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Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor

exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in

voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is

not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of

identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the

two monolayers of the membrane, or from membrane curvature. The latter effect is called ’flexoelectricity’. As a consequence of

permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical

phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical

framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language.

We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting

transitions, where such effects are especially pronounced.

1 Introduction

Many signaling processes in biology involve electrical phe-

nomena. These processes are related to the movement of ions

and the orientation of polar molecules. Biological molecules

typically contain charged groups that are at the origin of elec-

trical fields and dipole moments. Furthermore, membranes

and macromolecules are surrounded by electrolytes contain-

ing charged ions. At physiological ionic strength, the Debye

length of electrostatic interactions in the aqueous medium is

about 1 nm. It is caused by the shielding of charges by ions.

However, in the hydrophobic cores of membranes and pro-

teins, the dielectric constant is small, and no ions that could

shield electrostatic interactions are present. Thus, the length

scale of electrostatic interactions is significantly larger. Gen-

erally, under physiological conditions the range of the electric

fields is similar to the size of biological macromolecules. In

this publication we will focus on the electrostatics of mem-

branes that determines capacitance, polarization, piezoelec-

tricity, flexoelectricity and thermoelectricity.

There exist large concentration differences of ions across

the membranes of biological cells. For instance, the concen-

tration of potassium is about 400 mM inside and only 20 mM

outside of a squid axon. If the membrane is selective for

potassium, this results in a Nernst potential across the biolog-

ical membrane. The combination of the Nernst potentials of

different ions yields a resting potential, which for biological
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Fig. 1 Illustration of capacitive effects. The field inside a charged

capacitor can be obtained by the superposition of the fields of a

positively and a negatively charged plate at distance d. The charged

capacitor displays an internal field different from zero, while the

field is zero outside of the capacitor.

cells is in the range of ±100 mV. The central core of a mem-

brane is mostly made of hydrophobic non-conductive mate-

rial. Thus, the biomembrane is considered a capacitor, e.g., in

the Hodgkin-Huxley model for the nervous impulse1. During

the nerve pulse, currents are thought to flow across ion chan-

nel proteins that transiently charge or discharge the membrane

capacitor. Within this model, the membrane is assumed to be a

homogeneous planar capacitor with constant dimensions. The

capacitance can be calculated from the relation

Cm = ε ·
A

d
(1)

where ε is the dielectric constant, A is the membrane area and

d is the membrane thickness.

Let us assume that the membrane is surrounded by a con-

ducting electrolyte solution. In the presence of an applied volt-

age, the charged capacitor consists of one plate with positive
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Fig. 4 Illustration of polarization by curvature. a. The two

monolayers of the symmetric membrane display opposite

polarization. b. upon bending (flexing) the membrane, the

polarization in the two layers changes. c. effective polarization of

the membrane. d: In order to discharge the capacitor, a potential of

Ψ =−Ψ0 has to be applied.

electricity all involve the spatial separation of charges. Thus,

they all represent aspects of the same electrostatic phenom-

ena. However, in the literature they are often treated as dif-

ferent things and they are described by a different language.

In this communication we formulate a general thermodynami-

cal description of the electrostatics of lipid membranes, which

represents a generalization of a study on the capacitance of

membranes previously published by our group2. It will be

used to generalize the effect of an externally applied electric

field on the lipid melting transition. We will introduce the

thermodynamics of a polarized lipid membrane in an electric

field, which then results in a generalization of electrostriction

effects on lipid membranes.

Theory

When the molecules of dielectric materials are placed in an

external electric field, they orient themselves to minimize the

free energy. In capacitors, net macroscopic dipoles are in-

duced in the dielectric medium and tend to counteract the ap-

plied field. As a response to an applied electric field, mechan-

ical changes can be observed, e.g., in piezoelectric crystals.

To deal with these effects, authors like Frank treated the elec-

trostatic effects within a thermodynamical framework11. He

considered the electrical work performed on a fluid during any

infinitesimal and reversible change, dWel =Ed(vD). This type

of consideration leads to expressing the electric displacement,

D, in a volume, v, as an extensive variable with the electric

field, E, as its conjugated intensive variable. Vector notation

has been dropped assuming planar geometry.

When we consider a membrane capacitor, its hydropho-

bic core separates the two capacitor plates and acts both as

a compressible and dielectric material. Choosing hydrostatic

pressure (p), lateral pressure (π), temperature (T ) and applied

electric field (E) as intensive variables, we can write the dif-

ferential of the Gibbs free energy as

dG =−SdT + vdp+Adπ − (vD)dE + ... (2)

where the conjugated extensive variables are S (entropy),

v (volume), A (area) and vD (electric displacement). The

electrical contribution to the free energy due to an applied

electric field comes from the final term, which we will refer

to as the electrical free energy, Gel .

The electric displacement is related to the total polariza-

tion, Ptot by

D = ε0E +Ptot . (3)

where ε0 is the vacuum permittivity. Most materials have zero

polarization at zero electric field, and polarization is only in-

duced by an external field. For a linear dielectric material the

induced polarization is Pind = ε0χelE, where χel is the electric

susceptibility. We are interested in extending our considera-

tions to a dielectric material which can display spontaneous

polarization, P0, in the absence of an applied field such that

Ptot = ε0χelE +P0. (4)

The spontaneous polarization, P0, can originate from asym-

metric lipid bilayers, e.g., from curvature (flexoelectricity) or

from different composition of the two monolayers. The elec-

tric displacement takes the form

D = ε(E +E0), (5)

where ε is the dielectric constant, ε = ε0(1 + χel) and

E0 ≡ P0/ε is the electric field related to the spontaneous

polarization, P0, at E = 0.

Using eq. (5), we can determine the the electrical free

energy:

Gel = −
∫ E

0
(vD)dE ′ =−εv

(

E2

2
+E0E

)

= −
ε

2
v
(

(E +E0)
2 −E2

0

)

, (6)

where we have assumed the volume of the lipid membrane

to be constant. Assuming that the dielectric properties of the

medium are homogeneous across a membrane with thickness

d, we can define Ed = Ψ where Ψ represents the applied elec-

tric potential difference. This leads to

Gel =−
ε

2

A

d

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

, (7)
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where Ψ0 is the offset potential related to E0 (E0d = Ψ0). The

pre-factor contains the capacitance of a planar capacitor (Cm =
εA/d). Thus, the electric free energy is given by

Gel =−
1

2
Cm

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

. (8)

At Ψ = 0 the electrical contribution to the free energy is zero.

Capacitive susceptibility, piezoelectricity, flexoelectricity

and thermoelectric effect

The polarization of a membrane can change by charging, com-

pressing, stretching, bending or heating of the membrane.

The corresponding electrostatic phenomena are called elec-

trostriction, piezoelectricity, flexoelectricity and thermoelec-

tricity. In the past, some simple relations were derived by A.

G. Petrov12. For instance, piezoelectricity was described as

the area-dependence of polarization. Correspondingly, flexo-

electricity was described as the curvature-dependence of the

polarization assuming that polarization is zero in the planar

state of the membrane. However, upon changing the mem-

brane area, its capacitance also changes. Thus, in the pres-

ence of a field not only the polarization but also the charge on

the capacitor can change upon changing area. In the case of

membrane curvature, the polarization may be different from

zero in the planar state. In the following, we derive general

equations for electrostriction, piezoelectricity, flexoelectricity

and thermoelectricity. We will find that some relations previ-

ously derived by Petrov are special cases of our more general

description.

The charge on a capacitor The charge on a capacitor is

given by

q = A ·D = A(εE +P0) = ε
A

d
(Ψ+Ψ0) =Cm(Ψ+Ψ0) . (9)

The dependence of the charge on potential, Ψ, surface area,

A, curvature, c , and temperature T is given by

dq =

(

∂q

∂Ψ

)

A,c,T

dΨ+

(

∂q

∂A

)

Ψ,c,T

dA

+

(

∂q

∂c

)

Ψ,A,T

dc+

(

∂q

∂T

)

Ψ,A,c

dT . (10)

Here, we assume that Ψ, A, c and T are variables that can

be independently controlled in the experiment (which is not

generally the case in all experiments). Thus, the change of the

charge on a capacitor as a function of potential, area, curvature

and temperature is given by:

[

(Ψ+Ψ0)

(

∂Cm

∂Ψ

)

A,c,T

+Cm +Cm

(

∂Ψ0

∂Ψ

)

A,c,T

]

dΨ

dq = +

[

(Ψ+Ψ0)

(

∂Cm

∂A

)

Ψ,c,T

+Cm

(

∂Ψ0

∂A

)

Ψ,c,T

]

dA ,

+

[

(Ψ+Ψ0)

(

∂Cm

∂c

)

Ψ,A,T

+Cm

(

∂Ψ0

∂c

)

Ψ,A,T

]

dc

+

[

(Ψ+Ψ0)

(

∂Cm

∂T

)

Ψ,A,c

+Cm

(

∂Ψ0

∂T

)

Ψ,A,c

]

dT

(11)

or in abbreviated form as

[(Ψ+Ψ0)αA,c,T +Cm +CmβA,c,T ]dΨ

dq ≡ +[(Ψ+Ψ0)αΨ,c,T +CmβΨ,c,T ]dA . (12)

+[(Ψ+Ψ0)αΨ,A,T +CmβΨ,A,T ]dc

+[(Ψ+Ψ0)αΨ,A,c +CmβΨ,A,c]dT

The first term describes the change of charge on a capacitor

allowing for the possibility that both capacitance and polariza-

tion can depend on voltage. The second term describes piezo-

electricity, i.e., the change of charge by changing area, taking

into account the area dependence of both capacitance and po-

larization. One could write similar equations, if the lateral

pressure, π , were controlled instead of the area, A. The third

term describes flexoelectricity, which relates to the change of

charge caused by changes in curvature. Here, both depen-

dence of capacitance and polarization on curvature are con-

sidered. The last term describes the thermoelectric (Seebeck)

effect, i.e., the dependence of the charge on a capacitor on tem-

perature. We will discuss experimental situations below where

two variables, for instance temperature and area, are coupled

and not independent. In such situation one has to adapt the

above equations and adjust the coefficients of the parameters

α and β .

Capacitive susceptibility The capacitive susceptibility is

given by Ĉm = (∂q/∂Ψ). It is a susceptibility describing the

incremental change of the charge on a capacitor upon a small

change in voltage. It was discussed in detail in Heimburg

(2012)2. It is different from the capacitance, which only de-

pends on the geometry of the capacitor. In contrast to the ca-

pacitance, the capacitive susceptibility includes changes in ge-

ometry induced by voltage. For this reason, it displays a max-

imum in a melting transition of lipid membranes. If curvature

and temperature are kept constant, and area is a function de-

pending on voltage (due to electrostriction), we find from eq.

(13) that

Ĉm =

(

∂q

∂Ψ

)

c,T

= (Ψ+Ψ0)αc,T +Cm +Cmβc,T (13)
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Here, we have omitted the index A because area is not kept

constant. Further, if the spontaneous polarization is constant,

this reduces to

Ĉm =Cm +(Ψ+Ψ0)

(

∂Cm

∂Ψ

)

c,T

(14)

If the spontaneous polarization is zero at all voltages, this re-

duces to

Ĉm =Cm +Ψ

(

∂Cm

∂Ψ

)

c,T

(15)

which is the relation given by Heimburg (2012)2. If both ca-

pacitance and polarization are constant, Ĉm = Cm. However,

eq. (13) also implies that the capacitive susceptibility gener-

ally depends on the voltage-dependence of the polarization.

Piezoelectricity Piezoelectricity is the area or thickness

dependence of the charge on a capacitor, or more generally,

the influence of geometry on the charge of a capacitor. Let

us assume that in eq. (11) Ψ, c and T are constant. We then

obtain

dq = [(Ψ+Ψ0)αΨ,c,T +CmβΨ,c,T ]dA . (16)

At Ψ = 0, we obtain for a small change in area, ∆A,

∆q ≈ (Ψ0αΨ,c,T +CmβΨ,c,T )∆A . (17)

If Ψ0(∆A = 0) is zero, the capacitor is uncharged for Ψ = 0.

Then the charge on the capacitor after a change in area of ∆A

is given by

q(∆A) =CmβΨ,c,T ∆A or Ψ0(∆A) = βΨ,c,T ∆A . (18)

A similar relation was given by Petrov and Usherwood13.

As evident in eq. (16), the piezoelectric effect is a function of

the externally applied potential if the capacitance is influenced

by area changes (which usually is the case).

Inverse piezoelectric effect: The elastic free energy density

of membrane compression is given by g = 1
2
KA

T (∆A/A0)
2,

where KA
T is the lateral compression modulus and A0 is the

equilibrium area prior to compression. In the presence of an

applied potential, the free energy density is given by

g =
1

2
KA

T

(

∆A

A0

)2

−
1

2

Cm

A0

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

, (19)

which contains an elastic and an electrostatic term. In order

to obtain the free energy, G, this has to be integrated over the

surface area of the lipid membrane. At constant compression

modulus, KA
T , and constant potential Ψ, the area change ∆A

equilibrates such that

∂g

∂A
= KA

T

∆A

A2
0

−
Cm

A0

(

∂Ψ0

∂A

)

Ψ,c,T

Ψ

−
1

2A0

(

∂Cm

∂A

)

Ψ,c,T

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

(20)

= 0

Therefore,

∆A(Ψ) = A0

[

CmβΨ,c,T

KA
T

Ψ+
αΨ,c,T

KA
T

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

]

.

(21)

Here, the first linear term is due to the area dependence of

the membrane polarization, while the second quadratic term

originates from the area dependence of the capacitance. It is

evident that the area change induced by an applied voltage will

be much larger with the transition regime of a lipid membrane

where the compression modulus is much smaller than in the

pure phases3.

Flexoelectricity Flexoelectricity describes the depen-

dence of the charge on the membrane capacitor induced by

membrane curvature. Let us assume that in eq. (11) Ψ, and T

are constant. It is questionable whether one can define experi-

mental conditions where the membrane area is independent of

curvature. Therefore, we consider area a variable depending

on curvature, which is not independently controlled. Then we

find

dq = [(Ψ+Ψ0)αΨ,T +CmβΨ,T ]dc . (22)

This is the (direct) ’flexoelectric effect’. If we make the sim-

plifying assumption that the capacitance Cm does not depend

on curvature and that the coefficient βΨ,T is constant, we ob-

tain

q(c) =Cm (Ψ+Ψ0(0))+CmβΨ,T · c , (23)

where Cm (Ψ+Ψ0(0)) is the membrane charge at c = 0. If

further the applied potential, Ψ, is zero and the polarization in

the absence of curvature is also assumed being zero, we obtain

q(c) =CmβΨ,T · c or Ψ0(c) = βΨ,T · c . (24)

Thus, the offset potential Ψ0 is proportional to the curvature.

This relation is a special case of the flexoelectric effect de-

scribed in eq. (22). It was previously discussed by Petrov12.

He introduced a flexoelectric coefficient, f , which is given by

f ≡ ε ·βΨ,T . Petrov found experimentally that f = 10−18 [C],

or βΨ,T = 2.82 ·10−8 [m] for ε = 4ε0, respectively.

Inverse flexoelectric effect: In the absence of a spontaneous

curvature, the elastic free energy density of bending is given

by g = 1
2
KBc2, where KB is the bending modulus. In the pres-

ence of an applied potential and assuming that Cm does not
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depend on curvature, the free energy density is given by

g =
1

2
KBc2 −

1

2

Cm

A

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

, (25)

which contains an elastic and an electrostatic term as in the

expression for piezoelectricity. In order to obtain the free en-

ergy, G, this has to be integrated over the surface area of the

lipid membrane. At constant potential Ψ, the curvature c equi-

librates such that

∂g

∂c
= KBc−

Cm

A

(

∂Ψ0

∂c

)

Ψ,T

Ψ = KBc−
Cm

A
βΨ,T Ψ = 0 (26)

Therefore,

c(Ψ) =
Cm

A

βΨ,T

KB
Ψ =

ε

d

βΨ,T

KB
Ψ (27)

This effect is called the ’inverse flexoelectric effect’. It de-

scribes how curvature is induced by an applied potential.

It depends on the bending modulus and the dependence of

polarization on curvature, βΨ,T . In melting transitions, the

curvature-induction by voltage is enhanced because KB ap-

proaches a minimum3. This implies that in the presence of

an applied field, the curvature of a membrane changes upon

changing the temperature - in particular close to transitions.

Both, the investigation of flexoelectric and inverse flexo-

electric effects have been pioneered by Petrov12. In Petrov’s

nomenclature, eq. (27) assumes the form c(Ψ) = ( f/d ·KB)Ψ.

Thermoelectricity Let us assume that in eq. (11) Ψ, and

c are constant, and A is a function depending on temperature.

Then we find

dq = [(Ψ+Ψ0)αΨ,c +CmβΨ,c]dT . (28)

This is the Seebeck effect. It describes the charging of a ca-

pacitor by changing temperature. Since the changes in capac-

itance are especially strong in the melting transition of mem-

branes, the coefficient αΨ,c (which is positive) typically dis-

plays a maximum at Tm
2. The coefficient βΨ,c that describes

the change in spontaneous polarization with temperature will

also display an extremum. In the absence of spontaneous po-

larization, eq. (28) reduces to

dq

dT
= Ψ

(

∂Cm

∂T

)

Ψ,c

. (29)

Due to changes in area and thickness, the dependence of the

capacitance on temperature is especially large in the melting

transition of a membrane. This effect was described in He-

imburg (2012)2. A related effect, the induction of tempera-

ture changes by charging a membrane is the Peltier effect. It

can occur in membranes due to charge-induced transitions that

lead to an absorption or release of latent heat from the mem-

brane.

Applications

Electrostriction

The charges on a capacitor attract each other. These at-

tractive forces can change the dimensions of the membrane

and thereby change the capacitance. If Ψ0 = 0, the elec-

tric contribution to the free energy according to eq. (8) is

Gel = − 1
2
CmΨ

2. For A ≈ const. and Ψ = const., the force

F acting on the layers is

F =
∂Gel

∂d
=−

1

2

(

∂Cm

∂d

)

Ψ
2 =

1

2

CmΨ
2

d
. (30)

This is the force acting on a planar capacitor given in the liter-

ature (e.g.,2). If there exists a constant offset potential Ψ0, we

find instead (eq. (8))

F =
1

2

Cm

d

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

. (31)

Thus, one expects that the force on a membrane is a quadratic

Fig. 5 The change in capacitance as a function of the applied

potential in a black lipid membrane. Solid circles: Symmetric

membrane in 1 M KCl. Both monolayers are made from

zwitterionic bacterial phosphatidyl ethanolamine (PE). Open circles:

Asymmetric membrane in 1 M KCl. One monolayer is consists of

bacterial PE, while the other monolayer consist of the charged

bovine brain phosphatidylserine (PS). Open squares: Same as open

circle, but with smaller salt concentration (0.1 M KCl). The absolute

capacitance, Cm,0 at Ψ = 0 V is approximately 300 pF. Raw data

adapted from14.

function of voltage which displays an offset voltage when the

6 | 1–13
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membrane is polarized. This force can reduce the membrane

thickness and thereby increase the capacitance of a membrane.

Note, however, that for (Ψ+Ψ0)
2 −Ψ

2
0 < 0, the force F is

negative. As a consequence, capacitance will be decreased.

Let us assume a membrane with constant area and small

thickness change, ∆d << d. Then the change in capacitance,

∆Cm, caused by a change of thickness, ∆d, is given by

∆Cm =−ε
A

d2
∆d (32)

Thus, the change in capacitance is proportional to the change

in thickness. If the thickness is a linear function of the force

(F ∝ ∆d), one finds that the capacitance is proportional to the

force F . Therefore, it is a quadratic function of voltage with

an offset of Ψ0,

∆Cm ∝
(

(Ψ+Ψ0)
2 −Ψ

2
0

)

. (33)

The magnitude of the change in capacitance depends on the

elastic constants of the membrane.

Relation (33) was studied by various authors. Using black

lipid membranes, Alvarez and Latorre14 found a quadratic de-

pendence of the capacitance on voltage (Fig. 5). In a sym-

metric membrane made of the zwitterionic (uncharged) lipid

phosphatidylethanolamine (PE), the offset potential Ψ0 in a 1

M KCl buffer was found to be zero. In an asymmetric mem-

brane with one monolayer made of PE and the other made of

the charged lipid phosphatidylserine (PS), a polarization is in-

duced. In a 1 M KCl buffer, the offset potential was Ψ0 = 47

mV, while it was Ψ0 = 116 mV in a 0.1 M KCl buffer. It is ob-

vious from Fig. 5 that within experimental error the shape of

the capacitance profile is unaffected by the nature of the mem-

brane. Only the offset potential is influenced by composition

and ionic strength. This suggests that the offset potential has

an ionic strength dependence. In this publication, we do not

explore the theoretical background of this experimental fact.

In a range of ±300mV around the minimum capacitance,

the change in capacitance, ∆Cm, is of the order of < 1.5 pF,

while the absolute capacitance, Cm,0, at Ψ = 0 is approxi-

mately 300 pF14. Thus, the change in capacitance caused by

voltage is very small compared to the absolute magnitude of

the capacitance.

Membrane conductance and rectification

A very interesting application of electrostriction is the influ-

ence of voltage on membrane permeability. It has been found

that membranes can form pores that appear as quantized con-

duction events upon the application of potential difference

across the membrane15–19 (see right insert in Fig. 6). The

likelihood to form a pore is thought to be proportional to the

square of the applied electric potential20,21. This assumption

is based on the hypothesis that an increase in voltage thins the

membrane (as described in the previous section) and eventu-

ally leads to an electric breakdown linked to pore formation.

Laub et al.22 found that the current-voltage (I-V ) relation for

a chemically symmetric phosphatidylcholine membrane patch

formed on the tip of a glass pipette was a non-linear function

of voltage which was not symmetric around Ψ = 0, but rather

outward rectified (Fig. 6).

Fig. 6 Current through a lipid membrane (10:1 DMPC:DLPC,

T=30◦C, 150mM) on a patch pipette as a function of voltage. The

current-voltage relation can nicely be fitted by the simple model

described in the text. The offset potential is Ψ0 = 110mV . Left

insert: Open probability of lipid membrane channels. Right insert:

Opening and closing of individual lipid channels as a function of

time at a voltage of 50 mV. Data adapted from23,24.

Blicher et al.23 proposed that an offset potential can explain

the outward-rectification. The free energy difference between

an open and a closed pore, ∆Gp, can be expressed by

∆Gp = ∆Gp,0 +α
(

(Ψ+Ψ0)
2 −Ψ

2
0

)

, (34)

where ∆Gp,0 and α are coefficients describing the difference

in free energy between open and a closed pore in the absence

and the presence of externally applied voltage. The equi-

librium constant between open and closed pores is given by

Kp = exp(−∆Gp/kT ), and the likelihood of finding an open

pore is given by Popen = Kp/(1+Kp), shown in the left insert

of Fig. 6. The I-V relation can be expressed as

I = γpPopenΨ . (35)

This relation perfectly describes the experimental current-

voltage data if a offset potential of Ψ0 = 110 mV was assumed
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(solid line in Fig. 6). Thus, inward and outward rectified I-V

profiles can be found in pure lipid membranes in the complete

absence of proteins. They find their origin in the polarization

of the membrane and the effect of electrostriction.

The most likely origin of the offset potential is polarization

of the membrane in the patch pipette due to curvature (flex-

oelectricity23). The above analysis implies that many asym-

metric phenomena of biomembranes could have their origin in

a spontaneous polarization of the membrane as a whole.

Piezoelectricity and capacitive susceptibility: Influence of

the potential on the membrane dimensions and capaci-

tance close to a melting transition

As discussed above, the influence of voltage on the capaci-

tance is small in the gel and in the fluid phase because mem-

branes are not very compressible in their pure phases. How-

ever, close to the phase transition between gel and fluid, mem-

branes become very compressible3. In this transition, the

thickness of the membrane, d, decreases by about 16% and

the area, A, increases by about 24%3 for the lipid dipalmi-

toyl phosphatidylcholine (DPPC), with a melting temperature

Tm = 314.15K. Therefore, the capacitance of the fluid mem-

brane is about 1.5 time higher than the capacitance of the gel

phase2.

In the following we wish to describe the influence of volt-

age on membrane area, capacitance and charge. According to

eq. (8), the Gibbs free energy difference caused by an external

electric field can be written as

∆Gel = Gel
f luid −Gel

gel =−
∆Cm

2

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

, (36)

where ∆Cm is the difference between the capacitance of gel

and fluid phase. Here, we assumed that both the offset poten-

tial Ψ0 and the dielectric constant ε do not change with the

state. We have confirmed the latter in experiments on the di-

electric constant in the melting transition of oleic acid using

a parallel plate capacitor (data not shown). We found that the

changes of the dielectric constant caused by the melting of

oleic acid (Tm ≈ 17◦C) are very small.

It has been shown experimentally that in the vicinity of the

lipid melting transition changes of various extensive variables

are proportionally related3,25,26. For instance, changes in en-

thalpy are proportional to changes in area, in volume and we

assume that a similar relation holds for changes in thickness.

Further, close to transitions the elastic constants are closely

related to the heat capacity. For instance, the temperature-

dependent change of the isothermal compressibility is propor-

tional to heat capacity changes. Thus, membranes are more

compressible close to transitions, and it is to be expected that

the effect of potential changes on membrane capacitance is

enhanced. This will be calculated in the following.

We assume that the lipid melting transition is described by

a two-state transition governed by a van’t Hoff law, so that the

equilibrium constant between the gel and the fluid state of the

membrane can be written as2,27

K(T,Ψ) = exp

(

−n
∆G

RT

)

(37)

where n is the cooperative unit size which describes the num-

ber of lipids that change state cooperatively (for LUVs of

DPPC we used n = 17023). The free energy difference be-

tween gel and fluid membranes is given by

∆G = (∆H0 −T ∆S0)+∆Gel , (38)

where ∆H0 = 35 kJ/mol and ∆S0 = 111.4 J/mol K (for DPPC).

From the equilibrium constant we can calculate the fluid frac-

tion, the average fraction of the lipids that are in the fluid state,

f f (T,Ψ) =
K(T,Ψ)

1+K(T,Ψ)
. (39)

For DPPC LUV, the thickness in the gel and fluid state is

given by dg = 4.79 nm and d f = 3.92 nm, respectively. The

area per lipid is Ag = 0.474 nm2 and A f = 0.629 nm2 3. We

assume a dielectric constant of ε = 3 · ε0 independent of the

state of the membrane, and that the offset potential Ψ0 = 70

mV is also a constant. The area is described by A(T,Ψ) =
Ag + f f ·∆A, and the membrane thickness by d(T,Ψ) = dg −
f f ·∆d, respectively. Both, temperature and voltage-dependent

area, A(T,Ψ), and capacitance, Cm = εA(T,Ψ)/d(T,Ψ) are

shown in fig. 7. For small variations of the potential around

Ψ =−Ψ0, the change in capacitance is well approximated by

a quadratic function (insert in fig. 7). The gel phase capaci-

tance is smaller than the fluid phase capacitance. Due to the

effect of electrostriction, an increase in voltage can induce a

melting transition. In this transition, the capacitance increase

until the value for the fluid phase is reached. By necessity, the

charge on the membrane also undergoes a stepwise change

(fig. 7, top right). For this reason, the capacitive suscepti-

bility Ĉm = (∂q/∂Ψ) given by eq. (14) displays maxima at

the transition voltage if the temperature is within or below the

melting regime. Due to the presence of an offset potential,

the transition profiles are not symmetric around Ψ = 0. One

can recognize that the sensitivity of the capacitance to voltage

changes close to the transition is much larger than that of the

pure phases (fig. 5). It is also a sensitive function of the tem-

perature. Fig. 7 shows Cm(Ψ) for five different temperatures

close to the melting temperature of DPPC at 314.15 ◦C. At

T = 314.5 K, the change in capacitance at Ψ−Ψ0 = 300 mV

is approximately 3% compared to the about 0.5% experimen-

tally measured in the absence of a transition (Fig. 5). Due to

the presence of a melting transition, the curve profile in Fig. 7

is only a quadratic function of potential close to Ψ =−Ψ0. If
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Fig. 7 Change of capacitance, capacitive susceptibility, area and membrane charge as a function of applied voltage at five temperatures close

to the melting transition of a membrane. Parameters are for LUV of DPPC, where ∆Cm ≈ 656 J/(mol·V2), and the melting temperature

Tm = 314.15K. Ψ0 was chosen to be 70 mV. The insert in the bottom left panel shows the normalized capacitance changes for comparison

with Fig. 5. In contrast to the capacitance, the capacitive susceptibility displays maxima at the voltage-induced melting transition.

the temperature is lower than Tm, one finds voltage-induced

transitions with a temperature-dependent transition voltage.

Above this critical voltage the change in capacitance can be

as high as 50%. The coefficient αc,T in eq. (14) is given by

αc,T =
1

(Ψ+Ψ0)

(

Ĉm −Cm

)

. (40)

Close to the transition, it is a non-linear function of the ther-

modynamic variables (Fig. 8). In the absence of a transition,

αc,T is zero because (Ĉm −Cm)≈ 0. If the spontaneous polar-

ization Ψ0 is independent of the applied potential, as assumed

here, the coefficient βc,T is zero. However, generally the co-

efficients αi,k and βi,k are nonlinear functions of the variables

close to transitions. Under these conditions, the electrostatics

of membranes is especially interesting.

The dependence of the melting temperature on the ap-

plied potential The total free energy difference between gel

and fluid phase, ∆G, given by eq. (38) consists of an enthalpic

and an entropic contribution. At the melting temperature, Tm,

the Gibbs free energy difference ∆G is zero, so that

Tm = Tm,0

(

1+
∆Gel

∆S0

)

= Tm,0

(

1−
1

2

∆Cm

∆S0

(

(Ψ+Ψ0)
2 −Ψ

2
0

)

)

, (41)

where Tm,0 = ∆H0/∆S0 is the melting temperature in the ab-

sence of an external field (for DPPC: ∆H0 = 35 kJ/mol, Tm,0 =
314.15 K and ∆S0 = 111.4 J/mol· K 3). This result describes

the effect of electrostriction on the lipid melting transition in

the presence of spontaneous polarization. It is a generaliza-

Fig. 8 The coefficient αc,T = (∂Cm/∂Ψ) as a function of applied

voltage at five different temperatures close to the melting

temperature Tm. Parameters as in Fig. 7.
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(∂D/∂E), which is given by:

ε̂ ≡

(

∂D

∂E

)

=

(

∂ (εE +P0)

∂E

)

= ε +E

(

∂ε

∂E

)

+

(

∂P0

∂E

)

(43)

Thermodynamic susceptibilities are linked to fluctuation rela-

tions. For instance, in2 we showed that the capacitive suscep-

tibility is given by Ĉ =(
〈

q2
〉

−〈q〉2)/kT , i.e., it is proportional

to the fluctuations in charge. This fluctuation relation is valid

as long as the distribution of states is described by Boltzmann

statistics and the area and thickness are kept constant. Analo-

gously, for constant volume, v, the dielectric susceptibility, ε̂ ,

is given by

ε̂ = v

〈

D2
〉

−〈D〉2

kT
. (44)

Since this is a positive definite form, ε̂ is always larger than

zero. The mean displacement, 〈D〉, always increases with an

increase in the electric field, E. If either ε or the permanent

polarization P0 are different in the gel and the fluid state of a

membrane, one can induce a transition. In this transition, the

dielectric susceptibility displays an extremum.

Summary and Discussion

In this publication, we provided a general thermodynamic

treatment of polarization effects on the properties of lipid

membranes. When applied to a membrane in an electrolyte,

these electric effects can all be related to the charging (or dis-

charging) of capacitors by either potential, curvature, area (or

lateral pressure) or temperature changes. Curvature and area

changes can lead to an offset potential or a spontaneous polar-

ization. This is important because biological membranes are

known to be polar and changes in voltage are generally con-

sidered to be central to the understanding of the functioning of

cells. We show that a permanent or spontaneous polarization

of a membrane influences the properties of a membrane capac-

itor such that it is discharged at a voltage different from zero.

We relate this voltage to an ”offset potential”. The existence

of this potential has the consequence that membrane properties

even of chemically symmetric membranes are controlled dif-

ferently for positive and negative voltages. We derived equa-

tions for the piezoelectric and inverse piezoelectric effect. The

first considers the change in the offset potential when chang-

ing the membrane area. The second considers the change in

membrane area by an applied field, which depends on the elas-

tic modulus of the membrane. Finally, we derived general re-

lations for the flexoelectric and the inverse flexoelectric effect.

We showed that in some simple limiting cases, our derivations

lead to relations identical to those of Petrov12 who pioneered

the field of membrane flexoelectricity (e.g.,8,12,13,29–33).

An electric field applied across a lipid membrane generates

a force normal to the membrane surface due to the charging

of the membrane capacitor. The resulting reduction in mem-

brane thickness is called electrostriction2. For fixed mem-

brane dimensions, the electrostrictive force is a quadratic func-

tion of voltage. Due to membrane thinning induced by the

forces, one finds an increase in membrane capacitance. This

has been demonstrated for symmetric black lipid membranes

made from phosphatidylethanolamines (Fig. 5, Alvarez et

al., 197814). However, for an asymmetric membrane made

of charged lipids on one side and zwitterionic lipids on the

other side (thus displaying polarity) the minimum capacitance

is found at a voltage different from zero (Fig. 5,14). This indi-

cates that a spontaneous electric polarization of the membrane

influences the capacitive properties of a membrane. This has

also been found in biological preparations. Human embryonic

kidney cells display an offset potential of −51 mV34. This

indicates that the capacitance in electrophysiological models

such as the Hodgkin-Huxley model1 is incorrectly used be-

cause offset potentials are not considered. However, it is very

likely that the offset potentials are closely related to the resting

potentials of membranes. It should also be noted that the ca-

pacitance is typically dependent on the voltage. This effect has

also not been considered in classical electrophysiology mod-

els. We treat that here in terms of a ’capacitive susceptibility’

(eq. (13), cf.2).

Electrostrictive forces also influence melting transitions of

lipid membranes. Since the fluid state of the membrane dis-

plays a smaller thickness than the gel phase, an electrostrictive

force will shift the state of the membrane towards the fluid

state. Heimburg2 calculated a decrease of the melting tem-

perature, Tm, which is a quadratic function of voltage. Since

the membrane was considered being symmetric, the largest

Tm is found at Ψ = 0. Here, we showed that a membrane

which displays a spontaneous polarization in the absence of

an applied electric field possesses an offset potential, Ψ0, in

the free energy (eq. (36)). The respective equation contains

the term ((Ψ+Ψ0)
2 −Ψ

2
0) = Ψ

2 + 2ΨΨ0, which is approxi-

mately linear for Ψ ≪ Ψ0 (eq. (8)). In fact, Antonov and col-

laborators found a linear dependence of the melting tempera-

ture on voltage35. This indicates that the membranes studied

by Antonov and collaborators35 were polar. Antonov’s exper-

iment determined the voltage-dependence of the melting tem-

perature by measuring the permeability changes in the transi-

tion. The authors made use of the fact that membranes display

maximum conductance in lipid phase transitions17,36. In the

’Applications’ section we showed how voltage can influence

membrane permeability in the presence of spontaneous polar-

ization. Surprisingly, the corresponding current-voltage (I-V )

relations of membrane conductance can be inward or outward

rectified, and resemble the I-V relations of many proteins19.

Here, we investigated two possible mechanisms that can
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give rise to spontaneous polarization in the absence of an ap-

plied field, which both break the symmetry of the membrane.

The first (flexoelectricity) acts by allowing the membrane to

be curved (thus introducing a curvature, c) and a difference

of the lateral tension within the two monolayers. The second

mechanism acts by assuming a chemically or physically asym-

metric lipid composition on the two leaflets. An example for

a physically asymmetric membrane is a situation where one

monolayer is in a fluid state while the other monolayer is in a

gel state. Chemical asymmetry assumes a different lipid com-

position on the two sides of the membrane. The magnitude of

the resulting offset, Ψ0, is strongly influenced by experimental

conditions such as the lipid composition, salt concentration,

pH, or the presence of divalent ions. Permanent polarization

of the lipids can not only lead to an electrical offset but also

to an enhanced dielectric constant. For biological membranes,

polarization asymmetries can originate from any constituting

element of the membrane including integral membrane pro-

teins (see Fig. 11 for a schematic description). We can also

speculate that other membrane adhesive molecules with large

dipoles can be used to create an asymmetric membrane, e.g.,

soluble proteins or lipid-associated molecules such as long-

chain sugars. Depending on the nature of the asymmetry, the

system can display piezoelectric properties.

Fig. 11 The polarization of biomembranes can have various

reasons. For instance, it can originate from curvature, from an

asymmetry of zwitterionic and negatively charged lipids, from

polarized or charged integral and peripheral proteins (green objects),

from concentration differences of ions such as Na+, K+, Cl− and

Ca2+, or from pH difference.

The offset potential can have interesting consequences for

capacitive currents. The charge on a capacitor is given by q =
Cm(Ψ+Ψ0). Therefore, for constant Ψ0 the capacitive current

is given by

Ic(t) =
dq

dt
=Cm

dΨ

dt
+(Ψ+Ψ0)

dCm

dt
(45)

For a positive change in potential, the first term in eq. (45) is

positive and leads to a positive current. If the change in voltage

happens instantaneously, the corresponding current peak is

very short. The second term describes the temporal change in

the capacitance induced by the voltage change. It depends on

the relaxation time of the capacitor dimensions, which close

to transitions can range from milliseconds to seconds. Thus,

it can be distinguished from the first term. Let us consider the

situation shown in the insert of Fig. 7 (Ψ0 = 70 mV, T=314.5

K) with a membrane capacitance of ≈ 1 µF/cm2. Here, a jump

from Ψ=−70 mV to Ψ=−10 mV yields a positive change in

capacitance of ∆Cm = 2.6 nF/cm2. If the offset potential were

Ψ0 = −70 mV instead, the same jump would change the ca-

pacitance by ∆Cm =−7.8 nF/cm2. Therefore, the second term

in eq. (45) is positive in the first situation but negative in the

second situation. For this reason, depending on the offset po-

tential and holding potential, the capacitive current associated

to the second term in eq. (45) can go along the applied field

or against the applied field. Similarly, for a jump in potential

of +60 mV, the capacitive current would depend on the hold-

ing potential before the jump. For Ψ0 = 70 mV, the change

in capacitance is ∆Cm = −2.6 nF/cm2 for a jump from −130

mV to −70 mV. It is ∆Cm = +8.9 nF/cm2 for a jump from

+70 mV to +130 mV. The typical time-scale of processes in

biomembranes is a few milliseconds to a few ten milliseconds.

It can be different for different voltages. Thus, slow currents

on this time-scale against an applied field can originate from

voltage-induced changes in lipid membrane capacitance. If

the offset-potential also depends on voltage, this situation is

more complicated.

Flexoelectric and piezoelectric phenomena have also be

considered to be at the origin of an electromechanical mech-

anism for nerve pulse propagation37. In 2005, Heimburg and

Jackson proposed that the action potential in nerves consists

of an electromechanical soliton. The nerve pulse is consid-

ered as a propagating local compression of the membrane with

a larger area density. According to the piezoelectric effect

treated here (eq. (16), a change in membrane area can lead to

the charging of the membrane capacitor. Alternatively, due to

the inverse piezoelectric effect a change in the applied mem-

brane potential can induce area changes (eq. (21) and thus in-

duce a density pulse. The inverse piezoelectric effect is very

dependent on the lateral compressibility of a membrane. Thus,

is is largely enhanced in the melting transition where the com-

pressibility is high. Further, these effects will largely depend

on membrane polarization.

Finally, it should be mentioned that some of the polariza-

tion effects on artificial membranes are not very pronounced

because changes in polarization due to changes in area are

not very large. For instance, a voltage change of 200 mV

changes the transition temperature by only 0.12 K. However,

the absolute magnitude of the effect largely depends on offset
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polarizations. These could be influenced by lipid-membrane-

associated molecules (such as proteins) with large dipole

moments.
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