHσ3

S & 0.18 the glass melts and ergodicity is re-
stored. As more hard colloids penetrate the stars, the cages of the
repulsive star glass are perturbated and finally broken leading to
melting of the system.

A compilation of results for various combinations of partial den-
sities and size ratios at fixed star functionality f = 214 is provided
in Fig. 5, which shows the thus obtained state diagrams for the bi-
nary mixtures. For the pure star system, the (MCT) fluid-to-glass
transition takes place at ρ

(g)
S σ3

S ' 0.347. For larger star densi-
ties, the addition of colloids leads to melting of the glassy state as
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previously described, the effect being more pronounced for size
ratios q = 3 and q = 4. The smaller the additive, i.e., the higher
q, the larger the colloid concentration necessary before melting
takes place. In particular, for q = 8 no change is observed in
the state of the pure star system at a given ρS, which leads to
the conclusion that such mixtures of large star polymers and very
small, hard additives form a stable binary nanocomposite within
the density range considered. This is physically reasonable, since
in this case the small (hard) colloids can penetrate into the stars
with a very small free energy penalty and hardly affect the struc-
ture of the soft (large) colloids.

On the other hand, when size ratios q = 2 and q = 3 are consid-
ered, a non-convergence region is found when solving the OZ-RY
equation for larger colloidal densities. As mentioned above, the
locus of points (ρ̃S, ρ̃H) where this firstly happens can be regarded
as a reasonable estimate of the demixing line.50 In this way, sys-
tems with ρS & ρ

(g)
S and ρH within the non-convergence region

will very likely undergo an arrested phase separation, as indicated
in Fig. 5, inasmuch as an interplay between phase separation and
glass formation will occur under these conditions.37–40

The described trends are very similar for mixtures charac-
terized by higher functionalities, as demonstrated in Fig. 6 for
f = 250 and f = 300. The features of these systems resemble those
of the f = 214 case but they markedly differ in the lower colloidal
density range at which demixing commences for q = 3 and q = 4.
Again, this can be rationalized as an effect of the lower penetra-
bility of stars for higher f , rendering VSH(r) more repulsive (see
Fig. 1), and consequently favoring earlier demixing as ρH grows.
Accordingly, the region in which the addition of colloids leads to
melting of the star-polymer glass becomes narrower for increas-
ing f , in the sense that although smaller ρH will melt the glass
at a fixed ρS > ρ

(g)
S , as can be verified by comparing Fig. 5 and 6

for the case q = 4, the demixing line will move to lower colloidal
densities. This is most characteristically seen for the case f = 300
and q = 3 in Fig. 6(b). As q increases, the star functionality be-
comes irrelevant: For q = 8 the state diagram looks exactly the
same for the three functionalities investigated without signals of
glass melting or phase separation, whereas for q = 2 the system
demixes immediately for f = 250 and f = 300 when colloidal par-
ticles are added. We will rationalize these findings in Section 4.1
by employing a depletion picture.

3.3 Experimental Results

3.3.1 Linear viscoelastic response of the mixture

Representative results of linear viscoelastic spectra are presented
in Fig. 7, where storage (G′) and loss (G′′) moduli are de-
picted for samples with f = 214 and q = 3 at fixed star fraction
φS = 1.625 > φ

(g)
S
(
ρSσ3

S = 0.343
)

and varying colloid densities. In

the figure, moduli are normalized by kBT
[
R(h)

S (ρH)
]−3 taking into

account the dependence of the star hydrodynamic radius on the
increasing colloid fraction, as discussed in Section 3.3.2. As can
be noted, (non-ergodic) solid-like states are found for colloid den-
sities ρHσ3

S = 0.029, 2.375 and 5.892, while an ergodic liquid-like
state is reached at ρHσ3

S = 0.442. The three solid-like states ex-
hibit qualitatively similar behavior with G′ > G′′ over the whole
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Fig. 7 Linear viscoelastic spectra of star-colloid mixtures with f = 214
and q = 3 at φS = 1.625 (ρSσ3

S = 0.343) and different colloid fractions,
which feature different rheological states. Normalized storage (G′) and
loss (G′′) moduli are shown with full and empty symbols, respectively.
Representative examples are plotted for repulsive glass (ρH σ3

S = 0.029),
liquid (ρH σ3

S = 0.442), reentrant glass attributed to arrested phase
transition (ρH σ3

S = 2.375), and reentrant double glass (ρH σ3
S = 5.892).

Dashed lines indicate terminal moduli slopes for the liquid sample (see
main text).

frequency range probed in the experiment, with a plateau G′, and
with G′′ going through a minimum around 2, 0.4, and 0.2 rad/s
for increasing colloid concentration, respectively.

For the lowest colloid density the sample shows the typical be-
havior of a repulsive glass, which melts by the addition of colloids.
This intermediate liquid state exhibits moduli which tend to reach
the plateau modulus of the repulsive glass at high frequencies,
whereas at lower frequencies they comply with the viscoelastic
liquid scaling G′ ∼ ω2 and G′′ ∼ ω (Fig. 7). By further increas-
ing the colloid concentration, the mixture undergoes a reentrant
transition to a solid-like state attributed to arrested phase separa-
tion (APS), which features G′ and G′′ close to the moduli of the
repulsive glass at low frequency. On the other hand, at higher col-
loid density the reentrant glass has moduli exceeding those of the
repulsive glass by almost one decade each. As discussed below,
this state resembles a double glass formed by a binary mixture of
hard spheres.

A more detailed description of the sequence of states of the
mixture as the colloid concentration increases is provided by the
effective plateau modulus Gp shown in Fig. 8. At low colloid den-
sity, a repulsive-glass region is characterized by non-monotonic
dependence of Gp on colloid concentration due to the competi-
tion between reinforcement and depletion: initially the addition
of hard spheres has a reinforcing effect on the stars, but with fur-
ther colloid addition depletion takes place and the modulus de-
creases while the mixture remains glassy. An additional increase
in ρH leads to an intermediate depletion-induced liquid region
(glass melting), in full agreement with the results from MCT, in
which also colloid-induced melting of the star glass has been seen.
The characteristic time of the liquid (extracted from the terminal
crossover of the moduli, i.e., τ = 1/ωcrossover) varies over three
decades; it first decreases with ρH , then goes through a minimum
and finally increases as the reentrance is approached. As the col-
loid concentration is further increased (ρHσ3

S & 1.0) a re-entrant,
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Fig. 8 Left vertical axis: Normalized plateau modulus (Gp, squares) of
the arrested states and relaxation time (τ, circles) of the ergodic phase
of the mixture as a function of the colloid concentration at φS = 1.625
(ρSσ3

S = 0.343). Vertical dashed lines separate the different states
identified by rheology and are located at the colloid volume fraction φH
indicated in the upper horizontal axis. Vertical blue arrow marks the
(rheological) glass transition concentration (φ (g)

C = 0.75, ρH σ3
S = 10.75)

for pure solutions of small hard colloids; for the latter, the empty red
squares indicate the measured Gp at φH = 0.79 and 0.89. The empty red
triangle pinpoints the fluctuation-dissipation estimate of the plateau
modulus Gp,HS = kBT/[R(h)

H ]3 for hard-spheres at the (ideal) glass
transition. Dashed red lines are a guide to the eye. Right vertical axis:
Shrinkage factor in squalene for the soft stars (αS, blue triangles) as a
function of colloid density calculated according to Eqs. (12)-(14).

solid-like regime is found, which can be identified with arrested
phase separation as theoretically predicted (see discussion above)
and which, in turn, is characterized by different regions, poten-
tially marking solid-solid transitions.36

As previously reported,36 the lower colloid fraction within the
re-entrant regime (1 . ρHσ3

S . 4), the system exhibits a two-step
yield process reflecting two constraining length scales that occur
both in attractive glasses and in arrested phase separating sys-
tems.57 However, in this region the plateau modulus Gp is virtu-
ally independent of ρH and nearly identical to that of the repul-
sive glass, as can be seen in Fig 8. The latter feature is inconsistent
with attractive vitrification, where a much higher storage modu-
lus would be expected, ruling out this possibility in favor of the
APS scenario. With further addition of hard spheres (ρHσ3

S > 4),
the modulus increases rather dramatically following two distinct
power laws (see Fig. 8). This behavior sets mixtures based on soft
colloids apart from their hard sphere counterparts. We attribute
this to the deformability of the soft colloids due to the presence of
an increasingly crowded hard spheres environment. To elucidate
this behavior in a quantitative fashion, we analyzed the osmotic
effects of the small colloids on the stars.

3.3.2 Effect of star shrinkage

Our starting point is the osmotic shrinkage undergone by one star
polymer with radius RS due to the addition of a smaller colloidal
additive with size RH and a packing fraction ηH .43 In such case,
the minimization of the free energy imposes the following equi-

librium condition with respect to the star radius RS:

f RS

Na2 − v0
N2 f 2

2R4
S

+
R2

S

R3
H

ηHZ(ηH) = 0, (12)

where N is the polymerization degree of each arm of the star, a
is the monomer size (a = 0.5 nm for PBD58), v0 is the excluded
volume parameter that can be set equal to a3, and Z(η) is the
compressibility factor of the colloidal bath. For the case of hard
colloids, it takes the form59

Z(η) =


1+η+η2−η3

(1−η)3 η < η(g)

2.67
1−1.543η

η > η(g)
(13)

where η(g) = 0.58 is the packing fraction at the glass transition for
hard spheres. Note that here the volume fraction of hard spheres
has been calculated as ηH =VH/(Vsolv +VH). The normalized col-
loid concentration may then be expressed as a function of the
known experimental parameters:

ρHσ
3
S =

3
4π

(
RS

RH

)3
[

1−

(
3

4πR3
S

Mw,S

NAρPBD

)
φS

]
ηH (14)

where RS ≡ R(h)
S is the hydrodynamic radius of the soft star at

infinite dilution, φS = cS/c∗S = 1.625, and ρPBD is the density of
polybutadiene. Equations (12)-(14) were employed in a fully
self-consistent fashion to calculate the star shrinkage factor αS =

R(h)
S (ρH)/R(h)

S as function of the colloid density ρHσ3
S . We expect

this to be accurate even if the presence of more stars (overlap-
ping) was not considered in Eq. (12).

As can be seen in Fig. 8, the modulus Gp increases significantly
from a colloid fraction ρHσ3

S ∼ 4, when the star size starts de-
creasing (albeit weakly). Moreover, a slope change for Gp occurs
at a colloid fraction ρHσ3

S ∼ 8, when the size of the stars (and
hence their osmotic pressure) is reduced appreciably. Note that
the star radius can drop continuously up to the limit of star col-
lapse,42 i.e. when a star reaches its hard-like compact shape and
RS ∼ a( f N)1/3. In the present case the collapsed RS is about 16
nm, i.e., slightly above the colloid size. At such high colloid con-
centrations, the soft stars become dramatically squeezed and as-
sume a collapsed configuration akin to that observed under poor
solvency conditions. Accordingly, they can also be thought of as
hard spheres that are slightly larger than the original colloids. The
system, under these conditions is thus very similar to a slightly
asymmetric binary hard sphere mixture. The overall packing frac-
tion can be estimated to lie very close to the glass transition pack-
ing fraction of the hard-sphere system, marked by the vertical
arrow in Fig. 8. Therefore we interpret this new solid as a glass
formed by a binary hard sphere mixture and we call it a dou-
ble glass, in accordance with the general terminology of multiple
glasses for such systems.19,20,60 In contrast to the star polymer
glass encountered at lower concentrations of colloidal particles,
in which the stars are arrested but the colloids are mobile,36 in
this double-glass both components are mutually caged. We point
out here that double glass is the only feature of the experimental
state diagram that cannot be captured by the theoretical diagram
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(Fig. 5b), since the present analysis does not take into account
the star shrinkage.
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Fig. 9 State diagram of star polymer-colloidal mixtures for f = 214 and
q = 3 extracted from the linear viscoelastic response and light scattering.
Green and blue diamonds indicate, respectively, the theoretically
estimated demixing and (MCT) liquid-glass lines in Fig. 5(b). Green
filled circles at the left correspond to the low-ρS branch of the binodal
calculated in the reservoir representation, as explained in Sec. 4.1 and
Fig. 13; this branch is the same as the one of the system representation
for ρS→ 0. The dashed line is a guide to the eye.

3.3.3 Rheological state diagram

The results from rheological measurements for systems charac-
terized by f = 214 and q = 3 can be summarized through the
experimental state diagram depicted in Fig. 9 for different com-
binations of star and hard sphere volume fractions. Data points
above the glass line (ρSσ3

S & 0.327) reflect discrete rheological
measurements, based on which we identify the measured sample
as liquid or solid, the latter being repulsive glass, arrested phase
separation or double glass. Due to the limited amount of sample,
this complete sequence of states is shown only for one value of
star density (ρSσ3

S = 0.343). Below the glass line, i.e., ρS < ρ
(g)
S ,

no solid-like state was detected within the range of HS concen-
trations investigated. In that case, we experimentally assigned
a transition to phase separation (demixing) by using DLS as is
discussed in Section 4.2. The state diagram of Fig. 9 is the di-
rect experimental counterpart of the theoretical diagram shown
in Fig. 5(b), complementing the elastic modulus results of Fig. 8.
Although the theory slightly overestimates the extent of the liq-
uid state basin, as already pointed out in our previous work,36

the experimental diagram fully confirms, in a quantitative and
parameter-free fashion, the theoretical predictions showing liq-
uid and (repulsive) glassy states, glass melting, demixing and a
reentrant, solid-like state, which is linked to arrested phase sepa-
ration.

Figure 10 shows the intensity autocorrelation functions for two
different states measured by MSDLS at ρSσ3

S = 0.343 and colloid
densities ρHσ3

S = 0.024 and ρHσ3
S = 2.363, respectively. The data

show a slightly tilted plateau up to t ≥ 1 s, at least four orders
of magnitude larger than the relaxation time for diluted samples,
which height is related to the non-ergodicity factor discussed in
Section 3.2. At even larger times, a full decay of G(Q, t) is ob-
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Fig. 10 MSDLS intensity auto-correlation function measured for
f = 214, q = 3, QσS ' 1, ρSσ3

S = 0.343 and two colloid concentrations
ρH σ3

S = 0.024 (filled diamonds) and ρH σ3
S = 2.363 (crosses). The states

of the two samples are attributed, respectively, to a repulsive glass and
to a reentrant solid-like state, the latter being linked to arrested phase
separation.

served, due to relaxation mechanisms not accounted for by the
MCT calculations. This corroborates the suggested picture on
two distinct glassy states, namely the usual, repulsive star glass
and the solid state at the region of arrested phase separation.
A quantitative comparison of the non-ergodicity factors requires
separating the self- from collective contributions to the experi-
mental non-ergodicity factor, which is a non-trivial task and will
be the subject of future efforts.

4 Phase Separation
One of the main findings in the preceding section was the propen-
sity of the system to demix upon addition of a sufficiently large
number of colloidal particles. In what follows, we analyze quanti-
tatively and rationalize theoretically this phenomenon by resort-
ing to an effective one-component depletion picture, in which the
colloids are canonically traced out, resulting in modified star-star
interactions. This picture offers a transparent physical interpreta-
tion of the phenomenon and allows a straightforward and accu-
rate calculation of the phase diagram in the mean-field approxi-
mation. Moreover, we present experimental evidence for the oc-
currence of this phase separation.

4.1 Theoretical approach

A useful and transparent way to gain insight into the effects of
adding small, hard colloids to a high density star-polymer solution
is to carry out a further coarse-graining procedure. In such a case,
the mixture may be effectively considered as a one-component
system, in which the stars interact not through the potential VSS(r)
(see Eq. (4)) but rather through a colloid-modified effective po-
tential V (mod)

SS (r), for which the degrees of freedom of the hard
particles have been traced out. Formally, the colloid-modified,
effective star-star interaction can be determined in the limit of
vanishing ρS as

βV (mod)
SS (r;ρH) =− ln [gSS(r; f ,q,ρS→ 0,ρH)] , (15)
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where the pair correlation function gSS(r) can be evaluated by
solving the OZ-RY iteration, Eqs. (8)-(9), for the two-component
mixture. By construction, this colloid-modified interaction poten-
tial leaves the correlation functions gSS(r) and SSS(k) between the
stars invariant.50,61 Writing V (mod)

SS (r) as the sum of the bare star-
star interaction potential without any colloidal additive, plus a
potential induced by the additive, a depletion-like contribution
can be evaluated as

Vdep(r;ρH) =V (mod)
SS (r;ρH)−VSS(r). (16)

Figures 11 and 12 show representative results for the colloid-
modified, effective star-star interaction and for the depletion in-
teraction for different values of f , q and ρH . The depletion ef-
fect is stronger for increasing colloid densities, for larger colloid
sizes (i.e., decreasing q), and increasing functionality of the stars.
As ρH increases, the location of the V (mod)

SS minimum tends to

r' 1.5σS ' 2R(g)
S . For shorter distances, the repulsive contribution

coming from the overlap of the outer Daoud-Cotton blobs of the
stars42 rapidly counteracts the effect of the excess osmotic pres-
sure due to the colloids, and dominates the effective interaction.
Upon addition of the colloids, we thus have first a reduction in the
repulsive interaction, leading to glass melting and subsequently,
at higher colloid concentrations, to the development of effective,
depletion-induced attractions between the stars that bring about
the demixing, binodal line. The glass- and binodal lines meet,
leading to the arrested phase separation.10,39,40 Decreasing the
size ratio q from 4 to 3 leads to a roughly two-fold increase in the
depletion potential strength for the same ρH . As can be noted,
all the depletion potential curves approach zero monotonically as
the star-star distance increases, which contrasts with the case of
binary hard-sphere mixtures, for which the development of os-
cillations in Vdep has been reported.61,62 The same quantitative
features are found also by employing the superposition approxi-
mation35 to evaluate Vdep(r) (results not shown).

For systems with finite ρS, Eq. (15) can still be employed to
map the binary mixture onto an effective one-component system.
However in this case the potential should be determined at fixed
chemical potential µC of the colloidal additive,61 meaning that
the colloid density in the system, ρH , has to be replaced by the
colloid density of a reservoir ρr

H , which is such that µC in the
reservoir and in the system coincide. In this way, the effective
one-component description allows the determination of the phase
behavior of the binary mixture in contact with a colloid reservoir,
i.e., the calculation of the binodal line in the (ρS,ρ

r
H) plane. In the

limit of low star density (ρS → 0) the binodal calculated within
this reservoir representation is identical to the one evaluated in
the system representation, a fact that we have taken advantage
of in Fig. 9. In what follows we work in this semigrand ensemble
in which the density of stars ρS and the chemical potential of
colloids µC are fixed, quoting the reservoir colloidal density ρr

H as
an equivalent way of fixing the former.

On the basis of the two contributions to the full star-star poten-
tial, Eq. (16), we consider the pure star solution as a reference
system and the colloid-induced star-star interaction Vdep(r) as a
perturbation to it. Accordingly, a first-order λ−expansion can be
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Fig. 11 Effective star-star interaction in the presence of colloids for
f = 300. The colloid densities are indicated in the legends and the
results are shown for two different size ratios: (a) q = 3; (b) q = 4.

performed to estimate the Helmholtz free energy per volume f̂ (ρ)
of the effective one-component system as

f̂ (ρS) = f̂ref(ρS)+ f̂dep(ρS,ρ
r
H)

= f̂id(ρS)+ f̂exc(ρS)+ f̂dep(ρS,ρ
r
H). (17)

The ideal contribution for the reference system is analytically
known:

f̂id(ρS) = kBT ρS

[
ln(ρSσ

3
S )−1+3ln(ΛS/σS)

]
, (18)

where the last term, involving the thermal de Broglie wavelength
ΛS of the stars, is irrelevant and can be dropped. The excess part
of the reference system can be obtained by using the thermody-
namic relationship P = −(∂F/∂V )N,T connecting the pressure P
to the Helmholtz free energy F and applied to their excess part:

f̂exc(ρS) = ρS

∫
ρS

0
dρ

Pexc(ρ)

ρ2 , (19)

the integrand being expressed as:50

Pexc(ρ)

ρ2 =−2π

3

∫
∞

0
dr r3 V ′SS(r)g(ref)

SS (r;ρ). (20)

Finally, the mean-field approximation for the contribution of the
attractive depletion potential to the free energy reads as:

f̂dep(ρS,ρ
r
H)

2πρS
= ρS

∫
∞

0
dr r2 Vdep(r,ρ

r
H)g(ref)

SS (r,ρS). (21)
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Fig. 12 Depletion interactions induced on stars of functionality f by colloids at density ρH σ3
S and size ratios q as indicated at the legends.

In Eqs. (20)-(21), g(ref)
SS (r,ρS) and V ′SS(r) are, respectively, the pair

correlation function of the reference system and the derivative of
the potential, and Vdep(r,ρr

H) is determined by Eq. (16).

The mean-field calculation of f (ρS) performed provides a direct
method to track the convexity change of the free energy curve at
high enough (reservoir) colloidal density, which leads to phase
separation (demixing). In this way, the binodal line can be deter-
mined in the (ρS,ρ

r
H) representation by employing the common-

tangent construction, which allow to account for the partial densi-
ties of both coexisting phases. Figure 13 displays the binodal lines
for different values of f and q. In agreement with estimates based
on the non-additivity parameter,41 phase separation is observed
at higher colloid reservoir densities for smaller colloid particles,
as well as for softer stars. In the case q = 8, no phase separa-
tion was found probably because the necessary colloid density is
much higher than the range considered. For the experimental
system f = 214 and q = 3, we employed the modified effective po-
tential V (mod)

SS (r;ρr
H) as input to theoretically evaluate both S(Q)

and φ(Q). The resulting (MCT) liquid-glass line crosses the bin-
odal driving the phase separation to an arrested state, as plotted
in Fig. 13. This scenario is reminiscent of the one found in hard
spheres suspensions with long- and intemediate-range attractive
interactions, which phase diagram is sketched in Fig. 13(b).37,38

A similar behavior is expected for larger functionalities and size
ratios with the glass line shifted to lower star density. Note that
these trends are in complete agreement with the predictions made
in the state diagrams (Figs. 5 and 6) based on the convergence
limit of the OZ-RY approach to study the structure of the mix-
ture, and also with the assumption of an arrested phase separa-
tion above this convergence line. In this way, the generic behavior
of the mixture can be schematically represented as in Fig. 13(a).

4.2 Experimental evidence for phase separation
One of the experimental challenges is the detection of the arrested
phase separation predicted by the theoretical analysis. From the
experimental standpoint, it is advantageous for this purpose to
explore phase separation in mixtures below the glass transition.
Maintaining the star volume fraction constant while increasing
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Fig. 13 Top: Schematic phase diagram for star-colloid mixtures in the
system representation [(a)] and for hard-sphere systems with long-range
attractive interaction 37,38 [(b)]. Bottom, (c): Demixing binodal lines in the
reservoir representation for different functionalities and size ratios, as
indicated in the legend. Small filled circles indicate the MCT liquid-glass
line calculated using the modified, effective potential V (mod)

SS (r;ρr
H) for

f = 214 and q = 3.
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Fig. 15 (a) Average scattering intensity at Q = 0 and (b) correlation
length normalized to the nominal (hydrodynamic) diameter of the star for
f = 214, q = 3 and two different star concentrations as function of colloid
density. The vertical dashed lines identifies the colloid density at which
ξ attains the maximum value, which identifies the phase separation.

concentration of hard colloids, we have examined phase separa-
tion via dynamic/static light scattering by measuring the average
scattering intensity at different wavevector Q, as shown in the
Fig. 14. As the phase separation boundary is approached, the
correlation length of the density fluctuations grows and lastly di-
verges. Concomitantly, it is expected that the measured scatter-
ing intensity at Q→ 0 will be a non-monotonic function of the
parameter controlling the transition and attain a peak around the
transition point. To evaluate both the correlation length ξ and the
intensity I(0), we made use of the Debye-Bueche analysis, which
is appropriate for circularly symmetric scattering elements. For
this model the scattering intensity I(Q) can be described by the
scattering function:46

I(Q) =
I(0)[

1+(ξ Q)2
]2 . (22)

Figure 15 diplays the intensity at Q = 0 and the correlation
length ξ determined from the total scattering intensity as function
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Fig. 16 (a) Typical DLS intermediate scattering functions for φS = 0.6(
ρSσ3

S = 0.126
)

at scattering angle θ = 30◦ (QσS = 1.12) and at
increasing colloidal concentrations. Note that for ρH > 0 two relaxation
processes are detected, while for ρC = 0 only one is observed. (b) The
apparent diffusion coefficient at φS = 0.6

(
ρSσ3

S = 0.126
)

as function of
colloid density. Diffusion of the fast and slow processes are attributed to
hard and soft colloids, respectively. The vertical dashed line is the same
as in Fig. 15, splitting the diagram in the homogeneous and the phase
separated regions.

of the hard sphere concentration by linear fitting 1/
√

I(Q) vs. Q2

according to Eq. (22). The data correspond to two effective vol-
ume fractions of stars φS = cS/c∗S = 0.6 and 1.0 (ρSσ3

S = 0.126 and
0.210, respectively) and indicate that with the addition of hard
spheres, the star correlation length increases, which is also ac-
companied with an increase of the scattering intensity far below
from the first peak of the structure factor (Q� Qpeak), thus con-
forming to an incipient phase separation. Here the transition re-
gion for φS = 1.0 is also characterized by a (weak) increase in
turbidity, in addition to the increase of ξ . At higher colloid frac-
tions beyond the binodal line a correlation length is still mea-
surable (the sample is turbid albeit not substantially) and it is
indeed expected to decrease with increasing colloid fraction. As
the schematic, theoretical phase diagram in Fig. 13 suggests, for
higher ρS demixing occurs at lower ρH and therefore, at fixed col-
loid concentration, the correlation length should be shorter for
φS = 0.6 than for φS = 1.0, which is in agreement with the ex-
perimental findings. Although the limited range of Q values con-
sidered in DLS gives rise to uncertainty in the estimation of the
correlation length, the results are unambiguous for the purpose
of the present study, i.e., they confirm the presence of phase sep-
aration through the non-monotonic behavior of the ξ (ρH).

Further analysis of the DLS data provides additional evidence
for phase separation. Typical intermediate scattering functions
C(Q, t) at QσS = 1.12 for ρSσ3

S = 0.126 and various hard sphere
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concentrations are depicted in the Fig. 16(a). Two (fast and slow)
relaxation processes can be observed for ρH > 0, which relaxation
rates Γ are plotted in Fig. 16(b) in the form of an apparent dif-
fusion coefficient D = Γ/Q2. The fast process is attributed to the
hard spheres since at low colloid fractions, the extracted diffu-
sion coefficient yields the hydrodynamic radius of the hard-like
particles from the Stokes-Einstein-Sutherland equation. Up to the
hard colloid density at which ξ is maximum (ρHσ3

S = 0.678, see
Fig, 15), this diffusion coefficient is practically independent of
colloid concentration. It then slows down rather dramatically in
the phase separated region. At the same time, the diffusion coef-
ficient of the slow mode, which is attributed to star-related mo-
tions, slows down for increasing colloid fractions (see Fig. 16).
However the slow-down is sharper in the pre-transitional homo-
geneous region, conforming to the respective increase in correla-
tion length.

5 Discussion
The results obtained show the strong influence of the size ratio
q on the properties of star polymer and colloid binary mixtures.
While for very small colloidal additive (q & 8) the glassy behavior
of dense star polymer suspensions remains unaffected, mid-sized
colloid particles weaken the repulsion between the stars and pro-
voke melting of the glass. Colloidal particles that are even larger
(q . 4) tend to force the system into phase separation, as can be
seen in Figs. 5 and 6. Although the binodal line was not evalu-
ated, the convergence line presented in some of these state di-
agrams is a first approximation providing a good estimate for
demixing of the binary mixtures. When the functionality f of
the star is considered, the same generic trends are observed and
as f decreases, a higher concentration of colloidal particles can
be added before either melting of the glass or demixing occurs.
This effect can be explained by the softness of the stars and the
ability for small additives to penetrate them more easily. Softer
star polymers therefore form more stable mixtures, which can be
tuned by adjusting the amount and the size ratio of the colloidal
additive, leading to glass softening and melting.

The results of the coarse-grained model employed were sup-
ported by the experimental findings from DLS and rheology in the
particular case of f = 214 and q = 3 (Figs. 9 and 16). However
it is important to note that this model assumes a much smaller
size for the monomers (or more strictly the Kuhn length) form-
ing the star arms as compared to the colloid size. Therefore it is
to be expected that for high enough colloid densities, real mix-
tures will always phase separate as a consequence of the finite
excluded volume between the Kuhn segments and the colloids, in
a manner similar to the one found by MC simulations in the low
functionality case ( f < 30).13,63

The physical mechanism bringing about melting of the glassy
state and the subsequent demixing transition can be attributed to
the fact that the small colloids act like depletants for the large
stars. From the point of view of effective interactions, the colloid-
induced depletion is superimposed on the soft repulsion between
stars, as shown in Fig. 11 for the low star density limit. A mod-
erate colloid additive concentration causes the reduction in the
star-star repulsion, leading to melting of the glass.20,23 Upon fur-

ther increase in ρH , the net attractive potential between the stars
rises, which drives the phase separation, as corroborated by rhe-
ology measurements at high ρS (Fig. 8). The depletion interaction
seems to behave linearly at small distances r and becomes more
attractive for larger functionalities and for larger (reservoir) den-
sities of colloidal additives. Although the range of the attractive
contribution shrinks by a few percent (< 3%) as more colloids are
added, it depends very weakly on the size ratio (Fig. 12). On
the contrary, an increase in the latter leads to a markedly weaker
depletion effect and therefore to a well-mixed system, while for
similar sizes of polymer stars and colloids, the system demixes
even for small amounts of additive.

The previously described behavior can be more clearly rep-
resented in a simplified picture allowing a full mapping of the
two-component star polymer - colloid mixture to an effective one-
component description. By employing the colloid-modified, star-
star effective potential, a perturbation approach clearly showed
that the binodal lines come down to small colloidal reservoir den-
sities, as either the size ratio q is decreased or the functional-
ity f is increased (Fig. 13). It is worth noting that for a system
having a high enough ρH , the demixing could be arrested in the
sense that ρS in the star-rich phase would lie beyond the liquid-
glass line (ρSσ3

S ∼ 0.35 for the considered f values) and, therefore
this phase will be in a glassy state. The nature of the latter can
be associated to a purely repulsive glass just above reentrance,
as concluded by comparing its plateau modulus with that of the
original glass, i.e., without colloids, as illustrated in Fig. 8. For
colloidal densities well within the binodal, depletion attractions
are stronger and can lead to arrest into an attractive glass charac-
terized by a much higher modulus values.36

For dense suspensions of hard-spheres the addition of small,
non-adsorbing polymers (q < 0.1) also leads to a reentrant glass
transition. At sufficiently high densities, the pure colloidal sys-
tem reaches a repulsive glassy state in which the dynamic ar-
rest is a consequence of caging among the particles. Once a
small amount of polymer is added, the induced depletion poten-
tial makes the particles cluster, loosening the cages and therefore
restoring the ergodicity (i.e. melting the glass). A further in-
crease in polymer concentration leads to a different kind of arrest
due to long-lived bonds between the particles, giving rise to an
attraction-dominated glass.64 On the other hand for larger poly-
mers, q ' 0.6, the situation is quite similar to that previously de-
scribed in the system at hand. As the range of the attraction in-
creases, the region of demixing increases in stability relatively to
the glass-line, and therefore a range of compositions can be found
for which the phase separation can take place without being ar-
rested, as can be see in Fig. 13(b). However still deeper quenches
could lead to kinetic arrest and even to gel formation.65–67

To contrast the systems considered with their hard counter-
part, it is interesting to note that the size (and conformation)
of the stars is not significantly perturbed by the addition of a
small amount of hard depletants, because the star osmotic pres-
sure is weakly increased. However as ρH approaches the hard
sphere glass transition, ρH → ρ

(g)
H , the osmotic pressure abruptly

increases and leads to the virtual collapse of the soft stars with a
concomitant jump in Gp, which reaches a slightly larger value of
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the elastic modulus than the one for pure hard sphere-like glasses
at the same φH (without soft stars added), as shown in Fig. 8.
A further increase in Gp at higher colloid fractions is attributed
to the reinforcing effect of the hard spheres, as the stars cannot
further shrink and a double-glass of asymmetric hard spheres is
formed. The transition to the double glass at a colloid volume
fraction φH & 0.75 is promoted by the action of osmotic forces of
colloids which reduced the size of the stars and the reduced avail-
able space and large concentrations of both components. The
possible formation of an attractive glass also cannot be excluded,
since the effective colloid-to-star size ratio is increased propor-
tionally to the shrinkage factor (αS) from ζ = 0.25 (q = 3) to
ζ ' 0.72 (q ' 1), as shown in Fig. 8. On the other hand, this is
an arrested phase separation regime, providing the driving force
for star attraction (depletion). This cannot be currently further
examined, so we leave it as a speculation worth investigating in
the future.

6 Conclusions
We analyzed the impact that the addition of small, hard colloids
(q > 2) has on the behavior of suspensions of large star poly-
mers with a high functionality ( f & 200). While three and higher
body effects are expected to play a significant role at high den-
sities,68 we were still able to demonstrate the adequacy of a re-
cently introduced coarse-grained model, based on effective pair
interactions, to predict the structure and the phase behavior of
mixtures well above the overlapping density as function of their
composition.36,41 As the concentration of depletant is increased
several rheological states are detected, including phase separa-
tion (demixing) of a fluid-like suspension (at low star densities)
and the melting of a repulsive glassy state (at high star densities).
We made use of DLS/SLS to detect phase separation in liquid-
like samples and rheology to detect repulsive glass melting and
reentrant solid-like states above the glass line of the colloid-free
system. In the latter case, as the depletant concentration is fur-
ther increased, interplay between structural arrest and demixing
takes place, leading to an arrested phase separation and therefore
to a new re-entrant glassy state, as shown in Figs. 5, 6, and 13.
This theoretically predicted behavior was corroborated by experi-
mental studies of the dynamics of stars via DLS as well as the lin-
ear viscoelastic response of the mixtures for different hard sphere
concentrations; moreover, distinct signatures of the nature of the
reentrant glass were identified.

In contrast to the classic colloid-polymer example, which ex-
hibits attractive vitrification upon continuous addition of small
depletants to the originally glassy suspension of hard colloids,
here the behavior is much richer, as depicted in Fig. 9. As deple-
tant is added to a suspension at fixed star density, soft repulsion
and long-range attraction between the stars develop (see Figs. 11
and 12). Due to this depletion effect, the initial repulsive glass
melts. However, as depletant is added beyond the demixing line,
the increase in total concentration compensates for the reduced
repulsion and a reentrant solid-like state is found.36 This state has
essentially the same plateau modulus Gp as the originally colloid-
free suspension, i.e. the glassy state has a repulsive nature. At
higher depletant concentrations, the stronger attractive contri-

bution leads to arrest into an attractive glass featuring a much
higher modulus. At the same time, the soft nature of the stars
begins to play a more important role since the presence of hard
spheres induces star shrinkage, which is strongly correlated with
the crossover found in the dependence of the plateau modulus on
the colloid density, as can be seen in Fig. 8.

The results presented here complement previous considera-
tions on mixtures of hard colloids and star polymers in the col-
loidal limit (q < 1),34 making it now possible to reliably describe
the macroscopic behavior of such mixtures in the full range of
size ratios q and star functionalities f . Moreover, these enrich to
a large extent the findings for binary mixtures of star polymers. As
stars with a smaller size and lower functionality (q < 0.5, f < 64)
are added to a glass of high functionality stars ( f > 250), multiple
reentrant behaviors were described including single, double, and
asymmetric glass regions, as well as an arrested phase separation
region depending on the size asymmetry q and the concentration
of the small component.20,21 As reported by Zaccarelli et al.,56

from a dynamic point of view this rich reentrant glass scenario
has as prerequisite not only a large size asymmetry but also that
the short-time mobility of the added component be much higher
than that of the glass-forming species.

The system investigated is highly deformable and shares many
features with different hyperbranched polymers including micro-
gels, copolymer micelles, polymer-grafted nanoparticles and den-
drimers, all of which can be well-described through a core-shell
structure and whose interactions can be easily tuned through sev-
eral physical and chemical factors. Since the theoretical descrip-
tion is independent of adjustable fitting parameters, we expect
our results to hold for more generic systems, which offer inter-
esting insight into the design and precise tunability of new soft
composites that are of great interest in materials science and in-
dustrial applications.
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Graphical abstract: Coarse-grained representation of a binary mixture of large star-polymers (blue) and small hard colloids (red).
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