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Fig. 1 (a) A system of multiple cracks in flooring (b) Deviation stage of En-Passant cracks in soft polymeric material 2 (c) Two cracks move toward

each other after initial divergence 2 (d) Example of interacting opening-mode extensional fractures at Krafla 4 (e) Context image taken from USGS

controlled photo mosaic of Europa (map I-2757) that includes portions of the prominent ridge complex Belus Linea (BL1 and BL2) and double ridge

Rhadamanthys Linea 16 (f) Comparison of fine-scale morphologic features of bedrock from Meridiani Planum on Mars (Image by NASA/JPL and MER

team) 17 (g) Index map of the East Africa rift system showing both the Eastern and Western branches 18

which we briefly discuss now. For a system of two straight cracks

in arbitrary positions, Isida28 has presented an analytical method

based on Laurent series expansions for the stress field; the so-

lution, which can be considered one of the most accurate ones,

ends with a linear system of equations yielding the coefficients

of the Laurent series. Yokobori23 has used a continuous distribu-

tion of infinitesimal dislocations to calculate stress intensity fac-

tors for offset straight cracks, which has been used to approximate

EP kink angles. Savruk29, also utilizing the dislocation-density-

based formulation, produced a set of integral equations that can

be solved numerically to calculate the stress field in a system of

multiple cracks of arbitrary shape. His work has been extended

by Chen30, who has proposed algorithms for a variety of integral

equations. Hori and Nemat-Nasser31 have reduced the stress cal-

culation for arbitrarily located pairs of straight cracks to a linear

system of equations by using a Taylor series with unknown con-

stants. Kachanov32, by a simple “alternative method", estimates

stress intensity factors for a system of straight cracks by canceling

the residual mean traction from the known solution of a single

crack. Many other efforts have been made to solve or approx-

imate the integral equations of Muskhelishvili’s method for the

stress field, including work done by Ukadgaonker and Naik33 in
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Fig. 3 Superposition of different elasticity solutions (Problems A, B, and C) to represent stresses in a system of extended, curved cracks. Tractions

are assigned on solid lines as boundary conditions to produce a stress field. The thicker lines indicate the original cracks before growth. Other

tractions needed in the calculation are evaluated on the dashed lines.

Note that we only model extensions of the inner crack tips; these

have the higher mode-I stress intensity factor and will open first

in the limit of a stiff elastic response. This assumption is further

validated if we restrain to small crack extensions. Moreover, as

the cracks extend, we assume quasi-static crack growth. That is

to say, we assume the ratio σ∞
x /σ∞

y is fixed but we let the magni-

tudes of σ x
∞ and σ

y
∞ arise by the condition that the cracks remain

critically loaded in opening during growth. According to the local

symmetry criterion45,46 and many other models for crack propa-

gation in brittle homogeneous isotropic material47,48, the cracks

propagate in a path in which the tip is in Mode I condition; i.e. if

KII 6= 0 at the crack tip, the crack first kinks and then opens in a

path through which it can maintain KII = 043. With the aforemen-

tioned method for generating the stress field and corresponding

stress intensity factors, the crack path λ (x) is identified by requir-

ing that KII = 0 as the cracks grow along this path.

3 Crack path calculation

In plane-stress conditions, linear elastic stress fields can be ex-

pressed by two biharmonic complex functions of z = x+ iy, the

Muskhelishvili potentials36:

σxx +σyy = 2[φ(z)+φ(z)]

σyy −σxx +2iσxy = 2[(z− z̄)φ ′(z)+Ω(z̄)−φ(z)].

(1)

In a system of EP cracks, we express φ and Ω for the superposi-

tion of Problems B and C, as a sum of two such potentials, one

representing the solution for Problem B (denoted from here on

with superscript 1) and the other for Problem C (denoted with

superscript 2). That is,

φ(z) = φ 1(z1)+φ 2(z2)

Ω(z) = Ω1(z1)+Ω2(z2)

z = z1 = x1 + iy1, z2 = x2 + iy2 = z0 − z1, z0 = r0eiθ0

(2)

Figure 2 shows the relation between the z1 and z2 coordinate sys-

tems. We assume symmetry consistent with Fig. 2 such that the

path for both cracks is given by the same function λ , i.e. crack 1

follows y1 = λ (x1) and crack 2 follows y2 = λ (x2). Each of the φ j

and Ω j for j = 1 or 2 can be approximated up to the first order in

λ (for higher order analysis, see49) by the equations

φ j(z j) = φ
j

0
(z j)+φ

j
1
(z j)+O(λ 2)

Ω j(z j) = Ω
j
0
(z j)+Ω

j
1
(z j)+O(λ 2)

(3)

where φ
j

0
and Ω

j
0

are solutions for two straight crack extensions,

and φ
j

1
, and Ω

j
1

adjust for crack path deviations43,44. Both can be

expressed as integrals of the traction on crack surfaces as shown

below44

φ
j

0
(z j) = Ω

j
0
(z j) =

1

2π
√

z j −L

∫ L

0

(T
j

n (t)− iT
j

s (t))

√
L− t

z j − t
dt

φ
j

1
(z j)+Ω

j
1
(z j) =

1

π
√

z j −L

∫ L

0

(η(t)T
′ j

s (t)+2η ′(t)T j
s (t)− iη(t)T

′ j
n (t))

√
L− t

z j − t
dt.

(4)
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We define η(t) = λ (t)−λ (L). T
j

n (t) and T
j

s (t) as the normal and

shear tractions at location x j = t as prescribed on the crack for

each of Problem B and C. As shown in Fig.3, the tractions on

the crack extension can be expressed as the superposition of two

different traction distributions: a close-field traction, presumably

known from the initial crack geometry, and an unknown mirror

traction. That is, for 0 ≤ t ≤ L,

T
j

n (t)− iT
j

s (t) = T
k j(mt)

n (t)− iT
k j(mt)

s (t)+T
j(c f )

n (t)− iT
j(c f )

s (t)

k = 1,2; k 6= j.

(5)

In the integrals above, as an approximation that we will validate

in a moment, we have assumed we can neglect residual mirror

tractions on the original cracks, as long as the cracks begin far

enough apart. This allows us to make the simplification

T
k j(mt)

n (t)− iT
k j(mt)

s (t)≈ 0 for −2a ≤ t ≤ 0; k = 1,2; k 6= j. (6)

Symmetry of the geometry causes symmetric extensions, which

implies:

T 12(mt)(t) = T 21(mt)(t)≡ T (mt)(t) for 0 ≤ t ≤ L (7)

Similarly, geometric symmetry requires that

φ 1(z) = φ 2(z) and Ω1(z) = Ω2(z). (8)

In view of Fig. 3 Problem B, the stress field in Problem B evalu-

ated at the location of crack 2 defines the mirror traction T 12(mt).

Therefore,

− (T
12(mt)

n (x2)− iT
12(mt)

s (x2)) = φ 1
0 (z0 − x2)+Ω1

0(z0 − x2)+

+φ 1
1 (z0 − x2)+Ω1

1(z0 − x2)+

+ iη(x2)[φ
1
0 (z0 − x2)+Ω1

0(z0 − x2)]
′+

+2i[η(x2)(φ
1
0
(z0 − x2)−Ω1

0(z0 − x2))]
′.

(9)

Upon substituting Eqs 4-8 into the above, we obtain a closed inte-

gral equation for T (mt). Solving this equation is a key step in the

work of this paper.

The relationship between the stress intensity factors at the in-

ner crack tips and the biharmonic functions (φ j and Ω j) are pre-

sented in Eq.10

K
j

I (L)− iK
j

II(L) = lim
r j→0

√
2πr j

[

2φ
j

0
(L+ r j)(1− iω)+2iωφ

j
0
(L+ r)+

+2iωr jφ
′ j
0
(L+ r j)+φ

j
1
(L+ r j)+Ω

j
1
(L+ r j)

]

(10)

where ω = λ ′(L). The above system can be used to approximate

stress intensity factors for any crack pair that extends the initial

parallel straight cracks by λ (x). Finally, to model crack growth

and determine the actual path λ that the freely growing crack

will follow, we must select λ such that the opening criterion

K1
II(L) = K2

II(L) = 0 for 0 < L < Lstop (11)

is always satisfied as the cracks grow to some total extension

length Lstop. By solving the system of integral equations (Eq.4-

11) the crack path along with the stress field during growth can

be calculated. Based on the results of Cotterell and Rice and Sumi

et al.43,44, we will assume the path is of the general form

λ (x) = αx+βx3/2 + γx2 +O(x5/2) (12)

with α,β , and γ constants. Truncating beyond x2, it is our goal,

hence, to solve the above system for these three constants. While

solving the system is still non-trivial, next we propose three so-

lution methods that reduce the integral equations to a system of

more tractable algebraic equations.

4 Method I

By assuming
λ (L)

L ≪ 1, we replace the mirror tractions (T
(mt)

n and

T
(mt)

s ) by a Taylor series in
√

x with unknown constants.:

T
(mt)

n (x j)− iT
(mt)

s (x j) =
∞

∑
n=0

(Pn/2 − iQn/2)(
x j

L
)

n
2 . (13)

The (truncated) Williams expansion for the stress near the initial

cracks is given by

σxx(x j,0) =
kI

√
2πx j

+T +bI

√
x j

2π

σyy(x j,0) =
kI

√
2πx j

+bI

√
x j

2π

σxy(x j,0) =
kII

√
2πx j

+bII

√
x j

2π

(14)

where kI ,kII ,bI ,bII , and T are known Williams expansion coeffi-

cients for the initial unextended cracks28,31. Mindful that the two

close-field tractions in Eq.5 are symmetric (T
1(c f )

s = T
2(c f )

s ≡ T
(c f )

s

and T
1(c f )

n = T
2(c f )

n ≡ T
(c f )

n ) we can resolve the above stresses

along the extension path to obtain by the assumption of the small

deflection (see Eq.17-25 in44 or Eq.39-49 in43 for more detail).

T
(c f )

n (x j) = (kI −
3

2
αkII)

1
√

2πx j

− 5βkII

2
√

2π
+

+(bI −
7

2
γkII −

5

2
αbII)

√
x j

2π

T
(c f )

s (x j) = (kII +
α

2
kI)

1
√

2πx j

+(−αT +
βkI

2
√

2π
)+

+(bII −3

√
π

2
βT +

γkI

2
− αbI

2
)

√
x j

2π

(15)

It bears mentioning that how many terms one keeps in the

Williams expansion of Eq. 14 places an inherent limit on how

large Lstop can be. We can only extend the crack as far as the

close-field solution is an accurate representation of the stress

field adjacent to the crack tips in Problem A. In Appendix A,
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by fitting them from an “outer solution”, i.e. a stress field for

the two-crack problem that is accurate not close to either crack.

There are potentially many ways to obtains an outer solution,

but herein we discuss one such way. A more complete analysis

of the method — including closed-form error estimates for the

outer solution, and an asymptotically valid kII approximation for

EP cracks (Eq. 37)— are included in Appendix B.

The exact solution to the biharmonic function φ for our Prob-

lem A (ignoring the constant far-field stress) can be expressed

as the sum of the solutions for two isolated Griffith cracks along

with an extra part φres(z) which comes from the interaction of

each crack on the other one. As it is expected, if one neglects φres

the resulting form is not able to capture the stress intensity fac-

tors of the cracks but does a sufficient job representing the stress

field when not close to either crack (see Appendix B). Therefore,

in a region that excludes the vicinity of either crack, an “outer so-

lution” for the stress field can be assumed to be a superposition of

two separated single cracks under tension. Meanwhile, the stress

near the crack tip has to always follow a Williams expansion. Con-

sequently, requiring that an asymptotic inner solution — taken to

be a truncated Wiliams expansion — match the outer solution in

some overlap window could yield a fast method to produce the

needed inputs in Eq. 17 to obtain λ . ∗

Let σG(z1)+σ∞
x ex ⊗ ex +σ∞

y ey ⊗ ey represent the stress field for

a single Griffiths crack of length 2a under tensile loading σ∞
y and

lateral loading σ∞
x , where z1 originates at the right-side crack tip.

The Griffith’s field σG is the variation from the far-field stress.

The xy shear stress has the exact solution

σxy(x1) = σG
xy(z1) =−2Im(z1)Re(φ G ′(z1))

φ G(z1) =
σ∞

y (z1 +a)

2
√

(z1 +a)+a
√

(z1 +a)−a
−

σ∞
y

2
.

(18)

To construct an outer solution for twin cracks, we suppose a su-

perposition of the two Griffiths fields, as if each crack were on its

own. Hence,

σouter(z1) = σG(z1)+σG(z2)+σ∞
x ex ⊗ ex +σ∞

y ey ⊗ ey

z2 = z0 − z1, z0 = r0eiθ0

(19)

To perform the matching, we choose to enforce agreement be-

tween the inner and outer solutions at some point (l,0) on the line

y1 = 0. We choose this line because the function σxy(x1 → 0,y1 = 0)

is decoupled entirely from the mode-I crack-tip coefficients. Thus

the behavior of σxy on this line permits us to extract the needed kII

and bII values directly without having to filter out dependences

on the much-larger mode I coefficients, a process that would in-

troduce new sources of error. Naturally, the field σG
xy does not

have a singularity at either crack tip. However, the outer solution

has a nonsingular but finite shear stress at each crack tip, which

∗Unlike standard asymptotic matching techniques which involve a small parameter

that induces a rapidly varying inner solution expressible in stretched coordinates,

the inner solution here is rapidly varying because it is a true singular function and

does not require stretched coordinates 37.

can be expanded to second-order in a Taylor series per Eq.20. Fo-

cusing on crack 1, an overlap point between the inner and outer

solutions, at some x1 = l, should have the property that the solu-

tions look similar in a small window about that point. To identify

this point l and simultaneously find the needed constants in the

Williams expansion (kII and bII) we desire a matching up to the

second-derivative in space between the two solutions at l. Hence,

by solving the system of equations presented in Eq.20, the pa-

rameters of the inner solution can be expressed based on the con-

stants in σxy(outer)(x1). That is,

σxy(outer)(x1)∼= as +bsx1 + csx
2
1;

σxy(inner)(x1) =
kII√
2πx1

+bII

√
x1

2π







σxy(inner)(l) = σxy(outer)(l)

σ ′
xy(inner)(l) = σ ′

xy(outer)(l)

σ ′′
xy(inner)(l) = σ ′′

xy(outer)(l)

(20)

This method is explained graphically in Fig.6. In the case of EP

cracks, for r0 ≫ a, we have observed that cs ≪min(as,bs) and thus

the constants l, as, and bs can be solved for directly. Of particular

note, we find the formulas

as =−
a2σ∞

y Im(z0)
√

z0(z0 −2a)

z2
0
(z0 −2a)2

, bs =
3a2σ∞

y Im(z0)(a− z0)

(z0(−2a+ z0))5/2

(21)

in which z0 = r0eiθ0 . Using Eq.20 and 21, we find the formula

kII =
√

2πa2σ∞
y Im(z0)Re





√
z0(2a−z0)

a−z0

√

z0(z0 −2a)

9z2
0
(z0 −2a)2





bII =−3
√

2πa2σ∞
y Im(z0)Re




(a− z0)

√
z0(2a−z0)

a−z0

(z0(z0 −2a))5/2





(22)

This constitutes ‘Method III’ for EP crack path determination.

In order to verify the precision of the matched solution, Fig.7

shows the value of kII by the matched method, Eq. 22, compared

to the exact solution for different EP geometries. Here we use

σ∞
x = 0. This figure clearly shows that Eq.22 can approximate the

exact value of kII and provides a good estimation of the turning

point (when the value of the kII changes sign), which depends on

the different positions of the cracks. As another verification, Fig.

8 compares the asymptotically matched solution for shear stress,

σxy, to the exact solution in four different cases. “Inner solution"

and “Outer solution" regions are matched at the overlap location

shown marked with an l on the graphs.

With these approximate values of kII and bII along with the

single-crack solutions for T , bI and kI , we can apply Eq.17 to

obtain the crack-path, λ (x). This constitutes ‘Method III’ for EP

crack path determination.
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(a)
Re(φres(z1))

σ∞
y

(b)
Re(φres

Est
(z1))

σ∞
y

Fig. 14 Behavior of a)
Re(φ res(z1))

σ∞
y

b)
Re(φ res

Est (z1))
σ∞

y
as it varies with r0 and

position, x, ahead of the lower-left crack, i.e. x = Re(z1) and Im(z1) = 0

for cracks offset by an angle θ0 = π/6.

where we have noted the emergence of the outer solution, Eq 19.

Let us define the Taylor expansion

∞

∑
n=0

αnxn
1 ≡−2Im(z0)Re(φ ′G(z0 − x1))−2Im(z0)Re( f (ζ ,θc)φ

′G(z0 − x1))

−2Im( f (ζ ,θc))Re(φ G(z0 − x1)). (35)

Near z1 = 0 the exact shear stress σxy has the following form of

Williams expansion

σxy(x1) =
kII√
2πx1

+bII

√
x1

2π
+ cII

x1√
2π

+O(x
3/2

1
) (36)

ahead of the crack tip. By combining Eq.36, Eq. 31 and Eq.30 the

following results can be obtained:

kII =−2
√

2πIm( f (ζ ,θc))a−1 +O(ζ 3) =

σ∞
y

√
πa

2
ζ 2(sin4θc − sin2θc)+O(ζ 3)

bII =−2
√

2πIm( f (ζ ,θc))a0 +O(ζ 3) =

σ∞
y 3

√
π

8
√

a
ζ 2(sin4θc − sin2θc)+O(ζ 3)

cII =
√

2πα1 +O(ζ 3)

(37)

It bears noting that the above formulas for kII and bII are useful on

their own as strong approximations for the shear stress intensity

factors of EP cracks. These could be used to approximate α, β ,

and γ for the crack path, however, they are specific to the EP

geometry and do not share the apparent generality that we may

hope to gain in the future from the matching approach of Method

III. In Sec 7 the inner solution is defined as a two-term Williams

expansion based on a functional matching with the outer solution

at the matching point. As will be discussed more in a moment,

for the purposes of backward error evaluation in Method III, we

assume for now an inner solution with exact coefficients,

σxy(inner)
∼=

kII√
2πx1

+bII

√
x1

2π
. (38)

We define the error of the inner/outer solutions by

einner(x1) = σxy(x1)−σxy(inner)(x1)

eouter(x1) = σxy(x1)−σxy(outer)(x1)

(39)

By combining the Eq.39 with Eq.32 and Eq.34, we obtain the fol-

lowing form for the inner solution error,

einner(x1) = σ1
xy(x1)+σ2

xy(x1)−σxy(inner)(x1)

einner(x1) = cII
x1√
2π

+O(x
3/2

1
)

einner(x1) = α1x1
︸︷︷︸

≡eEst
inner(x1)

+O(x1ζ 3)+O(x
3/2

1
)

(40)

where, from Eq 35, we calculate

α1 =
3a2σ∞

y Im(z0)(a− z0)

(z0(−2a+ z0))5/2
−2Im(z0)Re

(

f (ζ ,θc)
3σ∞

y a2(a+ z0)

2z
5/2

0
(2a+ z0)5/2

)

(41)

− Im( f (ζ ,θc))Re

(
a2σ∞

y

2z
3/2

0
(2a+ z0)3/2

)

. (42)
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B−1/2 =
[(

α2kI +2αkII

)

+ i
(

2αkI −3α2kII

)]
1√
2πL

B0 =
5αβkI

2
√

2π
+

3βkII√
2π

−2α2T + i

(
3βkI√

2π
− 19αβkII

2
√

2π

)

B1/2 =
√

L

(

−α2bI√
2π

+

√

2

π
αbII +

3αγkI√
2π

+

+
3β 2kI

2
√

2π
+2

√

2

π
γkII −6αβT

)

+

i
√

L

(√

2

π
αbI −

5α2bII√
2π

+2

√

2

π
γkI −

13αγkII√
2π

− 15β 2kII

2
√

2π

)

B1 = L

(

−3αβbI

2
√

2π
+

3βbII√
2π

+
7βγkI

2
√

2π
−4αγT − 1

2
9β 2T

)

+

+
iβL(6bI −15αbII −41γkII)

2
√

2π

B3/2 = γ

√

2

π
L3/2 (−αbI +2bII + γkI −6βT )+

+ i

√

2

π
γL3/2(2bI −5αbII −7γkII)

C−1/2 =−
L(αkI +2kII)

(
α +β

√
L+ γL

)

2
√

2π
−

−
iL(2kI −3αkII)

(
α +β

√
L+ γL

)

2
√

2π

C0 =
L
(

4
√

παT −
√

2βkI

)(
α +β

√
L+ γL

)

4
√

π
+

+
5iβkIIL

(
α +β

√
L+ γL

)

2
√

2π

C1/2 =
1

4
√

π
(
√

2αβbIL
3/2 +

√
2αbIγL2 +

√
2α2bIL−

−2
√

2bIIL
(

α +β
√

L+ γL
)

+
√

2α2kI−

−
√

2βγkIL
3/2 −

√
2γ2kIL

2 −
√

2αγkIL+2
√

2αkII+

+6
√

πβ 2L3/2T +6
√

πβγL2T +6
√

παβLT )+

+ i
1

2
√

2π
(−2bIL

(

α +β
√

L+ γL
)

+5αβbIIL
3/2 +5αbIIγL2+

+5α2bIIL+2αkI −3α2kII +7βγkIIL
3/2 +7γ2kIIL

2 +7αγkIIL)

C1 =
β (αkI + kII)√

2π
+

iβ (kI −4αkII)√
2π

+α2(−T )

C3/2 =
1

4
√

π

(

−
√

2α2bI +2
√

2αbII +2
√

2αγkI+

+
√

2β 2kI +2
√

2γkII −10
√

παβT

)

+

+
i
(
2αbI −5α2bII +2γkI −10αγkII −5β 2kII

)

2
√

2π

C2 =− αβbI

2
√

2π
+

iβ (2bI −5αbII −12γkII)

2
√

2π
+

+
βbII√

2π
+

βγkI√
2π

−αγT − 1

2
3β 2T

C5/2 =
γ
(

−
√

2αbI +2
√

2bII +
√

2γkI −6
√

πβT
)

4
√

π
−

− iγ(−2bI +5αbII +7γkII)

2
√

2π

D Calculation of φ 1
0 and φ 1

1

φ 1
0 (z1) = Ω1

0(z1) =
1

∑
m=−1

A m
2

∞

∑
i=0

fi m
2

(
L

z1

)i+3/2

+

+
N

∑
n=0

(Pn
2
− iQ n

2
)

∞

∑
i=0

fi n
2

(
L

z1

)i+3/2

φ 1
1 (z1)+Ω1

1(z1) =
3

∑
m=−1

B m
2

∞

∑
i=0

fi m
2

(
L

z1

)i+3/2

+

+
5

∑
m=−1

C m
2

∞

∑
i=0

vi m
2

(
L

z1

)i+3/2

+
N

∑
n=0

∞

∑
i=0

(Q n
2
FQn − iPn

2
FPn)

(
L

z1

)i+3/2

(46)

where N is the number of the terms one chooses to keep in the

Taylor expansion in Eq.13; the variables fin, FPn, FQn, Ak, Bk, and

Ck can be obtained based on the Williams expansion coefficients,

which are presented in Appendix C. By substituting the above into

Eq 9, the unknown constants in the Taylor series and crack path

will be obtained through a solvable non-linear system of equa-
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tions. The final equations for Pn and Qn are expressed as follows:

Pn = Re(φ∗
1 (n))+2Re(φ∗

0 (n))+2αIm(φ∗
0 (n))(n+2)

+ γIm(φ∗
0 (n−1))(n+1)δn−1 −λ (L)(n+1)Im(φ∗

0 (n+1))δN−n−1

Pn
2
= 2βnIm(φ∗

0 (n))+6γIm(φ∗
0 (n))

Qn = Im(φ∗
1 (n))+2Im(φ∗

0 (n))+αnRe(φ∗
0 (n))+ γRe(φ∗

0 (n−1))nδn−1+

+λ (L)(n+1)Re(φ∗
0 (n+1))δN−n−1

Q n
2
= 2βnRe(φ∗

0 (n))

n = 0,1, ...,N; δn =

{

1 if n ≥ 0

0 if n < 0.

(47)

The constants in Eq.47 are:

Re(φ∗
1 (n)) =

3

∑
m=−1

Re(B m
2
)Re(HFm

2
n)+

3

∑
m=−1

Im(B m
2
)Im(HFm

2
n)+

+
5

∑
m=−1

Re(C m
2
)Re(HVm

2
n)+

5

∑
m=−1

Im(C m
2
)Im(HVm

2
n)

+
2N

∑
j=0

P j

2

Im(HFP j

2
n
)+

2N

∑
j=0

Q j

2

Re(HFQ j

2
n
)

Im(φ∗
1 (n)) =−

3

∑
m=−1

Re(B m
2
)Im(HFm

2
n)+

3

∑
m=−1

Im(B m
2
)Re(HFm

2
n)−

−
5

∑
m=−1

Re(C m
2
)Im(HVm

2
n)+

5

∑
m=−1

Im(C m
2
)Re(HVm

2
n)−

−
2N

∑
j=0

P j

2

Re(HFP j

2
n
)+

2N

∑
j=0

Q j

2

Im(HFQ j

2
n
)

Re(φ∗
0 (n)) =

1

∑
m=−1

Re(A m
2
)Re(HFm

2
n)+

1

∑
m=−1

Im(A m
2
)Im(HFm

2
n)+

+
2N

∑
j=0

P j

2

Re(HFp

2
n)+

2N

∑
j=0

Q j

2

Im(HFp

2
n)

Im(φ∗
0 (n)) =

1

∑
m=−1

Im(A m
2
)Re(HFm

2
n)−

1

∑
m=−1

Re(A m
2
)Im(HFm

2
n)−

−
2N

∑
j=0

P j

2

Im(HF j

2
n
)−

2N

∑
j=0

Q j

2

Re(HFp

2
n)

hip =

(
p+ i+1/2

p

)(
L

r0

)p+i+3/2

HFnp =
∞

∑
i=0

finhip cos(p+ i+3/2)θ0 − i
∞

∑
i=0

finhip sin(p+ i+3/2)θ0

HVnp =
∞

∑
i=0

vinhip cos(p+ i+3/2)θ0 − i
∞

∑
i=0

vinhip sin(p+ i+3/2)θ0

HFQnp = HFnp(αLn+2αL)+HF(n+1)p(nβL3/2 +3/2βL3/2)+

+HF(n+1)p(nγL2 +4γL2)+δn1(αL+βL3/2 + γL2)HF(n−1)p

HFPnp = n(HFnpαL+HF(n+1/2)pβL3/2+

+HF(n+1)pγL2 − (αL+βL3/2 + γL2)HF(n−1)p)
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