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sible by using mixtures of diblock amphiphiles with solvophilic

segments of different size and/or chemistry.22–29 These mixtures

effectively mimic the triblock architecture but the entropy will be

different.

Elucidation of the molecular design parameters governing the

formation of mixed or segregated forms of monolayers and bi-

layers is necessary to guide functional use of these amphiphiles.

Theory and simulations can provide the desired insights. Cui

and Jiang performed Monte Carlo simulations for vesicles com-

posed of monolayers of ABC triblock terpolymers. They found

that segregation of the ends to the inner or outer surface of the

vesicle was dominated by the relative lengths of the end blocks,

whereas the dynamics of segregation before or after the closure

of the vesicle was determined by the hydrophilicity difference

of the end blocks.30 To complement the simulation work, self–

consistent field theory (SCFT) has been used to study the ther-

modynamics of triblock polymers in dilute solution. Most of these

studies involved variations of ABA triblock copolymers,31–33 and

we are aware of only one study of a linear ABC triblock terpoly-

mer, composed of a relatively short solvophilic A block and two

solvophobic B,C blocks.34 In the present work, we use SCFT to

study the assembly of triblock amphiphiles with ABA and ABC–

type architectures, where the B block is solvophobic, into bilayers

and monolayers, which may additionally be mixed (symmetric)

or segregated (asymmetric). Within the large parameter space

from which to control the molecular packing of these triblocks,

we focus specifically on the effects of asymmetry in the length

and interaction strength of the solvophilic end segments.

2 Model and Method

The model consists of amphiphilic triblock polymers (P) in ex-

plicit solvent (S). The solvents are modeled as monomers with

volume vS, and the triblocks as polymers, composed of a solvo-

phobic center block (B) flanked by two solvophilic end blocks

(A,C), each with monomer volume vI and block length NI , where

I = A,B,C. To understand the effects of changing the relative vol-

ume fractions of the two end blocks, we set NB = 20 and vary

NA,NC while keeping the total chain length NP ≡ NA +NB +NC =

32. For simplicity, all monomer volumes are equal so that the total

volume of the triblock is vP ≡ vNP.

The triblocks are represented as discrete Gaussian chains,

where the total bond energy between adjacent monomers at ri+1

and ri takes the form

h({r}) =
3kBT

2b2

NP−1

∑
i

(ri+1 − ri)
2. (1)

In this expression, kBT is the thermal energy and b = 0.5 nm is the

bond length. In using the discrete Gaussian chain, local structure

and contributions from hydrogen bonding have been neglected.

However, the model is general and allows us to focus on how

molecular asymmetry can be used to control the thermodynamics

of self–assembly. Such simple models of amphiphilic molecules,

which allow exploration of conformational space even at a rudi-

mentary level, have made outstanding predictions; see, for exam-

ple, the HP model by Dill and coworkers.35

The essential contributions to the model are the chain con-

nectivity of the triblocks, the short-ranged pairwise interactions

between monomer species and the excluded volume effects in

an incompressible system. In the grand canonical ensemble, the

numbers of molecules are determined from their respective chem-

ical potentials µP,µS, obtained from the homogenous bulk phase.

Following the usual SCF derivation and mean field approxima-

tion,36,37 the field–theoretic grand free energy may be written

F =−
eµP

vP
ZP[ξA,ξB,ξC]−

eµS

v
ZS[ξS] (2)

+
∫

dr

[

χJKφJφK +
κJ

2
|∇φJ |

2 −ξJφJ

]

.

Here, φJ and ξJ are the volume fraction and conjugate potential

fields, respectively, where it is understood that these denote mean

fields and we have omitted the r dependence for notational con-

ciseness. The local and nonlocal interactions are captured by the

interaction parameters χJK and κJ , respectively, and the double

indices represent a sum over monomer species: J ∈ {A,B,C,S}

and JK ∈ {AB,BC,AC,AS,BS,CS}. In modeling systems involv-

ing long polymers, the nonlocal κJ terms are not usually needed,

since the polymer chain connectivity is sufficient to capture non-

local effects at length scales of interest. Because of the shorter

chains in this work, the nonlocal gradient terms are included

in the free energy38, where we set κJ = 0.35 for J = A,B,C and

κS = 0.

The first line in eq. 2 contains the partition func-

tions for a single molecule in its respective field(s),

defined as ZS[ξS] =
∫

drexp[−vξS] for the solvents and

ZP[ξA,ξB,ξC] =
∫

drq(r,NP) for the triblocks. Here, q(r,NP)

represents the statistical weight for a chain with NP monomers

to have its end monomer at position r. This object is commonly

referred to as a chain propagator and will be used to obtain

the single–chain statistics of the triblocks; see the Appendix

for details. The prefactors before the single molecule partition

functions in eq. 2 contain the monomer volume v and the

polymer volume vP, which were used as the volume scales in

the total partition function instead of the cube of the de Broglie

wavelength. This only shifts the chemical potential and does not

affect any of the thermodynamics of interest.

The SCFT equations are obtained by the mean-field approxima-

tion, i.e. requiring that eq. 2 is stationary with respect to varia-

tions in the fields. Variation with respect to the volume fraction

fields φA, φB, and φC gives

ξA =ξS +χAS(φS −φA)+(χAB −χBS)φB (3)

+(χAC −χCS)φC −κA∇2φA,

ξB =ξS +χBS(φS −φB)+(χAB −χAS)φA (4)

+(χBC −χCS)φC −κB∇2φB,

ξC =ξS +χCS(φS −φC)+(χBC −χBS)φB (5)

+(χAC −χAS)φA −κC∇2φC.
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Table 1 Range of model parameters

χAC χBS χAS,χCS χAB,χBC κA,B,C κS CP fA NA NB NC

0.0−3.5 2.5 0.0−0.25 2.75 0.35 0.0 1×10−5 0.08−0.50 1−6 20 6−11

Variation with respect to ξS gives φS = eµS e−vξS , which is solved to

yield

ξS =−
1

v
log[1−φA −φB −φC]. (6)

Here the system incompressibility is used to eliminate φS and to

define µS ≡ 0 (chemical potentials in an incompressible system

are not independent). Variation with respect to ξA, ξB, and ξC

gives

φI =
veµP

vP
∑

i

q(r, i)evξI q∗(r,NP − i+1). (7)

for I = A,B,C. In this expression, the sum runs over the monomer

indices i of species I and we have introduced a complementary

chain propagator q∗, which propagates from the opposite end of

the chain as q. The extra exponential factor cancels out the excess

factor of e−vξI for joining the two ends. The calculation of the

chain propagators for the discrete Gaussian chain is described in

the Appendix.

Briefly, the numerical steps to solve the SCFT equations are as

follows. First, we begin with a volume fraction field configura-

tion, which satisfies the incompressibility condition ∑I φI = 1 and

resembles the structure that we are solving for. Then, eqs. 3–6

are used to obtain the initial conjugate potential fields ξI . For

a given potential field configuration, the chain propagators are

computed from eq. 10 in the Appendix, and input into eq. 7 to

obtain the volume fraction fields φI . Finally, the potential fields

are updated by a Picard’s method and the iterative scheme re-

peats. Self-consistency is achieved once the difference in the free

energy calculated between iterations reaches an error criterion of

10−8.

3 Bilayers vs. Monolayers

As discussed previously, diblock amphiphilic molecules in solu-

tion can self–assemble into a variety of structures. The sheet–like

structure typically corresponds to a bilayer, where the solvophilic

block forms the outside of both layers and the solvophobic block

forms the core of the bilayer. In triblock amphiphiles, the same

solvent–driven self–assembly mechanism can lead to the forma-

tion of a monolayer, where the solvophilic end blocks form the

outside of the monolayer and the solvophobic middle block forms

the core. Both of these structures involve a mixture of molecules

on both sides and are thus symmetric across the direction normal

to the surface of the sheet. However, in triblock amphiphiles, the

two end blocks can be incompatible and an additional structure

is possible, where the end blocks do not mix and only occur on

separate sides of the solvophobic core. This latter structure corre-

sponds to an asymmetric monolayer.

In the grand canonical ensemble the SCFT solutions directly

give the preferred packing density and free energy per molecule

in an aggregate. By comparing the excess free energy per

fA =0.33 fA =0.42 fA =0.50 
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Fig. 2 Volume fraction profiles in the direction z (nm) normal to the

sheet, for an ABC triblock with χAC = 0.

molecule in the aggregates, we map out the phase diagram as

a function of structural asymmetry fA = NA/(NA +NC) and inter-

action strength χAC between the two end blocks. In this work we

focus on the following sheet–like structures: bilayers, symmet-

ric monolayers, and asymmetric monolayers. Model parameters

are chosen so that layer structures, relative to micelles, are the

thermodynamically stable aggregates at experimentally relevant

triblock concentrations. This is checked by comparing the excess

free energy per molecule in different one dimensional coordinate

systems, e.g. cylindrical coordinates for worm-like micelles. In-

teraction parameters and additional model parameters are sum-

marized in Table 1. Differences in end block compatibility with

the solvents (S) and solvophobic monomers (B) are not consid-

ered. Hence, χAS = χCS = 0 and χAB = χBC = 2.75, where the

latter are chosen to be comparable to χBS.

3.1 Effect of structural asymmetry, fA

In this section, we explore how structural asymmetry affects

molecular assembly into bilayers and monolayers. To focus on the

architectural effects of the triblocks, an ABC triblock with χAC = 0

is considered. In our open system, the bulk concentration of tri-

blocks defines the chemical potential. We set the number density

of polymers CP = 1× 10−5 nm−3 and, as discussed above, have

checked that we are working in a concentration regime where

the sheet–like structures are thermodynamically preferred over

spherical and cylindrical micelles.

Figure 2 shows the 1D volume fraction profiles of the molec-

ular aggregates normal to the surface of the sheet, where z = 0

corresponds to the center of the sheet. The separate plots show

increasing fA, where the top left figure corresponds to fA = 0.08

and the bottom right figure corresponds to the symmetric case

of fA = 0.5. For fA ≤ 0.17, the triblocks assemble to form bi-

layers consisting of a solvophobic B core (green, dashed) lined

1–8 | 3
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Fig. 3 Enthalpic (dashed) and entropic (solid) contribution to the excess

free energy per unit area (kBT/nm2) of an aggregate, as a function of

fA = NA/(NA +NC) for the symmetric sheet in Figure 1. Here χAC = 0.

by the majority solvophilic C block (purple, dotted). In partic-

ular, triblocks with fA = 0.08 form bilayers with the A monomer

species hidden within the solvophobic core, as depicted by the

corresponding figure with a small peak in φA (red, solid) at the

center. Triblocks with fA = 0.17 form doubly mixed bilayers with

three distinct peaks in φA, corresponding to positions at the cen-

ter of the solvophobic core, and at the two interfaces with the

solvophilic C density. The molecular packing arrangements for

fA = 0.08 and fA = 0.17 are depicted schematically in Figures 1a

and b, respectively, where the latter involves some molecules fold-

ing back on themselves. For fA > 0.17, Figure 2 shows that the

solvophilic A species is pushed out of the solvophobic core and

towards the solvent interface, corresponding to a transition to a

monolayer structure. The width of the monolayer, defined here as

the peak–to–peak distance of φC, is notably smaller than the width

of the bilayer. The monolayer is shown schematically in Figure 1c.

Without an interaction incompatibility to drive the molecules to

segregate (i.e. order), the monolayers possess a symmetric mix-

ture of A and C blocks on both sides of the solvophobic core.

The field–theoretic free energy in eq. 2 may be separated into

an energetic contribution given by the terms containing the in-

teraction parameters χJK and κJ , and an entropic contribution

given by the single molecule partition functions, together with

the term coupling the volume fraction field to its conjugate po-

tential field. Thus, the competition between maximizing the con-

figurational entropy within the aggregate and minimizing the un-

favorable energetic interactions with the solvophobic core can be

quantified. Figure 3 separates the enthalpic ∆h (dashed) and en-

tropic ∆s (solid) contribution to the total excess free energy per

unit area of the aggregate, relative to the bulk homogeneous solu-

tion. For fA ≤ 0.17, the system forms an aggregate that maximizes

its entropy, at a (relatively) high energetic cost. These states cor-

respond to the previously discussed bilayer, where the solvophilic

monomers of the minority A species are buried within the solvo-

phobic core. For fA > 0.17, the system transitions to an aggre-

gate that minimizes these unfavorable interactions, but at an en-

tropic cost. These states correspond to the monolayer, where the

A species has been expelled from the solvophobic core.

The sum of the entropic and enthalpic contributions gives the

total excess free energy per unit area of the aggregate, relative to
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Fig. 4 Excess free energy per unit area ∆F/A (kBT/nm2) as a function

of fA = NA/(NA +NC) for a symmetric sheet in cartesian coordinates.

Arrow indicates increasing χAC = 0,1.0,2.0,2.75, and 3.5.

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fA =0.08 fA =0.17 fA =0.25 

fA =0.33 fA =0.42 fA =0.50 

1

2

ΦA

ΦC

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Φ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

!5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Φ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

Φ

0.0

0.1

0.2

0.3

0.4

Φ

5 0

z

5 0

z

5 0

z

Fig. 5 Comparison of volume fraction profiles in the direction z (nm)

normal to the sheet, for an ABC triblock with χAC = 0 (solid) and

χAC = 3.5 (dashed).

the homogeneous bulk solution. This quantity is shown in Fig-

ure 4 for χAC = 0 (blue squares), as well as for χAC > 0 (to be

discussed in the following section). Here, ∆F/A increases with

fA, which, based on our discussion of Figure 3, is first an ener-

getic and then an entropic effect. The latter indicates that the

molecules in the monolayer become more aligned as the triblock

becomes more symmetric, i.e., approaches fA = 0.5.

3.2 Effect of interaction asymmetry, χAC

For all χAC considered, ∆F/A shown in Figure 4 increases with

volume fraction fA. However, for the bilayer structures ( fA ≤

0.17), ∆F/A is not very sensitive to the interaction parameter χAC,

whereas for the monolayer structures ( fA > 0.17), ∆F/A clearly in-

creases with increasing χAC (in the direction of the arrow). This

observation can be understood by noting differences in the effects

of increasing χAC to the volume fraction profiles of the bilayers

and the monolayers.

Specifically, Figure 5 shows the volume fraction profiles of the

hydrophilic A (red) and C (purple) species, compared at two

different interaction parameters: χAC = 0 (solid) and χAC = 3.5

(dashed). For the bilayer with fA = 0.08, there is a minimal over-

lap in φA and φC. Hence, the volume fraction profile is insensitive
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to an increase in χAC (compare solid and dashed curves). How-

ever, for the doubly mixed bilayer with fA = 0.17, there is a small

overlap in φA and φC at the interface (solid) due to the molecules

that have folded back on themselves, as illustrated schematically

in Figure 1b. To minimize the unfavorable interactions between

the A and C monomers upon increasing χAC, some of the folded

molecules unfold, leading to a slight increase in φA at the center

of the bilayer and a corresponding decrease in φA at the inter-

face (dashed). In contrast, the more symmetric triblocks with

fA > 0.17 form mixed monolayers with a significant overlap in φA

and φC (solid). By increasing the incompatibility between end

blocks, the A block gets pushed closer to the interface between the

B and C blocks (dashed), as it is no longer favorable for the A and

C blocks to overlap, but the A block is still incompatible with the

solvophobic B core. Having all the blocks in the ABC triblock ter-

polymer incompatible with each other results in a high interfacial

tension for the mixed monolayer, corresponding to a significant

increase in free energy per unit area with increasing χAC, as was

shown in Figure 4. In fact, for fA = 0.5, the mixed monolayer

becomes unstable and the A species segregates to one side of the

monolayer; see the dashed curves in Figure 5. Thus, it is possible

to relieve these highly energetically unfavorable interactions by

transitioning from a symmetric to an asymmetric monolayer. Of

course, this comes with a loss in configurational entropy that cor-

responds with ordering the triblocks so that the A and C blocks

are unmixed and only occur on separate sides of the solvophobic

core.

4 Symmetric vs. asymmetric aggregates

In this section, we consider whether there are other cases where

the symmetric monolayers are metastable (i.e. higher in free en-

ergy per molecule) relative to the asymmetric, unmixed mono-

layers. To obtain asymmetric solutions in a symmetric coordi-

nate system, the SCFT equations are initiated with an asymmetric

Gaussian distribution. Figure 6 shows the volume fraction pro-

files of the A and C blocks for χAC = 2 (upper, solid) and χAC = 3.5

(lower, dashed). For χAC = 2, the unfavorable interactions be-

tween the two solvophilic end blocks starts to drive assemby into

asymmetric monolayers for fA ≥ 0.42. For fA < 0.42, the den-

sity overlap is not sufficient to drive end–block separation, and

there is only one SCFT solution, corresponding to the previously–

discussed symmetric (mixed) monolayer. For fA = 0.42 the density

overlap is sufficient to drive partial end–block separation, and for

fA = 0.5 the two solvophilic blocks show well–defined separation.

Comparing the upper and lower rows in Figures 6, it can be seen

that the triblocks with χAC = 3.5 form asymmetric aggregates at

lower fA. Furthermore, for a given fA, the separation in the A and

C species is more defined at the higher χAC.

The excess free energy per molecule ∆F/np in the aggregates is

plotted in Figure 7 for the two χAC values discussed in Figure 6,

together with χAC = 0. It can be seen that the bilayer to mono-

layer transition as a function of fA corresponds to a decrease in

∆F/nP. The decrease is most notable for χAC = 0 (blue squares),

where the transition to mixed monolayers is not accompanied by

an energetic cost due an overlap of incompatible end blocks. For

χAC = 2 (red), unmixing and separating the incompatible A,C end
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Fig. 6 Volume fraction profiles in the direction z (nm) normal to the

sheet, for an ABC triblock with χAC = 2 (upper, solid) and χAC = 3.5

(lower, dashed).
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Fig. 7 Excess free energy (kBT ) per molecule ∆F/nP as a function of

fA = NA/(NA +NC) for symmetric (solid) and asymmetric (dashed)

sheets in cartesian coordinates. Arrow indicates increasing χAC = 0,2.0,

and 3.5.

blocks (dashed, ×) does not notably lower ∆F/nP; decreasing the

unfavorable energetic interactions is offset by the loss in config-

urational entropy required to order the molecules. For χAC = 3.5

(brown), the energetic interactions dominate the thermodynam-

ics of assembly, leading to well-segregated monolayers (Figure 6,

dashed) that are lower in free energy than the mixed monolayers.

Based on the aggregate with the lowest excess free energy per

molecule ∆F/nP, we construct a phase diagram as a function of

the degree of the asymmetry in the interaction χAC and archi-

tecture fA between the solvophilic end blocks. The phase dia-

gram includes the symmetric (mixed) bilayers and monolayers

discussed previously, as well as the asymmetric monolayers ob-

served in this section. We have checked that the spherical and

worm-like micelles are not lower in free energy per molecule by

comparing the aggregates in spherical and cylindrical coordinates

with the aggregates in cartesian coordinates. The phase diagram

shown in Figure 8 can be summarized as follows. For fA ≤ 0.17,

the triblocks form symmetric bilayers at all values of χAC. Here,

the minority A component is hidden in the solvophobic block of

the bilayers, and increasing χAC does not have a qualitative ef-

fect on the structure of the bilayers. However, for fA > 0.17, the
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at position r. Propagating forward along the chain corresponds

to moving to subsequent monomers i+1 in a stochastic process

q(r, i+1) = e−vξ
∫

dr
′Γ(|r− r

′|)q(r′, i), (8)

where the Boltzmann weight depends on the species of monomer

i and Γ denotes the conditional transition probability, assumed to

be Gaussian.

Rather than attempt to solve eq. 8 exactly by integrating over

all space, we recognize that, for a reasonably smooth external

potential, the contributions from bond transitions for large |r−r
′|

are vanishingly small so that they may be ignored. Together with

the fact that eq. 8 is a Chapman–Kolmogorov equation, which can

be converted in the continuum limit to a Fokker–Planck equation

of the form 36

∂

∂ s
q(r,s) =

b2

6
∇2q(r,s)− vξ (r)q(r,s), (9)

we can obtain the nearest-neighbor bond transition probabilities

from a finite difference approximation of the spatial derivatives in

eq. 9 (setting ξ = 0). The discretized version of eq. 8 becomes37

q(r j, i+1) = e−vξ (r)∑
r j′

Γ(r j′ → r j)q(r j′ , i), (10)

where it is understood that the summation is restricted to nearest

neighbors of r j. For our 1D cartesian system, a space-centered

finite difference approximation results in transition probabilities

defined by

Γ(z j−1 → z j) = Γ(z j+1 → z j) = b2/6h2, (11)

and a “survival probability” given by

Γ(z j → z j) = 1−2(b2/6h2). (12)

Here, j is the grid index and h is the grid spacing.

The above approach can be generalized to any geometry and

more sophisticated finite difference approximations. We note that

the finite difference scheme used here assumes that the range of

a bond joining two monomers is on the order of (or less than)

the grid spacing h. This requirement usually requires taking very

small step sizes; in the field free case, the stability condition is

b2 < 3h2. For cases where we wish to lengthen the range of the

bonds, we can include next-nearest neighbor transitions (and be-

yond) by inserting n fictitious monomers at intermediate posi-

tions. These fictitious monomers satisfy eq. 10, but without the

Boltzmann weight associated with the external field. For our case,

we use h= 1/5b, with n= 10 fictitious beads. Finally, note that the

discrete Gaussian chain given here, unlike the continuous Gaus-

sian chain model, has finite range of bond lengths, which are

specified by the grid spacing h and the number of fictitious beads.
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