Soft Matter

Accepted Manuscript

This is an Accepted Manuscript, which has been through the
Royal Society of Chemistry peer review process and has been
accepted for publication.

Accepted Manuscripts are published online shortly after
acceptance, before technical editing, formatting and proof reading.
Using this free service, authors can make their results available

to the community, in citable form, before we publish the edited
article. We will replace this Accepted Manuscript with the edited
and formatted Advance Article as soon as it is available.

Soft Matter

You can find more information about Accepted Manuscripts in the
Information for Authors.

Please note that technical editing may introduce minor changes

to the text and/or graphics, which may alter content. The journal's

standard Terms & Conditions and the Ethical guidelines still

&;ﬁm apply. In no event shall the Royal Society of Chemistry be held
responsible for any errors or omissions in this Accepted Manuscript

or any consequences arising from the use of any information it

contains.

ROYAL SOCIETY
OF CHEMISTRY www.rsc.org/softmatter


http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/

Page 1 of 11

Soft Matter .

CHEMISTRY

Journal Name

Cite this: DOI: 10.1039/XXXXXXXXXX

Received Date
Accepted Date

DOI: 10.1039/XXXXXXXXXX

www.rsc.org/journalname

Nonlinear electro-osmosis of dilute non-adsorbing
polymer solutions with low ionic strength

Yuki Uematsu*®

Nonlinear electro-osmotic behaviour of dilute non-adsorbing polymer solutions with low salinity is
investigated using Brownian dynamics simulations and a kinetic theory. In the Brownian simula-
tions, the hydrodynamic interaction between the polymers and a no-slip wall is considered using
the Rotne-Prager approximation of the Blake tensor. In a plug flow under a sufficiently strong ap-
plied electric field, the polymer migrates toward the bulk, forming a depletion layer thicker than the
equilibrium one. Consequently, the electro-osmotic mobility increases nonlinearly with increasing
electric field and becomes saturated. This nonlinear mobility does not depend qualitatively on
the details of the rheological properties of the polymer solution. Analytical calculation using the
kinetic theory for the same system quantitatively reproduces the results of the Brownian dynamics

simulation well.

1 Introduction

Electro-osmosis is observed widely in many systems such as col-
loids, porous materials, and biomembranes. It characterises
the properties of interfaces between solids and electrolyte so-
lutions. 2 Interests in applications of electro-osmosis has been
growing recently. For instance, it is used to pump fluids in mi-
crofluidic devices, as it is more easily implemented than pressure-
driven flow.® Application to an electrical power conversion in
chemical engineering is also very fascinating.*> When the elec-
trokinetic properties of a surface are characterised by a zeta po-
tential, the Smoluchowski equation is often employed in conjunc-
tion with measurements of the electro-osmotic or electrophoretic
mobilities. However, the validity of this equation should be con-
sidered more seriously. It is derived from the Poisson-Boltzmann
equation and Newton’s constitutive equation for viscous fluids.
The zeta potential is defined as the electrostatic potential at the
plane where a no-slip boundary condition is assumed. When
these equations cannot be validated, the Smoluchowski equation
is also questionable. The Poisson-Boltzmann equation, the simple
hydrodynamic equations, or both sometimes do not work well for
a strong coupling double layer,® inhomogeneity of viscosity and
dielectric constant near the interface,”® and non-Newtonian flu-
ids?-12, for example.

To control the electrokinetic properties of charged capillaries,
the structures of liquid interfaces in contact with charged sur-
faces are modified by grafting or adding polymers. '3 In capillary
electrophoresis, for example, the electro-osmotic flow is reduced
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by grafted polymers on the interfaces. Several studies of surfaces
with end-grafted charged and uncharged polymers have also been
reported. 1419 Under a weak applied electric field, the grafted
polymer remains in the equilibrium configuration, and the resul-
tant electro-osmotic velocity behaves linearly with respect to the
electric field. To measure the mobility of such a surface, the hy-
drodynamic screening and anomalous charge distributions due
to the grafted polymers are important. %12 When a sufficiently
large electric field is applied, the polymers are deformed by the
flow and electric field; thus, the electro-osmotic velocity becomes
nonlinear. 16 Note that the end-grafted polymers cannot migrate
toward the bulk, as one of the ends is fixed on the surfaces.

When we add polymers to solutions, a depletion or adsorption
layer is often formed near a solid wall, as well as diffusive layers
of ions in equilibrium states. The interaction between the poly-
mers and the wall determines whether the polymers are depleted
from or adhere to the surfaces. The thickness of the depletion or
adsorption layer is of the same order as the gyration length of the
polymers. When polymers adhere to the wall, the viscosity near
the wall becomes large, so the electro-osmotic mobility is strongly
suppressed. 20 Moreover, it is known that an adsorption layer of
charged polymers can change the sign of the mobility. 7-21-24 The
curvature of the surface also modulates the surface charge density
and even increases the mobility beyond the suppression caused by
the viscosity enhancement.20

Electro-osmosis of a non-adsorbing polymer solution has been
analysed in terms of two length scales: the equilibrium depletion
length & and the Debye length A.7-?° In the depletion layer, the
viscosity is estimated approximately as that of the pure solvent,
and it is smaller than the solution viscosity in the bulk. When

Journal Name, [year], [vol.], 1-10 | 1



Soft Matter

the Debye length is smaller than the depletion length, the electro-
osmotic mobility is larger than that estimated from the bulk value
of the viscosity. Typically, for 10 mM electrolyte solutions, one
has A ~ 3nm and & ~ 100nm. In such a case, 2628 an electro-
osmotic flow with a high shear rate is localised at a distance 4
from the wall. Thus, the electro-osmotic flow profile and resul-
tant electro-osmotic mobility are almost independent of the poly-
mers. Such behaviours are experimentally observed in solutions
of carboxymethyl cellulose with urea.2” On the other hand, in
the solutions of small polymers with low salinity (typically for
0.1 mM electrolyte solutions, A ~ 30nm and &) ~ 5nm), the
electro-osmotic mobility is suppressed by the polymeric stress. 2>
When a sufficiently strong electric field is applied, the electro-
osmosis of a polymer solution shows nonlinear behaviours. 27-2%
These nonlinearities are theoretically analysed by models of uni-
form non-Newtonian shear-thinning fluids.®12 Assuming that
polymers remain in the interfacial layers and the viscosity de-
pends on the local shear rate, as in power-law fluids, their
phenomenological parameters differ from those in the bulk, as
the concentration in the interfacial layers differs from the bulk
concentration.?’ Thus, the understanding of nonlinear electro-
osmosis remains phenomenological. Furthermore, when shear
flow is applied to polymer solutions near a wall, it is experimen-
tally and theoretically confirmed that cross-stream migration is
induced toward the bulk.3%-32 The concentration profiles of the
polymer near the wall have been calculated, and the depletion
length dynamically grows tenfold larger than the gyration ra-
dius.3! However, these hydrodynamic effects in the electrokinet-
ics have not been studied to date, to the best of our knowledge.

In this context, this paper discusses another origin of nonlin-
earity, which is induced by hydrodynamic interaction between
the polymer and the wall, considering mainly situations where
6y < A. For this purpose, this paper is organised as follows. Sec-
tion 2 presents a toy model of nonlinear electro-osmosis of dilute
polymer solutions. Section 3 describes the Brownian dynamics
simulation, and section 4 presents the results of the simulation. In
section 5, we discuss an analytical approach to nonlinear electro-
osmosis by using the kinetic theory of cross-stream migration. 3!
Section 6 outlines the main conclusions.

2 Toy Model

First, we propose a toy model for electro-osmosis of polymer solu-
tions. A dilute solution of non-adsorbing polymers is considered.
The viscosity of the solution is given by

n="no(1+nNsp), )]

where 1) is the viscosity of the pure solvent, and 7, is the specific
viscosity of the solution. The gyration length of the polymers is
defined as &, which is of the same order as the equilibrium de-
pletion length. It is assumed that the polymers have &) ~ 100nm.
Ions are also dissolved in the solution with the Debye length A.
When well-deionised water is considered, the Debye length is on
the order of A &~ 103 nm, although such salt-free water is rarely re-
alised owing to spontaneous dissolution of carbon dioxides. The
interfacial structure near a charged surface is characterised by A
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and &). When an external electric field is applied, a shear flow is
imposed locally within a distance A from the wall, and the resul-
tant shear rate is 1oE

where L is the electro-osmotic mobility of the pure solvent and
is typically estimated as py ~ 10~3m?2/(V-s). According to studies
of cross-stream migration in uniform shear flow3!, the depletion
layer thickness depends on the shear rate,

§ ~ (1)’ 3)
where 7 is the characteristic relaxation time of the polymers,

M08’

kel ' @

T~

where kgT is the thermal energy, and is typically 10~*s at room
temperature. Using egs.(2) and (3), the depletion length in the
presence of the applied electric field E can be expressed as

& for E < Ey,
E 2
o~ (—) S forEy<E<E, 5)
Ey
A forEy < E,

where Ey = A/tuy, and E; = Eg\/A/8). Here, for simplicity,
we assume that the depletion length does not exceed the Debye
length. The effective viscosity in the double layer is given by

Nett = Mo {1+nsp (1*%)} ) (6)

and the nonlinear mobility can be estimated as u ~ (1o /Neft)-
Therefore, the mobility is obtained as

Ho
for E < Ey,
1+ ngp(1— (80/2)) °
JTES Ho - forEg<E<E, )
14+ ngp(1—(E/E1)?)
Uo forE; < E.

Fig. 1 (a) schematically shows the thickness of the depletion layer
as a function of the electric field strength. Fig. 1 (b) shows the
nonlinear electro-osmotic mobility. The mobility increases and
is saturated with increasing electric field. The threshold electric
field Ey is typically 10° V/m, which is experimentally accessible.

3 Model for simulation

In this section, our method of Brownian dynamics simulation is
described. As shown in Fig. 2(a), a dumbbell is simulated in a
electrolyte solution with a no-slip boundary at z = 0. The dumb-
bell behaves like a dilute solution. The solvent is described as a
continuum fluid with the viscosity 1 and fills the upper half of
the space (z > 0). Electrolytes are also treated implicitly with the
Debye length A = k~!. The dumbbell has two beads whose hydro-
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Fig. 1 (a) Depletion length as a function of the applied electric field. (b)
Electro-osmotic mobility as a function of the applied electric field.
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Fig. 2 (a) Dumbbell in the simulated box with L x L x D. Periodic
boundary condition is imposed at x-y plane. (b) An x-z projection of the
dumbbell in the electro-osmotic flow. (c) Enlarged illustration of the bead
in the dumbbell. It is composed of many monomeric units of the
polymers.

dynamic radii are a, and each bead consists of many monomeric
units of the polymer [see Fig. 2(c)]. The positions of the beads
are represented by x; and x, [see Fig. 2(b)]. Then we solve the
overdamped Langevin equations33 given by

dxng,
dt

= ug(zn) Oax + Z (G:;%F;nﬁ +kBTvmﬁ Gg’%) +&na,
m.pB

®

forn=1,2, a =x,y,z,

where X, is the o component of the vector X,. Further, uy(z)
is the external plug flow, V, = d/0dxnq, G is the mobility tensor,
F, = —V,U is the force exerted on the nth bead, and U is the
interaction energy given as a function of x,. &, is the thermal
noise which satisfies the fluctuation-dissipation relation as

(Ena()Ep (1)) = 2kp TGRS (1 —1'). ©)
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To include the effects of the no-slip boundary, the Rotne-Prager
approximation for the Blake tensor34 is used as the mobility ten-
sor for distinct particles (n # m),3>3° although it is valid only for
particles separated by a large distance. In this study, we neglect
lubrication corrections for nearby particles.3” The Blake tensor
for the velocity at x, induced by a point force at x; with the no-slip
boundary at z = 0 is given by the Oseen tensor and the coupling
fluid-wall tensor as34

Gop(¥2,%1) = Sap(q) + Gyp (x2,%1), (10

where ¢ = x, —x1, R =x; — X, and x; is the mirror image of x;
with respect to the plane z = 0 [see Fig. 2(b)]. The Oseen tensor

is given by
1 605[3 doqp
0@ g (g 5"

where ¢ is the magnitude of q. The second term in eq. (10) is

(1D

Gyp(*2,%1) = —Sgp(R)+21(1—285.)ViSap(R)
7221(1 726[31)Saz,ﬁ(R)v (12)
where
Saﬁ,y(Q) =VgrSap (9), (13)

and V,y = d/dgy. The Rotne-Prager approximation of the Blake
tensor is given by ®35-38

a 2 @ 2\ B 4
(1+—V1+—V2> Gaﬁ(xg,xl)Jrﬁ(a )

6 6
for g > 2a,
e (rpx) =4 _1 |5 9 (s _ d09p
b 67Noa 6aﬁ 32a 5«1[3 342
@ on, @ o) aw 4
+ (l + EV[ + sz) Gaﬁ(xz,XI) + ﬁ(a )
for g < 2a.
(14
The mobility tensor for the self part is given by®35-38
Ggp(d) = lim GoiP(x.x1)
mz) 0 0
= 0 ,UH(Z) 0 s (15)
0 ui(z)
where
@ = — -2, 1(a 3 +o@d®),  (16)
I = Ganea | 16z ' 8 :
@ = -2 (Y @ an
Hule) = 67Moa 8z 2\z .

Finally we obtain the mobility tensor as

k= 8umGigp (2n) + (1= 8un) Gy (X, Xm). (18)
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The non-uniform mobility term in eq. (8) can be simplified within
the Rotne-Prager approximation of the Blake tensor because the
following relation holds:

Z Vm[;GEl;}B(xn,xm) =0. 19)
B=x,y,z

Thus, the non-uniform mobility term is rewritten as

Z VmﬁG:% = 80; Vit (zn)- (20)
m,f

The interaction energy includes the spring and bead-wall inter-
action given by
U=Uq)+ Y, U¥ (), @n
n=1,2
where US is the spring energy,

gq27 Hookian dumbbells,
U*q) =

2
Hgm|i- <i) . FENE dumbbells,
2 90

(22)
where a FENE dumbbell is a finitely extensible nonlinear elastic
dumbbell, and the parameter b = Hq3 /kgT is defined for conve-
nience. UY is the bead-wall interaction,3° which is purely repul-
sive:

forz < a,

(23)
0 forz > a.

Eq. (8) is solved numerically. A reflection boundary condition
is set at z = D. When the centre of the dumbbell crosses the
boundary, the z coordinates of each bead are transformed from
z to 2D — z. In the lateral directions, periodic boundary conditions
are imposed. The size of the lateral directions is L x L.

4 Results of simulation

The concentration and velocity profiles are calculated as
1 71+22
c(z):§<8 (z— 5 )>, (24)

Su(z) = 7101142< Yy min(z,zn)Eu>, (25)

n=1,2

and

where §(z) is the delta function, du(z) = u(z) —ug(z) is the velocity
increment due to the polymeric stress, and (---) is the statistical
average in the steady state. Eq. (25) is derived in Appendix A.

For a surface with a small zeta potential compared to kg7 /e,
where e is the elementary charge, the imposed electro-osmotic
flow ug(z) is given by

uo(z) = Wk (1 — esz) R (26)

where Ly is the electro-osmotic mobility in the pure solvent, and
E is the applied electric field.? Eq. (8) is rewritten in a dimen-
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Table 1 Simulation parameters. N, is the number of total steps, »; is the
number of interval steps for observation, Ny, is the number of sampling
for each parameter set, and At is the time increment.

Hookian FENE b =600 FENE b =50
Ne  5x10l 5x 1010 25 x 1010
N, 5x103 5% 103 25 %103
N 3 3 5
AT 0.01 0.0025 0.0001

sionless form with the length scale & = /kgT/H and time scale
T = 6mnoa/4H. Different types of dumbbells are simulated using
the parameters listed in Table 1. Note that the simulated systems
are treated as dilute systems, and the linearity with respect to the
bulk polymer concentration is preserved. After sample averaging,
we obtain the concentration at the upper boundary ¢(D), which
deviates slightly from (L?>D)~! because of the inhomogeneity near
the surface. Hereafter, we define the normalised concentration as,
c(z)

C(z) = D)’ 27

The velocity increment du(z), as well as the concentration profile,
is linear with respect to ¢(D). For convenience, we set a char-
acteristic concentration ¢, = 0.18 >, and the nonlinear electro-
osmotic mobility is defined as

¢y Ou(D)
c¢(D) E

W(E) = o+ (28)

The top boundary is placed at D = 1005, the lateral size is set to
L = 10008y, and the Debye length is set to A = k~! = 105). We

also set w = 3kgT and define a hydrodynamic parameter 4* as3!
a
h = ——=0.25. (29)
V7

Fig. 3 shows the steady-state profiles of the Hookian dumbbell
concentration as functions of the distance from the wall. In the
equilibrium state of E = 0, the profile shows a depletion layer
whose width is of the same order as the gyration length &,. When
the applied electric field is increased further, the depletion layer
becomes larger than the equilibrium one, and a peak is formed.
The inset in Fig. 3 shows the depletion length as a function of the
applied field. The depletion length is defined by the position of
the concentration peak. It shows power-law behaviour with an
exponent of 0.22, which is much smaller than that of 2.0 for a
uniform shear flow.3! The value of the concentration at the peak
also increases as the electric field grows.

The results given above are for the Hookian dumbbell which
is infinitely extensible with the shear deformation. To consider
more realistic polymers, the finitely extensible nonlinear elastic
(FENE) dumbbell is simulated. Fig. 4 (a) shows the concentra-
tion profiles at E = 1000Ey. Interestingly, one-peak behaviour is
also observed in the FENE dumbbells. For the Hookian dumb-
bell, the concentration near the surface remains finite. On the
other hand, for the FENE dumbbells, the concentrations near the
surface are negligibly small. Fig. 4 (b) plots the electro-osmotic

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Concentration profiles of Hookian dumbbells under various
applied electric fields. Inset shows the depletion length as a function of
the applied field. The points are obtained by the Brownian dynamics
simulation, and the line is fitted by §/8 = A(E/Ey)?, where A = 7.08,
and B =0.22.
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Fig. 4 (a) Concentration profiles of the polymers at E = 1000E, in
different types of dumbbells. (b) Nonlinear electro-osmotic mobility with
respect to E.

mobilities with respect to the applied electric field. The resul-
tant electro-osmosis clearly grows nonlinearly with respect to the
applied electric field. When the applied field becomes stronger,
the mobility increases and is saturated, similar to that in the toy
model. The two types of the dumbbells have different rheological
properties in the bulk, 402 so this nonlinearity is not due to the
rheological properties of the dumbbells. On the other hand, the
mobility is almost constant for E < 10Ey, and this threshold of the
linearity is larger than E,, which is predicted by the toy model.
Likewise, saturation is observed when E ~ 10*Ey, which is larger
than E;.

To clarify the difference in the profiles near the surface, (¢%)
and (¢?/4*) are plotted with respect to the distance from the sur-
face. Fig. 5 (a) shows the profiles of (¢>/¢%). In the bulk, they
approach 1/3, which means that the dumbbells are distributed
isotropically. Near the surface, the polymers are inclined by the
shear flow. The Hookian dumbbell has the largest angle between
the z axis and the dumbbell direction. Fig. 5 (b) plots the profiles
of (¢?). In the bulk, they approach 38y, which is their equilibrium
value. Near the surface, they become larger because the polymers

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 (a) Profiles of (¢2/4%) at E = 1000E, in different types of the
dumbbells. (b) Profiles of ((¢/8)?) at E = 1000E, in different types of the
dumbbells. Curved lines are calculated using egs. (62) and (71).

are elongated by the shear flow. For the FENE dumbbells, satura-
tion of the dumbbell length is observed. These behaviours differ
greatly from the minor differences in the concentration profiles.

5 Kinetic theory

In this section, a kinetic theory for a dumbbell is developed on
the basis of the Ma-Graham theory3!. The probability function
Y(x1,x,,t) obeys the continuity equation

¥

W =-V; -(xlq")*VZ'(XZ‘P)v (30)

where i, is the flux velocity being given by*3

dnoe = u0(2n)Sxoc — Y, G Vinp (U +kpT In'P). (31)
m,f

In the kinetic model, the beads are treated as point-like particles.
Thus, the mobility tensor is obtained by using GB instead of GRPB
for both the self and distinct parts. The continuity equation can
be rewritten using g and r as

v _

ot
where r = (x; +x;)/2 is the centre of the mass of the dumbbell.
We also define V; and V, as

=V (F¥) = V4 (q¥), (32)

1

Vio= V-V, (33)
1

Va = SVi+Ve (34)

Then, the probability function is also regarded as a function of r
and gq. Here we neglect the interaction between the wall and the
beads. The flux velocities for r and g are obtained as

. 1 1 .
. = 5[“0(11)+“0(12)]8xtx+§GaﬁFE
kT - K
+TGaﬁvf17ﬁ In¥—DgeV, gIn'¥, (35)
qo =

[uo(z2) —uo(z1)]Oe — GaﬁFE

+kBTTGaBVr,ﬁ In¥ —kgTGypV,gIn¥,  (36)
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where F® = —V,US is the spring force, and DX is the Kirkwood
diffusion tensor, which characterises the diffusivity of macro-
molecules and is given by

B kBT(Gll +G12+G21 +G22)

Dk 7 . 37)

G and G are variants of the mobility tensors defined as

G = G'-G7?+GY-G%, (38)

_ Gll _G12_G21 +G22. (39)

The concentration field ¢(r,t) can be obtained by integrating the
probability function with respect to the spring coordinate. It is
given by

c(r,t) = /‘I‘(nq,t)dq. (40)

We also define the probability function only for the spring coordi-

nate as
‘{I(rqut) . (41)

Yann) =00

These new fields satisfy the continuity conditions, such that

dc

5 = =V, (c(F)g), (42)
oW g
5 = Ve, (43)

where (---), represents the average with the spring coordinate:

(Vg = j\il((r%q)’t)dq :/..Alil(nq,t)dq. (44)

For the limit of ¢ < r, G and DX can be expanded using r. Keeping
only the leading term, we obtain

B 3 —qz 0 —X4x
G = 2 _ v 5
27,2 0 q: —xqy |+, (45)
Xqx X4y —2q:
kBT 3a
DX = I+22
o [ s+ (46)
where 5/2
2., 27"
qx + 4y
=11
x + 47)

Note that the approximation is more accurate than that in a pre-
vious study3! as that study considered only y ~ 1, which is not
satisfied near the surface. With the approximation, eq.(36) is av-
eraged by W, and finally we obtain the concentration flux for the
z direction as

d
cliz)g = cumig(2) — 5 [e(DK)q] . (48)

6| Journal Name, [year], [vol.],1—10

where
1 - _
Umig (Z) = 2 <Gzﬁ FB —kp Tvqﬁ GzB >(1
B 3
 64mnez?

< (X(eF; +ayFy) —2q:F; =2k T (x — 1)), -
(49)

Eq. (48) indicates two opposite fluxes of the polymers due to the
external flow field. One is the migration flux from the wall to-
ward the bulk and originates from the hydrodynamic interaction
between the wall and the force dipoles.3! The other is the diffu-
sion flux from the bulk to the surface wall and is not found for
polymers in uniform shear flows.3! Note that the second flux in-
cludes not only the ordinary diffusion flux (DX),V..c, but also the
diffusion flux due to the ¢ inhomogeneity, ¢V, (DX),. When the
external shear flow is uniform, the second flux vanishes, and the
depletion length is proportional to the square of the shear rate, as
the migration velocity is proportional to the normal stress differ-
ence.3! In a plug flow, the diffusion flux suppresses the growth
of the depletion layer, and this behaviour may explain why the
exponent of the depletion length is much smaller than 2.0 in a
uniform shear flow. In steady states of the electro-osmosis, the
total flux in eq. (48) becomes zero; thus,

de c d(DX),
= = . 50
dz  (DK), (Mm'g dz (50)

This equation shows that the migration flux and the diffusion flux
are balanced at the peak of the concentration profiles. Finally the
concentration profile is calculated as

7 K
I ) I C)

The resultant flow profile can be calculated as

¢ = cpexp

1

Z
—— | ob()dZ, 52
0o - (2)dz (52)

Sulz) =
where o? is the polymeric part of the stress tensor:

oP =c(qF®)y—ckgTI. (53)

To obtain explicit expressions for ¢ and du, it is necessary to es-
timate up;g, (DX),, and oP. For this purpose, eq. (43) should be
analysed. However, eq. (43) is highly complicated. Even without
the wall effects, it cannot be solved exactly, so several approxima-
tion methods have been proposed. 44 For simplicity, all the hydro-
dynamic interactions are ignored; thus, the continuity equation is

given as

o¥ dug 2FS \ o 2kgT .
= =-V by — — P — V.o¥|.
dr o K dz % 67rn0a) 6wnoa 1% (54)

For the Hookian dumbbell, eq. (54) can be solved for the second
moment of ¢, and for the FENE dumbbell, a pre-averaged ap-

This journal is © The Royal Society of Chemistry [year]
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Fig. 6 (a) Concentration profiles of the Hookian dumbbell as a function
of the distance from the surface. Points show the simulation results;
curved line is calculated by the kinetic theory. (b) Nonlinear
electro-osmotic mobilities of the Hookian dumbbell as a function of an
applied electric field. (c) and (d) Same as (a) and (b), respectively, but
for the FENE dumbbell with 5 = 600. (e) and (f) Same as (a) and (b),
respectively, but for the FENE dumbbell with 5 = 50.

proximation*142 is employed. The curved lines in Fig. 5 are cal-

culated using these approximations, and they exhibitgood quan-
titative agreement with the simulation results. Appendix B gives
approximate expressions for these quantities of the Hookian and
FENE dumbbells.

Fig. 6 (a), (c), and (e) show the concentration profiles for the
applied field E = 1000Ey. The points are obtained by the Brown-
ian dynamics simulation and the curved lines are obtained by the
kinetic theory. The theoretical calculations quantitatively cover
the simulations well. Moreover, they reproduce the differences
in the concentration near the surface between the Hookian and
FENE dumbbells, as the migration velocity can be approximately
proportional to (), (see Appendix B), and it is greatly suppressed
in the Hookian dumbbells. Fig. 6 (b), (d), and (f) show the non-
linear electro-osmotic mobilities with respect to the applied field.
The theoretical curved lines also exhibit acceptable agreement
with the simulation results. However, they are not as consistent
with the simulation results under weak applied electric fields, as
the equilibrium depletion layer is not considered in the kinetic

This journal is © The Royal Society of Chemistry [year]
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theory.
6 Summary and remarks

Brownian dynamics simulations are used to study nonlinear
electro-osmotic behaviour of dilute polymer solutions. The simu-
lation results agree with a toy model and analytical calculations
using a kinetic theory. The main results are summarised below.

(i) Under an external plug flow, the polymer migrates toward
the bulk. The concentration profile of the polymer shows
a depletion layer and a single peak. The thickness of the
depletion layer depends on the electric field. At the peak,
the migration flux is balanced by the diffusion flux.

(ii) The growth of the depletion layer leads to an increase and
saturation of the electro-osmotic mobility. This behaviour
does not depend qualitatively on the rheological properties
of the dumbbells.

(iii) The results of analytical calculation of the concentration
and the nonlinear mobility using the kinetic theory agree
with the results of the Brownian dynamics simulation. The
threshold of the electric field for nonlinear growth and satu-
ration of the mobility is much larger than that predicted by
the toy model, as the diffusive flux suppresses the migration
toward the bulk due to the inhomogeneous shear flow.

We conclude this study with the following remarks.

(1) Nonlinear electro-osmosis with A < & has already been ob-
served experimentally. 2627 These studies reported that the
mobility increased with increasing electric field. However,
nonlinear electro-osmosis with A >> §, has not been reported
experimentally; therefore, experimental verification of our
findings is highly desired.

(2) It remains a future problem to determine whether the hy-
drodynamic interaction between the polymers and the sur-
face plays an important role in electro-osmosis of polymer
solutions with A < &. In this case, the elongation of the
polymers is strongly inhomogeneous under plug flow with a
short Debye length; thus, more realistic chain models should
be considered.

(3) Addition of charged polymers to solutions can change the
direction of the linear electro-osmotic flow.”-*3> When a suf-
ficiently strong electric field is applied to this system, the
flow might recover its original direction. This needs to be
investigated theoretically and experimentally.
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A Derivation of the velocity equation for
Brownian dynamics simulation

In this appendix, the derivation of eq. (25) is explained. The
velocity field induced by the polymer is given by

Su(z) = _L

"ol (2)dz, 55
- 0'()z (55)

and the polymeric part of the stress tensor is obtained by averag-
ing the microscopic expressions in the lateral directions as

1 .
oy =7 [ dudy6ly(x) (56)

Here the microscopic expression of the stress tensor is given by

7*22anaxnmﬁ ( ) (57)

n m#n

where F,,, is the force exerted on the n-th bead by the m-th bead,
and &5, (x) is the symmetrised delta function given by

85 ( / 58 (X — %0 — (1= 5)%m). (58)

The symmetrised delta function is integrated in the lateral direc-
tions as

1
S = [ty = [ dssz-sz—(1-9z)
0
_ G(Z_Zm)—Q(Z_Zn)7 (59)
Zn_Zm
where 6(z, —z) = 1 — 0(z—z,). Then we obtain
< R —Zn 0(z— n) —\K—Zm 0(z— m
/dzlsgm(zl) _ (=)0 —z) — (2 —2m)0(z—2m)
0 Zm —Zn
_ mm(z,zn)—mm(z,zm)7 (60)
Zn —Zm

where min(z,z,) = z60(z) — Finally, the velocity

increment is expressed as

LZZ nml n —Zm /dZ

(Z — Zn)e(z - Zn)-

ou(z) = 0

= 2770L2 Zan l[rnln(Z Zn) min(z,zm)]

= ! me Z,2n)Fu1- (61)
MoL

B Approximated expressions for Kinetic
theory

B.1 Hookian dumbbell

Eq. (54) can be rewritten in a closed form for the second moment
of the spring coordinates in a steady state with an imposed plug
flow. The solution is given by 2

8| Journal Name, [year], [vol.],1—10

1+20>2 0 ¢
kgT
(99) = o 0 L o |, (62)
6 0 1
where 4
0= 20 _ TkUgEe *%. (63)
dz
Therefore, we have
(gF*)q = H(49)q, (64)
and the polymeric stress tensor is
o = c¢(qF®)—ckpTI
202 0 ¢
= ckgT| 0 0 0 |. (65)
6 0 0
The Kirkwood diffusion constant can be estimated as
kgT 3a q7
DK), = 1 1
kgT 3a (q* +q2
B 3a (¢° +qz) 66)
127[1’]0& 4 <q2>3/2

where the second term is split into the second-order moments;
thus, we obtain
3a 2(¢%+2)

Csueran @

kgT
<D§z>q = {1

127nga
It is differentiated by z as

d K

d ksT 3a 4k¢*(¢>+3)
dz< zz>q

12wn9a 48 (292 +43)5/2 " (68)

The migration velocity can be estimated using the splitting ap-
proximation of the averages as

3T
6471972

tmig () = (x(@+a)-2x),

3kgT

~ 327202 <X>q<%zc +CI§ —2)q

3kgT
T 32 ()49, (69)

2 o\ —5/2
9 t4q
(g = <@+4gﬂ >
q

2. -5/2
~ (l—i-q)z;) . (70)

where

B.2 FENE dumbbell

The second moment of the spring coordinate for a FENE dumbbell

can be obtained by pre-averaged closures of a p-FENE model. 41:42

This journal is © The Royal Society of Chemistry [year]
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It is given by

1+2y2 0
kgT
<qq>q:%% o 1 0 |, 71)
74 0 1
and
1+2y2 0
(qF), = kpT 0 1 o |, (72)
v 0 1
where
 Bxb . 1 b (34
y=06 5 smh{3arcsmh {108 (5—4> . (73)
The polymer stress tensor is
292 0y
6® = ckgT| 0 0 0 (74)
vy 0 0
The Kirkwood diffusion constant is
kgT 3a ¢ 2(v2+2)
Ky _ _*B tatiy r
(Dezhg = 12100 {1+46 v (2y2+3)32 | (75)
and its derivative is
dopky _ kT 3a  fo
dz (Dzz)g = 12nn0a 46 *K %
{dw 4y(y? +3) (¢ dy ) 2(y* +2) ]
X|NO— ——F- —— =1 —=,
d¢ (2y?+3)5/2 v do (2y? +3)3/2
(76)
where
dy b+3 1 b (3+6\ 732
a0 2 51 cosh{Sarcsmh{]Og( 54)
~1/2
b |/ bp\* [b+3)\°
708 Rms) +<T4 ) 77)
Finally the migration velocity is obtained as
3kBT 2
Umig & W(%)q‘l/ ; (78)
where 5/2
) _
Ve +1
~|(1+-=— .
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Figure 1: Nonlinear electro-osmosis of polymer solutions with low salinity is
investigated using Brownian dynamics simulation and a kinetic theory.



