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Abstract 

The swelling/deswelling behavior of chemical gels has been an unsolved 

problem disputed over for a long time.  The Obukhov-Rubinstein-Colby model 

depicts the influence that swelling/deswelling has on elasticity, but its physical 

picture is too complicated to be sufficiently validated by experiment.  In this 

study, we use molecular dynamics simulation to verify the validity of the 

molecular picture of network strands predicted by the 

Obukhov-Rubinstein-Colby model.  We conclude that the physical picture of 

the Obukhov-Rubinstein-Colby model is reasonable, and furthermore the 

simulation can reveal details of conformational changes in network strands 

during the supercoiling transformation.  Our findings do not only reveal the 

validity, but also give a better understanding of the dynamics of the 

swelling/deswelling behavior of chemical gels. 
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Introduction 

Polymer gels contain solvents within the three-dimensional polymer 

network.  It is commonly known that the mechanical properties of polymer 

gels strongly depend on polymer concentrations at prepared state (��) and at 

the measured state after swelling/deswelling (��).  There have been many 

experimental and theoretical studies of these relationships.1-21  Originally, 

Flory et al. treated this problem theoretically4, 22 and assumed that crosslinks 

move affinely due to the swelling and deswelling and that the network strands 

take a random coil conformation in all concentration regions.  Under these 

assumptions, they predicted the elastic modulus of polymer gels as a function of 

�� , ��  and the degree of polymerization of the network strands (� ).  

Obukhov et al. modified Flory’s rubber theory by taking into account the 

excluded volume effect on the fractal dimension of network strands 

(Obukhov-Rubinstein-Colby model).8  Obukhov et al. showed that the ��-, 

��-dependences of the elastic modulus are strongly influenced by the excluded 

volume effect, and these dependences depend on the concentration regimes of 
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�� and ��.  Furthermore, they predicted abnormal mechanical properties for 

strongly deswollen networks.  When gels are strongly deswollen from the 

preparation state (��>>��), network strands are expected to have a more 

compact conformation than the random coil due to a reduction in gel volume, 

which is called supercoiling.  They also predicted that the supercoiling of 

network strands has significant effects not only on the elastic modulus but also 

on large deformation behavior.  The details of this model are described in 

Theoretical Background. 

The Obukhov-Rubinstein-Colby model has been examined by several 

experimental studies.  Urayama et al. showed that the equilibrium swelling 

ratio is influenced not only by ��  but also by the quality of solvent. 14  

Reference 16 demonstrates that these exists a crossover in the ��-dependence 

of the elastic modulus around the concentration where the excluded volume 

effect is fully screened (�∗∗).  References 17 and 18 also demonstrate that fully 

deswollen networks prepared at low �� exhibit remarkable extensibility as well 

as unusually weak strain dependence of tensile stress and argue that these 
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features result from the strongly collapsed conformation of network strands. 

In our previous studies, we employed the Tetra-arms-Polyethylene 

Glycol gels (Tetra-PEG gels) as a model system to investigate the validity of the 

Obukhov-Rubinstein-Colby model experimentally.12, 21  The Tetra-PEG gel is 

formed by AB type cross-link-coupling, where there are two types of tetra-PEG 

in the system whose reactive ends only react with those of the opposite type.  

(See Figure 1). 23  Here, a Tetra-PEG itself can be regarded as a cross linker, so 

we call this reaction “cross-link-coupling”.  According to previous experimental 

and simulation studies, Tetra-PEG gel has a high reaction conversion, few 

elastically ineffective loops, and few trapped entanglements, which corresponds 

to an ideal or near-ideal network. 23-32  In reference 12 and 21, we 

demonstrated crossovers in the �� -dependence of the elastic modulus at 

approximately the overlapping concentration (�∗) and at the concentration 

where the elastic contribution of entangled chains become dominant.  

Furthermore, using the Pincus blob concept, 33 we suggested that the radius of 

gyration decreases with increasing ��  in the supercoiling region.  These 
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experimental results support the Obukhov-Rubinstein-Colby model prediction. 

Although theoretical predictions are well supported by experimental 

results, the direct verification of the theoretical assumptions is still difficult 

because of experimental inaccessibility to the molecular level.  For example, 

the conformation of network strands and the topological relationship between 

strands cannot be directly observed.  Recently, molecular dynamics (MD) 

simulation has been widely applied in many different fields, and has provided 

information about microscopic pictures of network structure. 26, 31, 34-48  In the 

present study we use MD simulations to reproduce the swelling/deswelling of a 

polymer network after preparation.  We have already reported that our MD 

simulation can produce realistic network structure for Tetra-PEG gels. 31  In 

this paper we discuss the following: (1) investigation of the conformation of the 

network strand in its swollen and deswollen states; (2) verification of the 

Obukhov-Rubinstein-Colby model; (3) the affine deformation of crosslinks and 

the change in the fractal dimension of network strands. 
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Theoretical background 

We describe here the theoretical background for the relationships 

between the elastic modulus and the polymer volume fraction for gels in their 

swollen and deswollen states, roughly following reference 8.  The 

Obukhov-Rubinstein-Colby model is based on Flory-Rehner’s assumption that 

the elastic part of free energy (��	) and the mixing part of free energy (��
�) are 

separable. 4, 5 

The elastic free energy, ��
 is given by 
 

����� ≅ �� = ��	��	� = ������	�
 

(1) 

Where �� is the volume of a monomer, � is the elastic modulus, ν�	 is the 
number of elements contributing to elasticity, and ��	�  is the elastic energy of a 
single element.  The Obukhov-Rubinstein-Colby model adapts the physical 

picture suggested by Panyukov, 49 which describes the elastic part of free energy 

��	�  as ���  per strand times the Gaussian perturbation from the chains’ 
preferred state at that concentration; 
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��	� ≅  !"#"$�%&' ��� (2) 

Here, (� is the root-mean-square end-to-end distance of network strands in 

their ��  with degree of polymerization � .  ) (≡ +��	 ��	⁄ ./ �⁄ ) is uniaxial 

expansion of an elastic strand.  (0�1 is the end-to-end distance of a free chain 

with degree of polymerization �, when the concentration is the same as that of 
the polymer network at ��.  The Obukhov-Rubinstein-Colby model assumes 

that swelling causes network junctions to move affinely.  On average, junctions 

move apart on swelling by the same linear expansion ) as macroscopic network.  
According to Eq. (2), elastic part of free energy is affected by �� and ��.  In a 

dilute system with good solvent, ( is �-independent and represented as 3 
 ( ≅ 2�3

    (��	 < 	�∗), (3) 

Here, 2  is the root-mean-square average bond length, �∗  is the polymer 

volume fraction at the onset of the overlapping of the star polymer chains, and 

� is the exponent of the excluded volume effect.  The exponent is ν = 0.5 for 
an ideal chain and 	0.6 for a real chain.  It is also known that ν = 0.588 for 
long enough chain in an athermal solvent.  In the semi-dilute regime, the 
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scaling theory predicts the �-dependence of ( as 
 ( ≅ 2�3  ��∗& :;<=:+=<�;.

    (�∗ <	��	 < 	�∗∗), (4) 

where �∗∗ is the concentration at which the excluded volume effect is fully 

screened.  Note that Eq. (4) was originally derived for linear chains.  For star 

polymers with large numbers of arms, another scaling regime has been 

proposed by Daoud50, but the 4-arm star polymers we used have a small enough 

number of arms to apply for Eq. (4).  In concentrated regime, ( is equivalent 
to the unperturbed dimension: 

 ( ≅ 2�/ '⁄
    (�∗∗ <	��	), (5) 

 The description of the elastic modulus in the state of interest (�� at 

� = ��) as function of �� and �� depends on concentration regimes.  Eq. 

(1), (2), (3), (4) and (5) provide the expression for �� as 

 ��~��
:���

=�
    (��	 <	�∗ and ��	 <	�∗), (6a) 

 ��~��
:���

?;<@?;<�
    (��	 < 	�∗and �∗ < ��	 <	�∗∗), (6b) 

 ��~��
:���

=�
    (��	 <	�∗and �∗∗ < ��	 < 	1), (6c) 

 ��~��
=?;<���

=�
    (�∗ < 	��	 <	�∗∗ and ��	 < 	�∗), (6d) 
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 ��~��
=?;<���

?;<@?;<�
    (�∗ < 	��	 <	�∗∗ and �∗ < ��	 < 	�∗∗), (6e) 

 ��~��
=?;<���

=�
    (�∗ < 	��	 <	�∗∗ and �∗∗ < ��	 < 	1), (6f) 

When a large reduction in gel volume occurs upon deswelling, the 

conformation of network strands is expected to collapse strongly (i.e., 

supercoiling), resulting in a considerable deviation from the random coil 

conformation.  Supercoiling becomes pronounced in networks originally 

prepared in the dilute regime and deswollen to a high concentration.  Although 

this corresponds to Eqs. (6c) and (6f), the random coil conformation is still 

maintained in the highly deswollen state.  Obukhov et al. considered that the 

collapsed conformation of network strands in the highly deswollen state is 

analogous to the conformation of ring polymers in molten state.  Supercoiling 

becomes pronounced above a certain concentration (�B).8  They argued that �B 

is comparable to the concentration where the elastic contribution of chain 

entanglements becomes dominant, expressed as 

 �B ≅  �C��&D
=E<=
 (7) 

where �B is the polymerization degree of the network strands,  and �� is the 
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entanglement length in molten state.  The exponent F  describes the 

concentration dependence of the plateau modulus (G�) in polymer solutions 

(G�~�H) (F = 7 3⁄  and 9/4 in θ	51 and good solvent 3, respectively).  Here, F 
is strongly related to the tube diameter and blob size of the entanglement 

network of polymer.3, 51  G� is the storage elastic modulus that a rubber state 

polymer has.  They introduced the concept of “backbone chain” of a 

supercoiled strand.  The actual supercoiled strand is expected to have jagged 

conformation.  When the strand is coarse-grained, the conformation smoothes 

out to reveal the “backbone chain.”  The actual supercoiled strand and its 

backbone chain obviously overlap with each other, but their radius of gyration 

differs because their conformation is not exactly the same.  They estimated the 

��-dependence of polymerization degree (�LL), and the volume fraction (�LL) 

of the backbone chain on the basis of the conservation of the number of strands 

(�LL �LL⁄ = �� �B⁄ ).  The backbone chain is assumed to obey Gaussian 

statistics ((LL~�LL/ '⁄
).  Here, (LL is the end-to-end distance of backbone chain.  

The �� -dependence of ��  for a highly deswollen network whose ��  is 
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comparable to �∗ is obtained by substituting )(� and (0�1 in Eq. (2) with 

those of backbone chain:  

 ��~�M�  !"#"$�%&'~ �M�  �M�# &D
:� N �#

:;<=:+=<�;.
�M

:;<=:+=<�;.O �=@+=<�;.P
D'

~��
=?Q<���

=?<R�Q:=+=<�Q.
     

 (�S < ��	 < 	1), (8) 

It should be noted that Eq. (8) gives a much higher exponent for	��	than Eqs. 

(6c) and (6f): ��	~��TU T'⁄
 for typical good solvent systems (� = 0.6). 

 

 

Simulation Details 

A. Model 

We used a coarse-grained model in which the polymer is treated as a 

string of beads connected by springs.  Based on the Kremer-Grest model,52 all 

beads interacted via a shifted Lennard-Jones (LJ) 12-6 potential (Eq. (9)).  The 

LJ potential has a minimum at V�
W	 = 2/ Y⁄ Z.  The cutoff distance VB[\]11 was 
set to 2V�
W	  to reduce computational time, with constant ^  such that 
_`a+V = VB[\]11. = 0. 
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 _`a = 4c d ef&/' −  ef&Yh + ^, (9) 

where V is distance between i-th and j-th bead in units of Z and c is well 
depth of the potential.  Here, Z, c, and jk≡ Z √c⁄ m are dimensionless physical 
constants for distance, energy and time, respectively.  The beads were 

connected by the Finitely Extensible Non-linear Elastic potential (FENE) (Eq. 

(10)). 

 _nopo = /'�(�q�rs d1 −  f"Mtu&'h, (10) 

The model parameters are the same as in reference 31.  (�q� is the maximum 

length of nearest-neighboring breads, which was set to (�q� = 1.5, and � is the 
spring coefficient of the FENE bond.  The motion of beads was driven by 

Langevin dynamics with a timestep of 0.005j, non-dimension temperature	�∗ =
1.0, and friction v = 1.0. 
 

B. Preparation and production runs 

(i) Star polymer solutions 

The 4-arm star polymer solutions were simulated using 64 star 
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polymers each composed of 201 beads in various sizes of simulation cells.  The 

simulation cell is cubic box with volume w.  We define the volume fraction of 

polymers as � ≡ 64 × 201 × 4y 3⁄ +Z 2⁄ .� w⁄ .  At first, we generated star 

polymers at nearly the dilute limit (� = 0.0001) and equilibrated for 1×108 MD 

steps.  Then, we decreased the simulation cell isotropically by 1% of volume 

over 1×106 MD steps and then equilibrated for 1×108 MD steps at constant 

volume.  By repeating this process we obtained the star polymer solutions with 

the desired ��. 

 

(ii) Gels 

We prepared two types of star polymers (type A and type B), whose 

terminal beads can bond only with other terminal beads of the opposite type 

(Figure 1).  We mixed equal amounts of type A and type B (1 : 1).  In our 

system, when the distance between terminal beads is equal to V�
W	+= 2/ Y⁄ Z., a 
new bond is formed.  At various ��, we simulated the gelation process until all 

terminal beads reacted, which took up to 2×109 MD steps.  This process 
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typically depends on the concentration of the system. 

 To obtain gel samples at various ��, we varied the simulation cell size 

after the gelation process.  We increased or decreased the simulation cell 

isotropically by 1% of volume over per 1×106 MD steps and equilibrated for 

1×108 MD steps.  By repeating this process we obtained gels with the desired 

��. 

 

(iii) Uniaxial Stretching Measurement 

To measure the equilibrated stress-strain curves, the simulation cell 

was gradually stretched by changing the aspect ratio of the simulation box.  

The box was deformed with a constant volume w = z{z|z} = z��;  z{ = )z�, 
z| = z~ = )D/ '⁄ z�, where z� is the side length of initial cubic simulation cell, 
and z{ , z| , and z~  are the size of lengths of the �, y, and � dimensions.   
We used a constant extension speed (= 1×10-8 times / 1 MD step).  Nominal 

stress was calculated from the stress tensor: �p = �{{ − k�|| + �~~m 2⁄ , with 

�HH = z�D�  ∑ ��,�� ��,� + ∑ V�,H� �L,�+V�.&, where F ∈ +�, �, �..  Here, ��  is velocity 
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of i-th elastic bond, ri is bond length of i-th elastic bond and �L+V�. is force of 
i-th elastic bond. 

 

 

Figure 1.  Coarse-grained model of star polymers for Tetra-PEG gels.  Spheres 

represent beads.  Red and blue represent type A and type B, respectively.  

Green represents reactive ends.  The ratio of the amount of type A and type B is 

fixed to 1 : 1.  The reactive ends of one type can bond only to the reactive ends 

of the other type.  An arm is composed of 50 beads plus the central bead, so a 

network strand formed by connecting type A to type B composes 102 beads. 
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Results and Discussion 

I. Verification of the MD simulation 

I-1. Radius of gyration of a star polymer and the overlapping 

concentration 

We define the overlapping concentration as  

 �∗ = ���T�"��,  (11) 

where �L is the number of beads of each star polymer and (� is the radius of 

gyration of star polymers in dilute limit.  We investigated the fractal dimension 

of the star polymers in solution to verify the MD simulation.  After enough MD 

steps for the equilibration, we measured the radius of gyration of the star 

polymers. 

 Figure 2 shows the �-dependence of the radius of gyration of the star 
polymer ((�\q0).  To cancel the slight �-dependence of the bond length (2)32, 53, 
we compared 〈(�\q0' 2'⁄ 〉/〈(�' 2�'⁄ 〉 with Eq. (4), where 2� is the bond length in 
the dilute limit.  In the semi-dilute regime we find that our star polymers obey 
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the same scaling with linear polymers, namely Eq. (4).  The intersection point 

of the scaling 〈(���f' 2'⁄ 〉/〈(�' 2�'⁄ 〉  for dilute and semi-dilute regime is 
approximately located at � �∗ ≈ 1.0⁄ , implying that Eq. (4) works well to 

estimate �∗  for 4-arm star polymers.  These results are in quantitative 

agreement with a recent study of 4-arm star polymer simulation by Schwenke et al.32   

In the high density regime (� > 7.0	�∗, corresponding to over 23% of polymer 

volume fraction), the scaling exponent of 〈(�\q0' 2'⁄ 〉/〈(�' 2�'⁄ 〉	 is slightly smaller 
+≈ −0.3. than the prediction of Eq. (4) with = 0.6 	+≈ −0.25..  This indicates 
that the gyration of a star polymer is a bit smaller than that of linear polymer at 

the same degree of polymerization.  We interpret this deviation to be caused by 

the excluded volume effect from the geometric structure of star polymer. 
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Figure 2.   �-dependence of 〈������  �⁄ 〉/〈�¡�  ¡�⁄ 〉 of star polymers in 

solution.  Dashed line represent the scaling relationship, 

~+� �∗⁄ .D�.'¢. 

 

I-2. Validation of the MD simulation using the elastic modulus 

In this section, we discuss the elastic modulus of gels prepared at �� 

and measured at �� .  To measure the equilibriated stress-extension ratio 

curves, the simulation cell was gradually stretched; the extension speed was 
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1×10-8 times / 1 MD step along the x axis.  Nominal stress was calculated from 

the stress tensor at each deformation ratio.  Figure 3 shows examples of 

stress-elongation ratio curves for as-prepared gels with �� �∗⁄ = 3.0	  and 
�� �∗⁄ = 6.7.  We determined the Young’s modulus from the initial slope of the 

stress-elongation curves. 

 

 

Figure 3.  Examples of the stress-elongation ratio relationship for 

representative gels.  Filled and empty circles denote the data for 
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gels with �¡ �∗⁄ = £. ¤ and �¡ �∗⁄ = ¥. ¡, respectively. 

 

Figure 4 (a) shows simulation results of the ��-dependence of �� 

reduced by the Young’s modulus at the preparation state (��).  We also show 

our previous experimental results in Figure 4 (b); our experimental data show 

the power law relationships between ��  and �� , and exhibit the two 

crossovers around � �∗⁄ ≈ 1.0  and � �∗⁄ ≈ 4.0 .  The slopes in the dilute, 
semi-dilute and concentrated regimes are 0.33, 0.57 and 1.1, respectively.  

These slopes and crossovers are well reproduced in our MD simulation (Figure 

4 (a)).  We can also estimate �B using Eq. (7).  The entanglement length �� 

for the bead-spring model has not been unequivocally determined yet, but we 

can estimate it as roughly �� ≈ 30	54.  Also we have reported that Eq. (7) works 
to describe the �B-dependence of �B, when using the prefactor 0.5 21.  In the 

case, using Eq. (7) with �B = 102, �� = 30, F = 9 4⁄ , and the prefactor 0.5, we 

get �B �∗⁄ = 5.04.  This estimation is in near quantitative agreement with the 
�B �∗⁄ ≈ 5.0 we observed in the simulation. 
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The slopes of 0.33 and 0.56 correspond to the exponents of Eqs. (6a) 

and (6d), and (6b) and (6e), respectively, in good solvent+� = 0.6. .  The 
Obukhov-Rubinstein-Colby model predicts that this crossover occurs at �∗, 

which corresponds well to both our experimental results and MD simulation.  

Furthermore, the slope of 1.0 corresponds well to that of Eq. (8), suggesting a 

supercoiling transformation.  Also, in an inset of Figure 4(a), we confirm that 

the power law relationships between ��  and ��  for as-prepared gels is 

��~��, which is in good agreement with Eq. (1). 

We have confirmed that our MD simulation reproduced experimental 

results and theoretical predictions.  Thus, it is worth investigating the 

conformation of network strands in MD simulation, which will provide a new 

insight into the conformational change of network strands caused by 

macroscopic shrinkage.  In the following sections, we analyze the chain 

conformation at each ��, and directly compare with the assumptions of the 

Obukhov-Rubinstein-Colby model. 
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Figure 4.  (a) Simulation results of �¨-dependence of ©¨ for gels 

prepared at �¡ �∗⁄ = ¡. ª«.  ©¡  is the Young’s modulus at �¡ �∗⁄ =
¡. ª«.  Solid, broken, and dashed lines represent the scaling of ©¬ 

for dilute regime, ©¨~+�¨ �∗⁄ .¡.¥¥ , semi-dilute regime, 

©¨~+�¨ �∗⁄ .¡.­£, and supercoiling regime, ©¨~+�¨ �∗⁄ .«.¡, respectively.  

Inset shows the �¡-dependence of © for gels prepared at various 

�¡ �∗⁄ s.  The solid line represents the scaling of ©~+�¡ �∗⁄ .«.¡, (b) 
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Our experimental results.  Circles denote data of Tetra-PEG gels 

with �¡ = ¡. ¡¥® and various �¨ swollen and deswollen in water.12  

Triangles represent data of Tetra-PEG gels with �¡ = ¡. ¡­ and 

various �¨  in 1-butyl-3-methylimidazolium tetrafluoroborate.21  

Both data are reduced by the Young’s modulus ©¡ at the preparation 

state. 

 

II. Verification of the assumptions of the 

Obukhov-Rubinstein-Colby model 

II-1. Conformation of the network strands in dilute and semi-dilute 

regime 

We estimated the averaged end-to-end distance (〈(�'〉 ≡ =̄°∑ |��|:¯°= ) and 

the averaged radius of gyration (〈(²'〉 ≡ ==#=¯°∑ ∑ |�³|:=#==¯°= ) of all network strands.  

Here, �� is the number of network strands, �� is the vector between ends of a 

network strand, �³ is the vector between a mass center of a network strand and 
a bead which composes of the network strand.  Figure 5 shows (� and (² 
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against �� �∗⁄  of the gels formed at �� �∗⁄ = 0.91.  (� is larger than (² at 

the preparation state.  (� decreases with increasing �� �∗⁄ , and we observe 

the power law behavior (�~+�� �∗⁄ .D�.�/  for �� �∗⁄ > 2.0 .  This result 
corresponds well to the assumption of the Obukhov-Rubinstein-Colby model 

that swelling causes crosslinks to move affinely.  In contrast, the power law 

becomes smaller than 1/3 for �� �∗⁄ < 2.0 .  This is because these gels 
prepared at dilute solution at �� �∗⁄ = 0.91  have approximately 10% 

connectivity-defects in the gel.31, 32, 55  These defects reveal themselves as 

spatial inhomogeneity in the swollen state,31   so that we may expect that 

crosslinks will not move affinely in this case.  On the other hand, (² decreases 

with increasing �� �∗⁄  as (²~+�� �∗⁄ .D�./'¢  below �� �∗⁄ ≈ 2.0 .  This 
behavior corresponds well to the scaling prediction in good solvent,3 and agrees 

with the assumption of the Obukhov-Rubinstein-Colby model in semi-dilute 

regime.  Around �� �∗⁄ ≈ 2.0, the ��-dependence starts to change gradually.  
Above the onset concentration of supercoiling (�B �∗⁄ ≈ 5.0), (² deviates from 

the line at (²~+�� �∗⁄ .D�./'¢ and approaches to the scaling of (�; that is, the 

Page 27 of 43 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



28 

 

scaling of (²  became (²~+�� �∗⁄ .D�.�/.  For reference, we show in Figure 6 

the �� -dependence of (² (�⁄  compared to that of as-prepared gels.  In 

as-prepared gels, we find that (² (�⁄ ≅ 0.390  for �� �∗⁄ > 2.0  and 	(² (�⁄  

slightly decreases for �� �∗⁄ < 1.0.  It is well known that (´ (�⁄ = µ1 6⁄ ≅
0.408  and (´ (�⁄ ≅ µ1 6⁄ × 0.952 ≅ 0.393  for ideal chain and real chain, 
respectively.56  The statistic of network strands of as-prepared gels seems to be 

that of a real chain in the whole region.  On the other hand, in 

swollen/deswollen gels, we clearly find two regimes.  (² (�⁄ ~+�� �∗⁄ .�.�¶ for 
�� �∗⁄ < 5.0 ≈ �B �∗⁄  and (² (�⁄ ≅ 0.455  for �� �∗⁄ > 5.0 ≈ �B �∗⁄ .  In the 

former regime, this power law of 0.09 is caused by the difference of power law 

between (² and (� as shown in Figure 5.  More surprisingly we obtain a very 

abnormal value ((² (�⁄ ≅ 0.455) in the latter regime.  This indicates that the 
statistics of the network strands becomes abnormal when compared with the 

statistics of real chains above the onset concentration of supercoiling (�B �∗⁄ ).  

Note that we interpret that our obtained (² (�⁄ ≅ 0.455 is NOT a universal 
value for the supercoiling state for two reasons.  First, (² (�⁄  should be 
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strongly related to fractal dimension (·1) of the network strands.  Second, ·1 

of supercoiled network strands likely depends on �B , as we have already 

confirmed that ·1 increases monotonically with the increase of �B.21 
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Figure 5.  Statistics of the network strands of gels prepared at 

�¡ �∗⁄ = ¡. ª«.  (a) �¨-dependence of the end-to-end distance (�¸).    

Solid line and broken line represent the guide lines for 

�¹~+�¡ �∗⁄ .D¡.�� and �¹~+�¡ �∗⁄ .D¡.¥« , respectively.  (b) 

�¨-dependence of the radius of gyration (�¹)  Solid line and broken 

line represent the guide lines for �¹~+�¨ �∗⁄ .D¡.«�­  and 

�¹~+�¨ �∗⁄ .D¡.¥«, respectively. 
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Figure 6.  �¡- and �¨-dependence of �¹ �¸⁄ . 

 

II-3. Estimation of the fractal dimension of network strands 

We discuss here the conformation of the network strands by means of 

the fractal dimension of network strands (·1).  When a particular network 

strand has a mass fractal dimension ·1, the relationship between the average 

number of beads (〈�+V.〉) that belongs to the same network strand within the 
distance V from the center of mass is expressed as 
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 〈�+V.〉~Vº%  (12) 

Examples of the obtained scaling relationship between 〈�+V.〉 and V is shown 
in Figure 7.  For each sample, we observed the scaling relationship and 

estimated ·1 from the slope. 

 

 

Figure 7.  Relationship between the average number of beads 

(〈»+¼.〉) within the distance from the center of mass (¼) for gels with 

�¡ = ¡. ª«.  Circles and squares represent gels measured at �¨ �∗⁄ =

slope ~ 2.06

slope ~ -1.53
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¡. �£	�½¾	«£. «, respectively. 

 

Figure 8 (a) shows the �� -dependence of the estimated fractal 

dimension (·1) for gels with �� �∗⁄ = 0.91.  As a reference, we compare them 
with ��-dependence of ·1  for as-prepared gels.  In as-prepared gels, ·1  is 

1.68 at �� �∗⁄ = 0.91.  This corresponds to the theoretical value for real chains.  
However, ·¿ becomes 1.62 with a decrease of concentration.  This is caused by 

defects and spatial inhomogeneity.  Recent simulation studies31, 32 and 

experiments55 of 4-arm star polymer gels indicate that defects and spatial 

inhomogeneity drastically increase below �∗ .  Also ·1  reaches 1.77 and 

becomes constant with further increase of concentration.  According to the 

scaling prediction, this plateau value should be the same with that of an ideal 

chain.  As we indicated in Section I-1, we can presume that star polymers feel 

additional excluded volume caused by geometric restriction of the star-polymer 

itself.  The deviation of ·1  from real chains is caused by this additional 

excluded volume effect. 
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On the other hand, ·1 increases with increasing �� and supercoiling 

becomes pronounced above �B, where ·1 was 2.05.  This fractal dimension is 

very close to that of an ideal chain.  However, considering the results of the 

relationship between the end-to-end distance and the radius of gyration (see 

Figure 5 and 6), the statistic of the network strands above �S is quite different 

from that of an ideal chain. 

Figure 8 (b) shows our experimental results on Tetra-PEG gels.  In 

our experiments, we estimated the fractal dimension from stress-elongation 

curves using a modified Pincus blob concept.18, 21  The Pincus blob concept 

originally describes the )-dependence of Z  for a strongly stretched single 
polymer chain.33  We modified the model by considering the lateral 

compression and applying stress-elongation curves in the large deformation 

regime.  The trends of the simulation results corresponds to that of 

experimental results.  The difference in the slope in the lower concentration 

regime may be attributed to the excluded volume effects.  In our experiments, 

the excluded volume exponent was lower than the simulation (Experiment: 0.56, 
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Simulation: 0.6).  These results suggest that that the Pincus blob approach is 

valid for the network system. 

We show examples of the conformation of the network strands of 

as-prepared gel with that of deswollen gel at supercoiling regime in Figure 9.  

It is clearly shown that there is a big difference of (� between as-prepared gel 

and supercoiled gel despite that they are at the same concentration.  Also in the 

supercoiled gel, network strands are tightly compact and the conformation 

looks like a 2-D plane. 
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Figure 8.  (a) Simulation results of the �¨ -dependence of ÀÁ  in 

network strands for gels with �¡ = ¡. ª« .  (b) Our experimental 

results − Reproduced by permission of the American Institute of 

Physics.21  �³ represents the onset concentration of supercoiling. 
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Figure 9.  Comparison of confirmation of the network strands of 

as-prepared gel with that of deswollen gel at same concentration.  

(a) �¡ �∗⁄ = «­. � , ÀÁ = «. ¤Â , (b) �¡ �∗⁄ = ¡. ª« , �¨ �∗⁄ = «­. � ,  ÀÁ =
�. ¡£.  Red, blue, green and yellow spheres represent coarse-grained 

beads of type A, type B, crosslink and reactive end, respectively.  

Crosslink corresponds to the central bead of a star polymer. 

 

 

Conclusion 

In this study, we used molecular dynamic simulation to directly 
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observe the effects of swelling and deswelling on the conformation of the 

network strands and investigated the validity of the Obukhov-Rubinstein-Colby 

model.  We revealed the following points.  (1) The MD simulation well 

reproduces the experimental results of elastic modulus, and this demonstrates 

its validity.  (2) The end-to-end distance of network strands varies affinely 

during swelling and deswelling.  (3) On the other hand, the radius of gyration 

of network strands obeys the scaling law in good solvent with swelling and 

deswelling in the dilute and semi-dilute regimes.  These behaviors are good 

agreement with the Obukhov-Rubinstein-Colby model’s assumption.  When 

the end-to-end distance decreases due to strong deswelling, the radius of 

gyration drastically shrinks, which indicates that the strand is “supercoiling.”  

(4) The fractal dimension of supercoiled network strands is much higher than 

that of an ideal chain, which is in good agreement with experimentally obtained 

results.  We verified for the first time that the Pincus blob approach is valid in 

terms of molecular interpretation. 
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