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The dynamical facilitation scenario, by which localized relaxation events promote nearby relaxation events in an avalanching
process, has been suggested as the key mechanism connectingthe microscopic and the macroscopic dynamics of structural
glasses. Here we investigate the statistical features of this process via the numerical simulation of a model structural glass.
First we show that the relaxation dynamics of the system occurs through particle jumps that are irreversible, and that cannot be
decomposed in smaller irreversible events. Then we show that each jump does actually trigger an avalanche. The characteristic
of this avalanche change on cooling, suggesting that the relaxation dynamics crossovers from a noise dominated regime where
jumps do not trigger other relaxation events, to a regime dominated by the facilitation process, where a jump trigger more
relaxation events.

1 Introduction

Structural glasses, which are amorphous solids obtained by
cooling liquids below their melting temperature avoiding crys-
tallization, provide an array of questions that has been chal-
lenging researchers in the last decades1–3. These include the
nature of the glass transition, the origin of the extraordinarily
sensitivity of the relaxation time on temperature, the Boson-
peak, the relaxation dynamics. In this respect, here we con-
sider that there is not yet an established connection between
the short time single particle motion, and the overall macro-
scopic dynamics. When observed at the scale of a single par-
ticle, the motion of structural glasses is well known to be in-
termittent. This is commonly rationalized considering each
particle to rattle in the cage formed by its neighbors, untilit
jumps to a different cage4. Conversely, when the motion is
observed at the macroscale, a spatio-temporal correlated dy-
namics emerges5. Dynamical facilitation6–8, by which a local
relaxation event facilitates the occurrence of relaxationevents
in its proximity, has been suggested as a key mechanism con-
necting the microscopic and the macroscopic dynamics. In-
deed, kinetically constrained lattice model9, which provide
the conceptual framework of the dynamical facilitation sce-
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nario, reproduce much of the glassy phenomenologyand are at
the basis of a purely dynamical interpretation of the glass tran-
sition. Different numerical approaches have tried to identify
irreversible relaxation events10–20, and both numerical21,22

and experimental works23,24 revealed signatures of a dynami-
cal facilitation scenario.

Here we provide novel insights into the dynamical facili-
tation mechanisms through the numerical investigation of a
model glass former. We show that it is possible to identify
single particle jumps that areelementaryrelaxations, being
short-lasting irreversible events that cannot be decomposed in
a sequence of smaller irreversible events. We then clarify that
these jumps lead to spatio-temporal correlations as each jump
triggers subsequent jumps in an avalanching process. The sta-
tistical features of the avalanches changes on cooling. Around
the temperature where the Stokes-Einstein relation first breaks
down, the dynamics shows a crossover from a high tempera-
ture regime, in which the avalanches do not spread and the
dynamics is dominated by thermal noise, to a low temperature
regime, where the avalanches percolate. These results suggest
to interpret dynamical facilitation as a spreading process25,
and might open the way to the developing of dynamical prob-
abilistic models to describe the relaxation of glass formers.

2 Methods

We have performed NVT molecular dynamics simulations26

of a two-dimensional 50:50 binary mixture of 2N = 103 of
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disks, with a diameter ratioσL/σS = 1.4, known to inhibit
crystallization, at a fixed area fractionφ = 1 in a box of
side L. Particles interact via an soft potential27, V(r i j ) =
ε ((σi j − r i j )/σL)

α Θ(σi j − r i j ), with α = 2 (Harmonic). Here
r i j is the interparticle separation andσi j the average diameter
of the interacting particles.This interaction and its variants
(characterized by different values ofα) are largely used to
model dense colloidal systems, such as foams28, microgels29

and glasses30,31. Units are reduced so thatσL = m= ε = kB =
1, wherem is the mass of both particle species andkB the
Boltzmann’s constant. The two species behave in a qualita-
tively analogous way, and all data presented here refer to the
smallest component.
Cage–jump detection algorithm.We segment the trajectory
of each particle in a series of cages interrupted by jumps us-
ing the algorithm of Ref.32, following earlier approaches11.
Briefly, we consider that, on a timescaleδ of few particle col-
lisions, the fluctuationS2(t) of a caged particle position is of
the order of the Debye–Waller factor (DWF)〈u2〉. By compar-
ing S2(t) with 〈u2〉 we therefore consider a particle as caged if
S2(t)< 〈u2〉, and as jumping otherwise. Practically, we com-
puteS2(t) as〈(r(t)−〈r(t)〉δ )

2〉δ , where the averages are com-
puted in the time interval[t − δ : t + δ ], with δ ≃ 10tb, and
tb is the ballistic time. At each temperature DWF is defined
according to Ref.33, 〈u2〉 = 〈r2(tDW)〉, wheretDW is the time
of minimal diffusivity of the system, i.e. the time at which
the derivative of log〈r2(t)〉 with respect to log(t) is minimal.
At each instant the algorithm allows to identify the jumping
particles and the caged ones. We stress that in this approacha
jump is a process with a finite duration. Indeed, by monitoring
whenS2 equals〈u2〉, we are able to identify the time at which
each jump (or cage) starts and ends. We thus have access to
the time,tp, a particle persists in its cage before making the
first after an arbitrary chosent = 0 (persistence time), to the
waiting time between subsequent jump of the same particletw
(cage duration), and to the duration∆t j and the length∆rJ of
each jump.

3 Results

3.1 Jumps as irreversible elementary processes

The idea of describing the relaxation of structural glassesas
consisting of a sequence of irreversible processes is not new,
and different approaches have been followed to identify these
events. For instance, irreversible events have been associated
to change of neighbors13–15, to displacements overcoming a
threshold in a fixed time laps22, to processes identified through
clustering algorithm applied to the particle trajectories21,23, or
to more sophisticated approaches17. We notice that since at
long time particles move diffusively, all procedures that coarse
grains the particle trajectory enough will eventually identify ir-

0,0018 0,0020 0,0022 0,0024

T

10
2

10
3

10
4

tim
e

〈t
p
〉

〈t
w

〉
〈∆t

J
〉T

x

Fig. 1 Average persistence time,〈tp〉, cage duration,〈tw〉 and jump
duration,〈∆tJ〉, as a function of the temperature.〈tw〉 grows as an
Arrhenius〈tw〉 ∝ exp(A/T) (red full line), whereas〈tp〉 is
compatible with several super–Arrhenius laws.The black full line
is, for example, a fit〈tp〉 ∝ exp

(

A/T2
)

, while the black dashed line
is a Vogel–Fulcher law〈tp〉 ∝ exp(B/(T −T0)), predicting a
divergence at a finite temperatureT0 ≃ 0.001. The arrow indicates
the temperatureTx = 0.002 where〈tp〉 and〈tw〉 decouple and the SE
relation breaks down.Conversely,〈∆tJ〉 remains roughly constant
on cooling.

reversible events. Here we show that the jumps we have iden-
tified are irreversible, and we give evidence suggesting that
these can be considered as ‘elementary’ irreversible events, i.e
that they are the smallest irreversible single–particle move, at
least in the range of parameters we have investigated.

Investigating both the model considered here32, as well as
the 3d Kob-Andersen Lennard-Jones (3d KA LJ) binary mix-
ture34 and experimental colloidal glass35, we have previously
shown that the protocol defined in Sec. 2 leads to the identi-
fication of irreversible events. Indeed, the mean square dis-
placement of the particles increases linearly with the number
of jumps, allowing to describe the dynamics as a continuous
time random walk (CTRW)36.

Within this approach two fundamental timescales are found,
the average persistence time〈tp〉 and the average cage dura-
tion 〈tw〉. The former corresponds to the relaxation time at the
wavelength of the order of the jump length〈∆rJ〉, while the
latter is related to the self diffusion constant,D ∝ 〈∆r2

J〉/〈tw〉.
Fig.1 shows that the two timescales are equal at high temper-
ature, but decouple at a temperatureTx ≃ 0.002,which marks
the onset of the Stokes-Einstein (SE) breakdown at the wave-
length of the jump length.We find that〈tw〉 shows an Arrhe-
nius temperature dependence〈tw〉 ∝ exp(A/T), while 〈tp〉 in-
creases with a faster super–Arrhenius behaviour(see the cap-
tion of Fig.1). It is worth noticing that the decoupling between
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Fig. 2 Mean squared jump length〈∆r2
J〉 as a function of the jump

duration∆tJ at different temperatures.

the average persistence and waiting time, is known to con-
trol the breakdown of the SE relation at generic wavelengths,
and to induce temporal heterogeneities34,37. These findings
suggest thatTx may represent a crossover from a localized to
a more correlated relaxation process.A similar scenario has
been recently reported for models of atomic glass forming liq-
uids, where the SE breaks down and the size of dynamics het-
erogeneities markedly accelerates below a well defined value
of Tx.38

We performed two investigations supporting the elemen-
tary nature of the jumps we have identified. First, we have
considered the change of the average jump duration〈∆tJ〉 on
cooling, as the duration of elementary relaxations is expected
not to grow with the relaxation time. Fig. 1 shows that the
〈∆tJ〉 is essentially constant, despite the relaxation time〈tp〉
varying by order of magnitudes. Indeed, at low temperature
〈tp〉/〈∆tJ〉 ≫ 1, clarifying why we call them ‘jumps’. Then
we have considered how particles move while making a jump.
Fig. 2 illustrates that the mean squared jump length grows sub-
diffusively as a function of the jump duration, with a subdif-
fusive exponent that decreases on cooling. Conversely, one
would expect a diffusive behaviour if jumps were decompos-
able in a series of irreversible steps.

These results supports the identification of the jumps we
have defined with the elementary relaxations leading to the
macroscopic relaxation of the particle system.

3.2 Correlations between jumps

While each particle behaves as a random walker as it performs
subsequent jumps, yet jumps of different particles could be
spatially and temporally correlated. We investigate thesecor-
relations focusing on the properties of a jump birth scalar field,
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Fig. 3 Excess probability to observe contemporary jumps,CJ(r,0),
as function of the distance and at different temperature, asindicated.
The dashed line is a guide to the eyes∝ exp(−1.35/r).

defined as

b(r, t) =
1
N

N

∑
i

bi(t)δ (r − r i(t)). (1)

Herebi(t) = 1 if particle i starts a jump betweent andt + δ t,
whereδ t is our temporal resolution,bi(t) = 0 otherwise. The
scalar fieldb allows to investigate the statistical features of the
facilitation process by which a jump triggers subsequent ones.
To this end, we indicate with〈b(r, t)〉b(0,0)=1 the probability
that a jump starts in(t, r) given a jump in(t = 0, r = 0), and
investigate the correlation function

CJ(r, t) =

[

〈b(r, t)〉b(0,0)=1−〈b〉

g(r, t)

]

. (2)

Here g(r, t) is a time dependent generalization of the radial
distribution function

g(r, t)dr =
1

2πrρ(N−1) ∑
i 6= j

δ (r −|r j(t)− r i(0)|), (3)

through which we avoid the appearance of spurious oscil-
lations in the correlation functionCJ(r, t) due to the short
range ordering of the system. In Eq.2,〈b〉 is the spatio-
temporal average of the jump birth, and decreases on cooling
as〈b〉= (〈tw〉+ 〈∆tJ〉)−1 (at low temperature〈b〉 ≃ 〈tw〉−1 as
〈tw〉 << 〈∆tJ〉). Accordingly, the correlation functionCJ(r, t)
is the probability that a jump triggers a subsequent one at a
distancer after a timet.

We first consider the spatial correlations between contem-
porary jumps, where two jumps are considered contemporary
if occurring within our temporal resolution. Fig. 3 shows that
CJ(r,0) decays exponentially, with a temperature independent
correlation lengthξJ(0,T) ≃ 1.35. This result clarifies that
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Fig. 4 Evolution of the spatial correlation between jumps with
time. Each panel refer to a different temperature, as indicated.
Within each panel, the different curves correspond to
t = 0,10,20,30,100,500,103 and 105, from top to bottom. At high
temperature data corresponding to the largest times are missing as
the correlation is too small to be measured.

jumps aggregate in cluster of roughlyNcorr ≃ ρπξ 2
J (0) ≃ 5

events. A similar scenario has been observed in a different
model system, where jumps have been observed to aggregate
in clusters of roughly 7.6 particles21. Our results also support
previous findings suggesting22 that the elementary excitations
of structural glasses have a temperature-independent length
not larger than few particle diameters and are consistent with a
recently introduced first principle extension of the Mode Cou-
pling Theory39. The investigation of the displacements of the
particle jumping in each cluster does not reveal characteristic
spatial features. Structured particle motion, such as string-
like particle displacements40 or displacements reminiscent of
T1 events41 must therefore result from a succession of events
rather than a single one.

We now consider the time evolution of the spatial correla-
tion between jumps. Fig. 4 illustrates that at all temperatures
and times the decay of the correlation function is compatible
with an exponential,CJ(r, t) ∝ A(t)exp(−r/ξJ(t)). The time
dependence of the amplitude is illustrated in Fig. 5. At all
temperatures the short time decay of the amplitude is exponen-
tial, A(t,T) =A(0,T)exp(−t/τA(T)), the characteristic decay
time slightly increasing on cooling. While no other decay is
observed at high temperatures, at low temperatures the expo-
nential decay crossovers towards a much slower power-law
decayA(t)∼ t−a, with a≃ 0.4. Fig. 6 shows that the correla-
tion length slowly grows in time, approximately asξJ(t)∼ tb,
with b≃ 0.1.

The initial fast decrease of the amplitude makes difficult to
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Fig. 5 Panel a shows that the amplitudeA(t) of the jump
correlation functionCJ(r, t). Panels b and c clarify that a first
exponential decay is followed, at low temperature, by a second one,
which approximately follows a power law.
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Fig. 6 Time dependence of the jump correlation length, at different
temperatures. The data suggest that at low temperature the
correlation length slowly grows in time, asξJ(T) ∝ t0.1.

obtain reliable estimates of its time dependence and correla-
tion length, despite intense computational efforts. Neverthe-
less, our data clearly show the reported exponential to power–
law crossover in the decay of the amplitude ofCJ(r, t). The
highest temperature at which this decay exhibits a power law
tail, is consistent with the temperatureTx where〈tw〉 and〈tp〉
first decouple, and the SE relation breaks down (see Sec.3.1).
This suggests that the breakdown of the SE relation is related
to a crossover in the features of the facilitation process. We in-
vestigate this crossover focussing on the number of jumps trig-
gered by a given jump. This is given byNtr(T) ∝

∫ ∞
0 n(t,T)dt,

wheren(t,T) =
∫

C(r , t)rdr ∝ A(t,T)ξ 2(t,T)dt, is the num-
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ber of jumps it triggers at timet. As at high temperature the
variation of the correlation length is small with respect tothat
of the amplitude, one can assumeξ (t,T) ≃ ξ (0,T) and es-
timate Ntr(T) ∝ A(0,T)ξ 2(0,T)τA(T). At low temperature,
the integral is dominated by the long time power law behavior
of the amplitude and of the correlation length, and the num-
ber of triggered events diverges asNtr(T, t) ∝

∫ t
0 A(t)ξ 2(t)dt ∝

t−a+2b+1 ∝ t0.8.

4 Discussion

We conclude by noticing that the above scenario suggests
to interpret facilitation as an infection spreading process, in
which a particle is infected each time it jumps. Since each
particle can be infected more than once, the relevant infec-
tion model is of susceptible-infected-susceptible (SIS) type.
In this framework, the exponential to power–law crossover in
the decay of the amplitude ofCJ(r, t) signals a transition from
a high temperature resilient regime, in which a single infected
site only triggers a finite number of infections, to a low tem-
perature regime in which the number of triggered infection
diverges. A complementary interpretation can be inspired by
the diffusing defect paradigm1,42. We suggest that the correla-
tion length of contemporary jumps,ξJ(0), is akin to the typical
defect size, which, according to our results, is temperature in-
dependent. In the high temperature regime, this is the only
relevant correlation length, as defects are rapidly created and
destroyed by noisy random fluctuations, before they can sen-
sibly diffuse. At low temperature, the effect of noise becomes
smaller: the short time correlation length is still dominated
by the defect size,ξJ(t < τA) ≃ ξJ(0), whereas its long time
behaviour,ξJ(t >> τA), is controlled by the typical distance
defects have moved up to timet. Further studies are necessary
to investigate which of the two interpretations is more appro-
priate.
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We identify the smallest irreversibile events in glass formers and investigate their 

correlations. 

Page 7 of 8 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

 

222x141mm (72 x 72 DPI)  

 

 

Page 8 of 8Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


