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In this paper we study a two-dimensional system of charged colloidal particles using Brownian
dynamics simulations. We determine the phase diagram and investigate the dynamics of this system
in the density regime where hexatic and solid phases are stable. We find that the dynamics in these
phases is heterogeneous by means of the spontaneous formation and diffusion of highly mobile
defects. We identify two key mechanisms associated with the areas of high mobility. The first
mechanism involves the highly cooperative motion of a closed loop of particles which shift coherently
along the loop until each particle has replaced the position of its predecessor in the chain. The second
mechanism involves the spontaneous creation of vacancy-interstitial pairs which diffuse within the
hexatic and solid phases. We further explore quantitatively the properties of the open-ended and
closed rearrangement strings and find that in the crystal phase the string-size distribution can be
approximately matched with a simple, random walk description of vacancies and interstitials on a
lattice.

I. INTRODUCTION

Particles in a crystal are typically orders of mag-
nitude less mobile than those in a fluid and usually
diffuse via the motion of defects, such as vacancies
and interstitials. Understanding the motion of these
defects is key to understanding transport processes in
crystals, including particle hopping and other local re-
arrangements [1–9], as well as mechanical instabilities,
such as creep, fracture and yielding [10–13].

Simulation studies of two-dimensional systems have
demonstrated the existence of strongly heterogeneous
dynamics in both crystal and hexatic phases [14–16].
In these systems, the dynamics becomes heterogeneous
both in space and time: clusters of particles that re-
arrange cooperatively move in an intermittent manner
at different rates. To date, studies of these dynamical
heterogeneities have mainly addressed the dynamics
on the ensemble level, i.e. in terms of time correlation
functions [14, 15]. However, a detailed microscopic de-
scription of the cooperative motion of individual parti-
cles, and the defect structures associated with particle
hopping events, is lacking. Therefore, the microscopic
origin of the heterogeneous dynamics in colloidal crys-
tals remains an open topic for investigation.

In a recent publication [17] we examined, both in
experiments and simulations, the heterogeneous dy-
namics associated with a local mechanical perturba-
tion by means of optical tweezing. In particular, we
perturbed a colloidal crystal by moving a single parti-
cle out of its equilibrium position, and explored the re-
sponse of the system to this external perturbation. We
observed that the system relaxed by two main mecha-
nisms, namely the cooperative motion of closed loops
of particles, and the formation and motion of disso-
ciated vacancy-interstitial pairs. A preliminary inves-
tigation indicated that thermal stresses in the unper-
turbed system relax via the same cooperative motions.
Here we return to this system and perform an in-depth
analysis of the heterogeneities observed in this system.
To this end we determine the phase diagram, i.e. the
area fractions associated with the fluid to hexatic and
hexatic to solid phase transitions. Using correlation

functions, we determine the time scales for the dy-
namical heterogeneities, and quantitatively examine
the hopping mechanisms responsible for diffusion in
these systems.

II. METHODS

In this paper, we consider a two-dimensional system
of N charged spherical particles with diameter σ in
an area A. The interaction between the particles is
modelled using a Yukawa potential given by

βU(rij) = βU0
exp(−κ (rij − σ))

rij/σ
, (1)

where β = 1/kBT with kB Boltzmann’s constant and
T the temperature, and rij = |ri − rj | is the center-
of-mass distance between particle i and j, with ri the
position of particle i. In all our simulations, we set the
Debye screening length to κσ = 2.25 and the contact
value to βU0 = 235 in order to match a recent ex-
perimental realization of this system, studied in Ref.
17.

This system displays two phase transitions as a func-

tion of the area fraction φ =
πσ2N

4A
, namely a fluid

to hexatic phase transition and a hexatic to hexago-
nal crystal transition. To determine the area fractions
associated with these transitions, we performed Brow-
nian Dynamics simulations of N = 2500 particles, and
calculated the local orientational and translational or-
der parameter of each particle j, as given by

ψ6j =
1

Nj

Nj∑
k=1

e6iθjk ,

and

ψTj = eiG·rj ,

respectively, withNj the number of nearest neighbours
of particle j as determined by a Voronoi construction,
θjk the angle of the bond between particles j and k
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relative to an arbitrary reference axis, and G a pri-
mary reciprocal lattice vector. The global order pa-
rameters are obtained by averaging over all particles,

ψα =
1

N

N∑
j=1

ψαj , and their susceptibilities are given by

χα = 〈|ψ2
α|〉−〈|ψα|〉2 with α = 6, T . The orientational

susceptibility χ6 and the translational susceptibility
χT are plotted in Figure 1 as a function of the area
fraction φ. They display two clear peaks which corre-
spond to the two distinct phase transitions. Based on
the position of these peaks, the fluid to hexatic tran-
sition occurs at φ ≈ 0.123 and the hexatic to crystal
transition occurs at φ ≈ 0.128. As an extra check, we
have also determined the hexatic to crystal transition
by renormalizing the Young’s modulus (see Appendix).
Both methods yield the same transition point within
our errorbars.
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FIG. 1. Susceptibility of the bond orientational order pa-
rameter χ6 and the susceptibility of the translational or-
der parameter χT as a function of area fraction φ, indi-
cating a fluid to hexatic phase transition at approximately
φ ≈ 0.123, and a hexatic to crystal transition at approxi-
mately φ ≈ 0.128.

To investigate the dynamics in this system we use
Brownian Dynamics simulations consisting of N =
2500 Yukawa particles, allowing us to reach the long
time scales associated with the heterogeneous dynam-
ics. Note that this implies that the system spans 50
unit cells in both directions. For φ ≈ 0.134, we have
checked that the cooperative behaviour that we ob-
serve is robust to variations in system size by running
simulations for both smaller systems N = 402 as well
as larger systems N = 1002. We define the short-time
diffusion time τ to be the typical time scale on which
particles diffuse a distance that is equal to their own
dimension σ, which we determined from measuring the
mean square displacement at infinite dilution.

III. RESULTS

A. Heterogeneous Dynamics

We start our investigation by examining the dy-
namic correlation functions of the fluid, hexatic, and
crystal phases, similar to the studies of Refs. 14 and
15 on (approximately) hard colloids. The mean square
displacement for a range of area fractions φ is shown in
Figure 2(a). From this plot we can identify three differ-
ent regimes for the single particle dynamics. At short
time scales (t ≤ 0.2τ), the particles diffuse freely and
the mean square displacement is density independent
and scales with t. For the solid and hexatic phases,
an intermediate, subdiffusive regime is observed, scal-
ing as 〈∆r2(t)〉 ∼ tb with the subdiffusivity parameter
b < 1. Here the particle dynamics is slowed down due
to caging by the other particles. As φ increases, the in-
termediate, caging regime becomes longer lived with an
even lower subdiffusivity parameter b. At long times,
the particle motion becomes diffusive again, scaling
with t. Note that this even happens for densities that
correspond to the solid phase, indicating that signifi-
cant diffusion processes occur.

These three regimes are also apparent in the self-part
of the intermediate scattering function

Fs(k, t) = 〈exp(ik · [r(t)− r(0)])〉 (2)

with k the wavevector. In Figure 2(b) we plot Fs(k0, t),
where k0 = 2π/a with a the lattice spacing for vary-
ing packing fractions φ [18]. For solid phases, Fs(k0, t)
shows a clear plateau at intermediate time scales that
rises and becomes longer lived with increasing φ. The
increase in the height and length of the plateau is in-
dicative of stronger caging.

The intermediate plateaus in the mean square dis-
placement and intermediate scattering function imply
that there must be a time scale over which the dynam-
ics is highly heterogeneous. The non-Gaussian param-
eter

α2(t) =
1

2

〈∆r4(t)〉
〈∆r2(t)〉2 − 1, (3)

provides a way to quantify the time scale and strength
of dynamical heterogeneities [19]. The non-Gaussian
parameter is shown for a range of φ in Figure 2(c).
For the fluid α2(t) ≈ 0, while for higher φ a clear peak
in α2(t) is observed. At t∗, the time for which α2(t)
reaches its maximum, the dynamics is most heteroge-
neous. The time scale t∗ of the dynamical heterogene-
ity increases with φ. Additionally, the magnitude of
dynamical heterogeneity α2(t∗) increases with φ up to
φ ≈ 0.134. This increase is consistent with what was
observed in Refs. 14 and 15. Note that at the high-
est densities, the dynamics becomes increasingly slow
making it hard to sample properly the dynamics at rel-
evant time scales, likely leading to the lowering of the
peaks observed above φ ≈ 0.134.

To further explore the dynamical heterogeneities,
we calculated the displacement histogram P (r, t) ≡
2πrGs(r, t), where Gs(r, t) = 〈δ(r − |r(t) − r(0)|)〉 is
the self-part of the van Hove function. In Figure 2(d),
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FIG. 2. (a) Mean square displacement 〈∆r2(t)〉, (b) the self-part of the intermediate scattering function Fs(k0, t), where
k0 = 2π/a with a the lattice spacing (c) non-Gaussian parameter α2(t), (d) and the self-part of the van Hove correlation
function P (r, t) at t = τα. In (d) we shift the otherwise overlapping P (r, τα) curves vertically with steps of 0.2 for sake
of clarity. Lines with different colors in (a-d) correspond to different packing fractions φ as labelled in (c). (e) P (r, t) for
φ = 0.1278 at different time intervals of integer τα. In the inset we plot the particle trajectories over t ≈ 4τα for a small
section of the simulation box, where we use different colors for different particle trajectories. (f) The structural relaxation
time τα and the time scale of the dynamical heterogeneities t∗ in units of the short-time diffusion time τ as a function of
φ.

(a) t = 0τ (b) t = 5.0τ (c) t = 10.0τ

FIG. 3. Time-lapse sequence of simulated configurations (top row) and corresponding Voronoi tessellations (bottom row)
showing a spontaneous loop rearrangement (green particles) inside a crystal phase with φ = 0.1339. We have superimposed
lines that connect the current particle positions with the initial defect-free configuration at t = 0τ as displayed in (a). In
the Voronoi tessellations we color particles with 5 and 7 nearest neighbours by blue and red cells, respectively. The time is
indicated above the snapshots with τ the short-time diffusion time. A large thermal fluctuation causes the formation of a
circular grain boundary in which the particles move in a cooperative ring-like fashion (b). The rotational motion correlates
with the effective annihilation of the 5- and 7- neighbour defects (a-c). Once the cooperative rotation is complete, the
particles become an integral part of the crystal again (c).

we plot P (r, τα), i.e. the displacement histogram eval-
uated at the relaxation time τα, with τα defined by
Fs(k = k0, t = τα) = e−1, see Figure 2(f) for typical
values of τα. In the fluid phase, P (r, τα) displays a sin-

gle peak at a characteristic displacement length. How-
ever, in the hexatic and crystalline phases, this func-
tion develops multiple peaks, corresponding to mul-
tiple characteristic hopping distances. The extent of
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particle hopping depends strongly on φ. In Figure 2(e),
this hopping is further illustrated by plotting P (r, t) for
different times t > τα at fixed φ = 0.1278, correspond-
ing to the hexatic phase. We note that over time, the
number of peaks increases. This is evidence of jump-
like, intermittent particle motion, as depicted in the
inset of Figure 2(e).

The translational relaxation time τα and the time
at which the displacements are most heterogeneous t∗

increase rapidly with area fraction φ in the solid and
hexatic phases as shown in Figure 2(f). We note that
τα grows faster than t∗ as the system becomes more
closely packed. This feature has also been observed in
super-cooled liquids [20] and polymer melts [21]. Note
that in the liquid phase, we do not observe a significant
difference between the two time scales, as expected.

B. Microscopic mechanisms for diffusion in
crystal and hexatic phases

As shown in the previous section, particle hopping
clearly plays an important role in the dynamics in the
hexatic and crystal phases. In this section we exam-
ine this phenomenon on the single-particle level. We
start by studying time-lapse sequences of the crystal
and hexatic phases. In the following we distinguish
two separate mechanisms for diffusion: i) a completely
coherent, cooperative rotation of a small number of
particles (rearrangement loop), and ii) the creation,
diffusion and annihilation of vacancy-interstitial pairs.

In Figure 3, we show a time-lapse sequence of a
rearrangement loop inside a crystal at area fraction
φ = 0.1339, and follow the topological evolution of the
defect structure accompanying one of these coopera-
tive events by constructing Voronoi diagrams. Starting
from a defect-free configuration [Figure 3(a)], we first
observe the spontaneous formation of a ring-shaped
grain boundary, corresponding to the alternating 5-
and 7-fold defects in the Voronoi construction [Fig-
ure 3(b)]. Here a 5- and 7-fold defect is defined as a
particle that possesses 5 and 7 nearest neighbours, re-
spectively. After completing the cooperative rotational
motion, the particles have travelled one integer lat-
tice spacing and become an integral part of the crystal
again [Figure 3(c)]. Interestingly, this motion is some-
what reminiscent of the cooperative motion of sliding
rows of particles seen in Ref. 22. However, while the
motions they observed were system spanning, the ring-
like diffusion we observe is only effecting small parts of
the system and is not associated with the size of the
system we are simulating.

In addition to the closed loops, we observe open-
ended strings of cooperative motion associated with
vacancy-interstitial pairs, as shown in Figure 4. Dur-
ing the nucleation of a vacancy-interstitial pair, a re-
gion dense in defects forms inside the crystal [Figure
4(a)]. The dislocations in this locally disordered patch
quickly settle into a clear vacancy and interstitial pair,
containing each two 5- and 7-neighbour defects. [Fig-
ure 4(b)]. The interstitial and vacancy are connected
by a string of displaced particles, which we refer to
as a rearrangement string. To trace the growth of the
string we color-code all the string-like moving particles

as green, through evaluation of the particle displace-
ments up to the current time, as indicated above the
corresponding snapshot. The diffusion of the point
defects forms the microscopic mechanism for growth
of the string [Figure 4(c)]; strings grow both on the
interstitial-side where particles are somewhat displaced
from their equilibrium position to make room for the
interstitial, as well as on the vacancy-side, where par-
ticles are free to explore the extra free area that was
previously occupied by other particles. Eventually, the
vacancy and interstitial come into contact with their
complement, and annihilate (as shown in the zoom in
of Figure 4(d)).

In agreement with other studies, we find that the
migration of both these point defects is accompanied
by a switching between different topological configura-
tions [6, 23]. Note that both vacancies and interstitials
are known to have many distinct topological configu-
rations with different symmetries [6, 24]. In Figure
4(b) both the vacancy (left defect) and the interstitial
(right defect) contain two 5- and 7-neighbour defects
and have two-fold symmetry. Note that in examining
the migration of these defects we did not observe any
topological signatures of di-vacancies or higher order
vacancies. This may very well be due to the low con-
centration of point defects in our system.

In the majority of cases, vacancy-interstitial pairs
recombine relatively fast. This fast recombination is
driven by the short-range attraction between a va-
cancy and an interstitial [25]. It should be noted that
the loops formed by the annihilation of these vacancy-
interstitial pairs can be of the same size and shape as
the rearrangement loops described previously. How-
ever, they appear to proceed through a different topo-
logical evolution of the structure of the solid.

We study in more detail the diffusion of vacancies
and interstitials associated with open-ended strings by
tracking the location of these point defects in time.
For a defect containing M particles, the center of mass
rd(t) is defined as the center of the non-sixfold coor-
dinated colloids, as used in previous studies of point
defect dynamics in two-dimensional crystals [5, 6], i.e.

rd(t) =

∑M
i=1 ri(t)

(
1− δNi(t),6

)∑M
i=1

(
1− δNi(t),6

) , (4)

whereNi(t) is the number of nearest neighbours of par-
ticle i as determined by Voronoi construction and δi,j
is the Kronecker delta function. In Figure 5, we show
one sample trajectory rd(t) of a vacancy (blue line) and
the associated interstitial (red line). As expected, the
point defects preferentially travel along the lattice di-
rections. At short time scales the diffusive motion fol-
lows an almost one-dimensional path, while at longer
time scales the defect motion is often reoriented along
one of the lattice lines [5, 6]. The measured trajecto-
ries correlate strongly with the positions of particles
that have changed lattice site (highlighted in green),
indicating that particles are trapped inside their cage
until they are untrapped by a diffusing defect.

In our simulations the string-like rearrangements,
both open-ended as well as closed, emerge in a large
variety of sizes and geometries, as illustrated in Fig-
ure 6. To investigate these, we identify the cage-
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(a) t = 0τ (b) t = 2.4τ (c) t = 85.4τ (d) t = 1678τ

V

I

FIG. 4. Time-lapse sequence of simulated configurations showing a spontaneous string of rearrangements (green particles)
inside a crystal phase with φ = 0.137. The time is indicated above the snapshots with τ the short-time diffusion time.
We color-code particles with 5 or 7 nearest neighbours by blue and red, respectively. (a) A region dense in defects
forms inside the crystal due to a large thermal agitation. (b) The defected configuration quickly arranges into a clear
vacancy and interstitial, indicated with a V and I, containing both two 5- and two 7-neighbour defects. (c) Many particle
rearrangements occur as both the vacancy and interstitial diffuse along the string of rearrangements. (d) The vacancy
and interstitial come into proximity again and annihilate in successive frames (zoom).

FIG. 5. Trajectories of the vacancy and interstitial corre-
lating strongly with the string-like rearrangements inside a
crystal phase with φ = 0.1339. Particles that exchanged
lattice sites irreversibly are indicated with green. The va-
cancy and interstitial trajectory are shown in blue and red,
respectively. The point defects diffuse along the lattice
axis. At short time scales the diffusive motion follows an
almost one-dimensional path, while at longer time scales
the defect motion is often reoriented along one of the lat-
tice lines.

breaking particles using a displacement threshold of
|ri(t)− ri(0)| > 0.65a, which is sufficiently larger than
the typical positional fluctuations of particles inside
their cages, while at the same time small enough to
make sure that we identify all fast particles. Please
note that this displacement threshold is approximately
equal to the first minimum in the displacement his-
togram P (r), as shown in Figure 2(d,e). To determine
which particles undergo correlated motion we examine
the relative displacement of particles. The mobile par-
ticles i and j, as identified by the above criterion, are

FIG. 6. Simulation snapshot of various types of string-like
rearrangements. The superimposed quivers indicate the
particle trajectories.

considered in the same rearrangement string when

min[|ri(t)− rj(0)|, |ri(0)− rj(t)|] < 0.3a,

with a the lattice spacing. This criterion was used in
previous studies of string-like motion [8, 26, 27]. As
a time interval we use t = t∗, at which the dynami-
cal correlations reach a maximum, which provides a
well-defined interval to monitor the cooperative dy-
namics [8, 28, 29]. In our analysis we consider only
strings of size n ≤ 30, thus minimizing possible finite-
size effects where vacancies and interstitials interact
with each other through the periodic boundaries of the
box.

The distribution of string lengths P (n) depends
strongly on the packing fraction φ as shown in Fig-
ure 7(a). In solid phases all P (n) overlap in the range
of n that we consider and exhibits a power law-like
decay P (n) ∼ n−µ with exponent µ ≈ 2.5. We can
show, using a very simple model, that the observed
power law-like decay of P (n) for our crystals can be
explained by the diffusive motion of defects inside the
lattice. To illustrate this we perform a lattice simu-
lation in which we randomly move a vacancy or in-
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FIG. 7. (a) String size distribution P (n) at several packing
fractions φ. The red and blue dashed lines indicate the
results for our lattice model of a diffusing interstitial and
vacancy, respectively. (b) Fraction of string-like moving
particles that are part of an open string fopen vs φ.

terstitial around on a hexagonal lattice, causing many
string-like rearrangements. This allows us to extract
the P (n) associated with a point defect moving ac-
cording to a random walk. Clearly, the P (n) that we
obtain for our model of a diffusing defect on a hexag-
onal lattice fits our data well, obeying similar power
law decay of P (n) ∼ n−µ with exponent µ ≈ 2.15,
as indicated in Figure 7(a) with red and blue dashed
lines for the diffusing interstitial and vacancy, respec-
tively. These results indicate that the power-law be-
haviour originates from the fact that defects diffuse on
a lattice and have a certain probability of either dif-
fusing to previously unexplored lattice sites or to prior
lattice sites; thus occasionally breaking a larger rear-
rangement string into two smaller, separate rearrange-
ment strings. Note that our lattice model is highly
simplified compared to the real system, for example it
does not take into account the spontaneous rearrange-
ment loops as shown in Figure 3 and assumes the point
defects to be non-interacting, which may very well ex-
plain the small difference in µ.

At area fractions below the solid to hexatic transi-
tion, corresponding to densities of φ ≤ 0.1262 in Figure
7(a), the string-like nature of the particle motions be-
comes increasingly less pronounced, leading to an ex-
ponential decay of P (n), indicating that independent
particle motion starts to become dominant over coop-
erative cage breaking [Figure 7(a)]. Such exponential
decay of the string-size distribution has also been ob-
served in supercooled liquids [26]. Additionally, strings
undergo a gradual topological transition from closed

loop-like to open-ended as φ decreases as shown in
Figure 7(b). We note that such a transition in coop-
erative motion from closed loop-like to open-ended co-
operative motion has also been observed during melt-
ing from superheated states in three-dimensional crys-
talline solids [7, 8]. We propose that this transition
originates from two effects. Firstly, in the crystal phase
the attraction between vacancies and interstitials is ex-
pected to become weaker with decreasing φ leading to
longer times before the two ends of a rearrangement
string meet and close. Secondly, in the crystal phase
particles move from lattice point to lattice point while
in a fluid there is no lattice and particles do not neces-
sarily have to take over the position of their predeces-
sors. Thus there should be little reason for particles to
diffuse in a closed configuration.

IV. CONCLUSIONS

In conclusion, we have examined the dynamics in the
hexatic and crystalline phases of the two dimensional,
soft colloidal system that was experimentally realized
in Ref. 17. Dynamic correlation functions clearly indi-
cate that the dynamics in both these phases is highly
heterogeneous, in agreement with what was observed
in Refs. 14 and 15 for (approximately) hard colloidal
systems. We measured the time scale associated with
these heterogeneities and examination of displacement
histograms associated with this system indicated that
the heterogeneous motion stems from particle hopping.
A closer investigation of the single particle dynamics
in this system has revealed, in agreement with Ref. 17,
that the diffusion in the hexatic and crystalline phases
arises due to two distinct local particle rearrangements,
namely i) the coherent, and almost simultaneous rear-
rangement of a loop of particles that leave the local
structure of the solid undisturbed, and ii) the diffu-
sion of vacancy-interstitial pairs. This of course raises
the interesting question whether these two mechanisms
capture all the essential dynamics associated with the
heterogeneous dynamics. In the crystal phase, we can
be fairly certain that we have captured all the essen-
tial dynamics as the underlying lattice allows us to
fully identify all cage-breaking events, and we find that
these events can always be categorized in one of the two
distinct local particle arrangements identified above.
In contrast, for the hexatic phase, there is no under-
lying lattice and local positional order is expected to
decay over sufficiently long time scales. As a result,
other forms of motion may be expected to occur in
this phase as well.

To further explore the rearrangement strings, we
also examined the string-size distributions. For the
crystal phase, we found that it exhibits a power law-
like decay, which could be approximately matched by
a simple, random walk description of vacancies and in-
terstitials on a lattice. We attribute deviations from
this model to the interaction between the interstitials
and vacancies and the fact that the spontaneous rear-
rangement loops were not taken into account. In the
hexatic phase, the string-size distribution decays expo-
nentially for the string lengths that we consider, which
may very well indicate that other types of motions (not
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string-like) start to become responsible for diffusion as
well.

One may be temped to assume that there is some
underlying connection between the heterogeneous dy-
namics of glass-forming systems and crystals. How-
ever, such a connection is not evident as in a glass
there is no order while in a crystal particles are sit-
ting on average on a lattice. The same is true for the
dynamics of the system: in a glass particles rearrange
to new “random” locations while in a crystal the rear-
rangements follow the lattice, i.e. particles hop from
lattice point to lattice point. Interestingly, we find that
the string-size distribution in the crystal phase follows
a power law-like decay, in contrast to the exponential
decay found in super-cooled liquids [26].

Lastly, this work was originally inspired by the pre-
liminary observation in Ref. 17, that both thermal
fluctuations and local mechanical fluctuations are re-

laxed through similar cooperative modes. The results
in this paper continue to fully support this conclu-
sion. We note that these stress relaxation pathways are
in contrast to how stress relaxation occurs in systems
which are subjected to macroscopic, external stresses.
These system typically relax their stresses through the
formation and motion of dislocations in the lattice [10–
13].

V. ACKNOWLEDGEMENTS

We acknowledge financial support from the Dutch
Sector Plan Physics and Chemistry, and the Nether-
lands Organization for Scientific Research (NWO-
VENI grant No. 680.47.432). We would also like to
thank Frank Smallenburg for many useful discussions.

[1] H. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).
[2] C. Zener, Acta Crystallogr. 3, 346 (1950).
[3] H. Huntington, Phys. Rev. 91, 1092 (1953).
[4] S. A. Rice, Phys. Rev. 112, 804 (1958).
[5] A. Pertsinidis and X. Ling, Nature 413, 147 (2001).
[6] A. Libal, C. Reichhardt, and C. O. Reichhardt, Phys.

Rev. E 75, 011403 (2007).
[7] X.-M. Bai and M. Li, Phys. Rev. B 77, 134109 (2008).
[8] H. Zhang, M. Khalkhali, Q. Liu, and J. F. Douglas, J.

Chem. Phys. 138, 12A538 (2013).
[9] Z. Wang et al., Science 338, 87 (2012).

[10] G. I. Taylor, Proc. Roy. Soc. London A 145, 362
(1934).

[11] M. Polanyi, Z. Phys. 89, 660 (1934).
[12] E. Orowan, Z. Phys. 89, 605 (1934).
[13] J. P. Hirth and J. Lothe, Theory of dislocations (Wiley,

New York, 1982).
[14] R. Zangi and S. A. Rice, Phys. Rev. Lett. 92, 035502

(2004).
[15] J. Kim, C. Kim, and B. J. Sung, Phys. Rev. Lett. 110,

047801 (2013).
[16] H. Shiba, A. Onuki, and T. Araki, Europhys. Lett. 86,

66004 (2009).
[17] B. van der Meer et al., Proc. Natl. Acad. Sci. USA

111, 15356 (2014).
[18] The lattice spacing a was approximated by assuming

a hexagonal lattice, and choosing the lattice spacing
from the imposed density.

[19] A. Rahman, Phys. Rev. 136, A405 (1964).
[20] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[21] F. W. Starr, J. F. Douglas, and S. Sastry, J. Chem.

Phys. 138, (2013).
[22] B. Alder, W. Hoover, and T. Wainwright, Phys. Rev.

Lett. 11, 241 (1963).
[23] L. DaSilva, L. Candido, G.-Q. Hai, and O. Oliveira Jr,

Appl. Phys. Lett. 99, 031904 (2011).
[24] A. Pertsinidis and X. Ling, Phys. Rev. Lett. 87,

098303 (2001).
[25] S. Kim et al., Proc SPIE 80970X (2011).
[26] C. Donati et al., Phys. Rev. Lett. 80, 2338 (1998).
[27] H. Zhang, P. Kalvapalle, and J. F. Douglas, Soft Mat-

ter 6, 5944 (2010).
[28] C. Donati et al., Phys. Rev. E 60, 3107 (1999).
[29] A. Patti, D. El Masri, R. van Roij, and M. Dijkstra,

Phys. Rev. Lett. 103, 248304 (2009).
[30] J. R. Ray, Comput. Phys. Rep. 8, 109 (1988).

[31] J. Lutsko, J. Appl. Phys. 65, 2991 (1989).
[32] E. Voyiatzis, Comput. Phys. Commun. 184, 27 (2013).
[33] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181

(1973).
[34] D. R. Nelson and B. Halperin, Phys. Rev. B 19, 2457

(1979).
[35] A. Young, Phys. Rev. B 19, 1855 (1979).
[36] M. A. Bates and D. Frenkel, Phys. Rev. E 61, 5223

(2000).
[37] S. Sengupta, P. Nielaba, M. Rao, and K. Binder, Phys.

Rev. E 61, 1072 (2000).
[38] S. Sengupta, P. Nielaba, and K. Binder, Phys. Rev. E

61, 6294 (2000).
[39] D. S. Fisher, B. Halperin, and R. Morf, Phys. Rev. B

20, 4692 (1979).
[40] K. J. Strandburg, Phys. Rev. B 34, 3536 (1986).
[41] S. T. Chui, Phys. Rev. B 28, 178 (1983).
[42] C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett.

58, 1200 (1987).

Page 7 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



8

VI. APPENDIX

To obtain an additional prediction of the hexatic to
crystal phase transition, we renormalize the Young’s
modulus following proceedures previously presented in
Refs. 30–32. The elasticity of the hexagonal crystal
lattice can be completely described by two independent
elastic constants, namely the bulk modulus B and the
shear modulus µ. The Young’s modulus K of the two-
dimensional triangular crystal, which is a combination
of the bulk modulus B and the shear modulus µ, is
calculated using the relation

K =
8√

3ρkBT

(λ+ µ)µ

λ+ 2µ
, (5)

where Lamé’s first parameter λ is related to the bulk
modulus B = λ+µ [33–35]. The unrenormalized elas-
tic constants and Young modulus are only valid for a
perfect, defect-free, triangular lattice; if topological de-
fects such as dislocations are present a renormalization
is required. The small fraction of vacancies and inter-
stitials (∼ 0.0004) that we observe in the solid phase
is unlikely to alter the elasticity substantially [36, 37].
However, as pointed out in the KTHNY theory the
presence of dislocations lowers the elasticity consider-
ably [34, 35, 37, 38].

As a first step to renormalise the Young’s modulus,
we determine the dislocation core energy Ec. Assum-
ing that the core radius is given by rc = a, the core
energy of a dislocation is directly related to the dislo-
cation probability:

pd =
16
√

3π2

K − 8π
I0

(
K

8π

)
exp

(
K

8π

)
exp

(−2Ec
kBT

)
, (6)

where pd is the fraction of dislocation pairs per unit
cell, and I0 and I1 are Bessels functions [38, 39]. Note
that pd = ndp/N with ndp the number of dislocation
pairs and N the number of particles. We renormalize
the Young’s modulus K and the fugacity of disloca-
tions y using the KTHNY recursion relations [34, 35]

dK−1(l)

dl
=

3

4
πy2(l) exp

(
K(l)

8π

)
×
[
2I0

(
K(l)

8π

)
− I1

(
K(l)

8π

)] (7)

dy(l)

dl
=

(
2− K(l)

8π

)
y(l)

+2πy2(l) exp

(
K(l)

16π

)
I0

(
K(l)

8π

)
,

(8)

with l the coarse-graining length scale, which yield the
thermodynamic values of K and y in the limit l →
∞. The unrenormalized Young’s modulus K(l = 0)
and y(l = 0) = exp(−Ec/kBT ) serve as the initial
conditions of the set of coupled differential equations
[Eqs. 7 and 8]. The renormalisation recursion relations
can now be solved numerically by using a standard
Euler forward discretization.

We show the trajectories in the y−K plane for dif-
ferent packing fractions in Figure 8(a). Clearly, there
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FIG. 8. (a) y−K trajectory upon renormalization for φ =
0.1385, 0.1370, 0.1355, 0.1339, 0.1324, 0.1308, 0.1293, 0.1278
from left to right. (b) Unrenormalized (open markers)
and renormalized (solid markers) Young’s moduli K vs φ.
(c) The renormalized bulk BR and shear µR moduli vs φ.
Here we have rendered the elastic moduli dimensionless
through multiplication with a2/kBT . (d) Dimensionless
dislocation core energy βEc vs φ.

are two types of trajectories. For φ ≥ 0.1293 the fu-
gacity of dislocations y(l) → 0 for l → ∞, giving rise
to an ordered crystalline phase, while for φ ≤ 0.1278
the fugacity of dislocations y(l) → ∞ for l → ∞, giv-
ing rise to a disordered hexatic phase. According to
the KTHNY theory the abrupt jump in KR from 16π
to 0 is driven by the proliferation of free dislocations,
i.e. the formation of pairs of particles having five and
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seven nearest neighbours.
We plot the renormalized Young’s modulus KR in

Figure 8(b) and the dimensionless, renormalized bulk
BR and shear µR moduli in Figure 8(c). The renor-
malized Young’s modulus KR decreases as the packing
fraction φ decreases. The decrease in the elasticity of
the lattice implies that cages become weaker and that
the energy barrier for particle hopping is reduced. In
these weak crystal lattices, large thermal excitations

are frequently relaxed through cooperative decaging
motions of particles by means of the formation and
migration of defects like vacancies and interstitials.

The dimensionless dislocation core energy at the
transition point βE∗c ≈ 5.8 exceeds 2.84 kBT , indi-
cating that the solid will melt into a hexatic phase
through the unbinding of dislocation pairs [40, 41]. We
note that βE∗c is in good agreement with experiments
on two-dimensional charged colloidal crystals [42].
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We investigate the microscopic origin of dynamical  
heterogeneities in two-dimensional colloidal crystals and hexatic phases. Our data illustrates how 

cooperative motions of particles are driven by  
the formation and diffusion of mobile defects.  
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