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Theory of colloid depletion stabilization by unattached and
adsorbed polymers

A.N.Semenov *, A.A.Shvets T
Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg,
23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
(September 1, 2015)

The polymer-induced forces between colloidal particles in a semidilute or concentrated
polymer solution are considered theoretically. The study is focussed on the case of par-
tially adsorbing colloidal surfaces involving some attractive centers able to trap polymer
segments. In the presence of free polymer the particles are covered by self-assembled fluffy
layers whose structure is elucidated. It is shown that the free-polymer-induced interaction
between the particles is repulsive at distances exceeding the polymer correlation length,
and that this depletion repulsion can be strongly enhanced due to the presence of fluffy
layers. This enhanced depletion stabilization mechanism (which works in tandem with a
more short-range steric repulsion of fluffy layers) can serve on its own to stabilize colloidal
dispersions. More generally, we identify three main polymer-induced interaction mecha-
nisms: depletion repulsion, depletion attraction, and steric repulsion. Their competition
is analyzed both numerically and analytically based on an asymptotically rigorous mean-
field theory. It is shown that colloid stabilization can be achieved by simply increasing
the molecular weight of polymer additive, or by changing its concentration.

*To whom correspondence should be addressed.
tCurrent address: Department of Chemistry, Rice University, Houston, Texas, 77005, USA.
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1. Introduction

Stabilization of colloidal dispersions is indispensable for numerous technological, industrial,
biological and biomedical applications. [1,2] In many systems (including biological colloids [3-5])
colloidal particles are mixed with polymers that can significantly affect the colloidal stability. [1]

It is well-known that addition of a small amount of non-adsorbing polymer normally serves
to destabilize a colloidal system due to the depletion flocculation effect. [1,2] A destabilization
is also often observed in the case of reversible physical adsorption of added polymer onto the
colloidal surfaces. [6,7] This effect is attributed to formation of polymer bridges between the
particles. [8-11]

It was reported, however, that the depletion attraction can be suppressed by increasing the
concentration of unattached polymer [1]. Higher concentrations of added polymer can impart
colloidal stability also in the case of moderate attraction of polymer segments to colloidal
particles. [12]

A number of theoretical approaches had been devised to explain the depletion stabilization
effect [1,13]. However, most of these theories can be viewed as semiempirical in nature (see
refs. [14,13] and references therein). !

A recently developed rigorous approach [13,14] attributes the free polymer induced (FPI)
repulsion mostly to the entropic effect of polymer chain ends [16,14,13]. Interestingly, this effect
is associated with the development of the polymer concentration maximum next to the depletion
zone. [13,16,17]

It was shown [13] that the FPI repulsion in the semidilute or concentrated polymer regime
can serve to kinetically stabilize colloidal systems. However, it is generally not strong enough
(apart from some special cases) to impart the colloidal stability on its own in the case of
non-adsorbing solid surfaces. Thus, the FPI interactions can be used to stabilize colloidal systems
in combination with other stabilization mechanisms. This conclusion is drawn not only for non-
adsorbing polymers [13], but also in the case of reversible adsorption of polymer chains on the
colloidal particles [18].

Nevertheless, recent experimental results on metal nanoparticles [19,20] apparently indicate that
the FPI repulsion can strongly enhance the colloidal stability, and even can provide a stabilization
working alone (for particle size > 30nm). The theory presented in this paper provides an
explanation of the enhanced FPI stabilization effect. The model considered implies the presence
of strongly adsorbing sites (centres) or their clusters on the colloidal particles (like the exposed
patches of metal or citrate in the case of gold nanoparticles [21]). This should lead to a partial
adsorption of some polymer segments located near the surface by binding to the attractive sites.
We show that the emerging self-assembled adsorbed layers strongly can enhance the magnitude of
the FPI repulsion even if the fraction of adsorbing sites is small.

The advantages of this colloidal stabilization method (as compared to the classical steric
stabilization) is that polymer is an additive whose concentration and molecular weight can be
rather easily varied to tune the interaction in a desired way. In addition, a rather dilute adsorbed
layer does not block the colloidal surface leaving it accessible for other molecules.

The paper is organized as follows: The physical model is described in the next section; the
structure of the fluffy adsorbed layer is also elucidated there. The basic theory of FPI interaction
at low density of attractive centres is presented in section 3. The theory is then generalized to
systems where the adsorbed and free chains have different molecular weights, and their effect on
the FPI interactions is analyzed in section 4. Section 5 is devoted to the numerical results on
depletion interactions at a relatively high density of adsorbing surface sites. In the next section
6 the calculated FPI interaction potentials are applied to analyze the forces between spherical
particles (including the effects of the van der Waals and short-range depletion attractions). The
main results are discussed and summarized in the last section.

In many cases the polymer coils were regarded as ideal flexible chains, or as hard or soft (penetrable) spheres. [15]
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2. The physical model and the adsorbed layer: structure and kinetics
2.1. Polymer near a solid wall

Let us consider a solution of homopolymer chains, with N units per chain, statistical segment
length a, and bulk monomer concentration ¢; (corresponding to volume fraction ¢, = vicy, where
vy is the monomer volume) in the presence of a flat solid wall. The bulk solution is characterized
by the correlation length & which depends on concentration:

E~a/V2viey, gy K1y E~a, ¢y~ 1 (1)
where a = as/\/6_, v* = klﬁ%‘—;b’“ is the effective monomer virial parameter, and g, is the
osmotic contribution to the monomer chemical potential. [13] In the second virial approximation
tint(cy) =~ kpTvey, where v is the second virial coefficient of monomer interactions (by monomers
here we mean monomer residues, repeat units of the polymer chain).

In what follows we are mostly interested in the regime of short correlation length as compared
to the polymer coil size: ¢ < R, where R = a\/ﬁ is the gyration radius. We also assume
the marginal solvent regime, c; > v/a®, with sufficiently long chains, N > 1/(v*¢;). % It is
important to note that marginal solvent regime does not necessarily mean that the solution is
close to the theta-conditions. Of course, close enough to the theta temperature the solvent is
always marginal. However, the marginal solvent conditions are often realized for polymers in
solvents that are normally considered by the experimentalists as pretty good (like polystryrene,
PS, in toluene). Moreover, even athermal polymer systems (with no attraction between the chain
segments, but only steric repulsion) can be in the marginal solvent conditions if the polymer
chains are semiflexible since the ratio v/a® is always small in this case (a polymer is semiflexible
if its persistence length is much longer than its effective chain diameter).

Let us clarify the point: by definition, the solvent is marginal if the chains are not swollen
significantly even in the dilute regime (i.e., the chain statistics are nearly Gaussian). The
swelling factor o = R/Ry (where R( is the ideal Gaussian chain size) is defined by the Fixman

parameter [23-25]
3 \3/2 ,N1/2
=) "

As a reasonable quantitative criterion of the marginal solvent regime one can demand that the
degree of chain swelling is less than 20% (« < 1.2) which corresponds to zp < 0.5. [23-25] Using
this criterion for example for PS in toluene (a, ~ 7.54, v ~ 40A43) [26,27] we get N < 300.
Therefore, the marginal solvent regime is always relevant for toluene solutions of PS with molecular
weight M < 30000. It is also relevant for longer PS chains well in the semidilute regime, for
concentrations > 0.1g/cm?.

Let us return to the polymer solution near a wall. The next question concerns the equilibrium
monomer concentration profile near the wall, ¢ = ¢(z), where z is the distance to the surface.
Obviously ¢(o0) = ¢;. The concentration at the surface, ¢(0), depends on the polymer/wall
interactions. Let us consider first the case of maximum bulk concentration ¢, = ¢pmee = 1/v1
(¢p = 1) corresponding to a polymer melt. Due to the incompressibility of the melt, the
surface effect is very local with microscopic range 6 of the order of monomer size. Hence, the
concentration profile is nearly uniform outside this thin surface layer: c(z) ~ ¢, for z > §. The
effects considered below correspond to much longer length scales on the order of the coil size
R > 6. The polymer chain statistics at these length-scales nearly does not depend on the local
polymer/surface interactions, hence we can disregard the surface layer formally setting 6 = 0. In
this sense we can also set ¢(0) = ¢, meaning that the surface effect is ‘neutral’ and arriving at
the effective boundary condition on the surface of the Neumann type:

de

— =0 =0 2
dz » @ (2)

Within the mean field approach [13] this boundary condition together with the incompressibility
ensure that the equilibrium mean-field molecular potential U(z) is constant (for z > §).

2Shorter chains are not interesting as they are anyway not efficient for colloidal stabilization.
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Indeed, defining (z,s) as the partition function of a chain of s units with one end at the
distance z, and adopting the continuous Gaussian chain mean-field model, we can write the
concentration profile as [23]:

c(:c) = Cﬁb / 1/’(50, S)i/J(m, N — s)ds (3)
In the presence of the molecular field U(z) the function ¢ satisfies the Edwards equation [22,23,13]:

IP(z) 2321/’(33)

12 _ 2P g(ayia) 4)
with ¢(z,0) = 1. > The condition (2) can be generally satisfied only if
dy(z) _ _

The above equations allow to find c¢(z) for a given U(z). The solution is particularly simple for
U(z) =const: c¢(z) =cp. This result validates the assumption that U(z) = const.

For similar reasons the effective boundary condition (5) is also applicable to describe the polymer
statistics in the case of concentrated or semidilute solution regime at length-scales exceeding the
static correlation length ¢ of polymer concentration fluctuations: in this regime as well ¢(z) ~ ¢
and U(z)~ const as long as we are not interested in the short-range details for z <¢.

2.2. The effect of attractive sites

We now take into account the presence of sites that can strongly adsorb polymer segments
on the surface. As a reference model we consider a basically neutral surface decorated with
some randomly distributed attractive sites covering a small fraction of the surface. To simplify
the model, we assume that a monomer unit can form a bond with just one attractive site on
the surface (and vice versa). We consider such units as frozen and label them ‘white’. All
other monomers are ‘black’. The irreversible adsorption can be then considered as a process of
recoloring the polymer units from ‘black’ to ‘white’.

In the simplest case, we postulate that ‘black’ units can instantly turn ‘white’ with probability
p(z). The function p(z) is localized near the surface: p(z) =0 for @ > 6, where & is the bond
size, so 8 ~ a < R. After the transformation the total number of ‘white’ units (per unit area) is

8y
Og = cb/o p(z)dz (6)

where o, is the surface concentration of the attractive sites. The chains with ‘white’ units are
then considered as adsorbed, and the first quantity of interest is the concentration profile ¢,(z)
of the adsorbed polymers. All other chains (with no ‘white’ units) are free, their concentration
profile is cf(z).

To calculate ¢,(z) we note that, once the colors of the units are not distinguished, the statistical
conformational distribution Z [Y] of all chains must remain unchanged, Z = Z;[Y], where T is the
set of coordinates of all units. Adding colors, we multiply Z; by the color factor:

Z[Y, col] = Zo[Y] Zeor (7)

where Zgu = [[,w; is the product of color weights for all units: w; = p(z) for a white unit
¢, and w; =1 — p(z) for black units. Therefore Z [T,col] is the equilibrium distribution of the
system of annealed chains whose units can independently choose from 2 states (black and white)
in the external field wuo(z) for black units and wuj(z) for white units, such that e~ *:(*) = p(z),
e~ (®) =1 _—p(z). Right after the instant coloring event the joint distribution is given by eq. (7),
hence the distribution of free chains (with no white units) is consistent with the surface field

uo(z) = —In (1 - p(z)) (8)

®Here and below the thermal energy kg7 is considered as the energy unit.
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In other words, the distribution of free (entirely black) chains is defined by eqs. (4), (5) with
U(z) = uo(z). As the field uo(z) is localized, é, < R, its effect can be replaced by the effective
boundary condition (instead of eq. (5)):

dy(z) _ ()
——t = =6 9
dz b T ®)
where the extrapolation length * b is defined by the potential wuo(z):
b a?/ /p(:c)d:c = a®a /o (10)
where eq. (6) is also used. °
For z > &, the Edwards equation then reduces to the ideal chain propagation (‘free diffusion’):
% = azngf. This ideal chain problem was solved long ago [30,31]. The result depends on the
parameter

»=R/b=+Noy/ (acy)

(11)
which gives the reduced surface concentration of attractive sites. The free-chain partition function
is

P(z,u) = 1 — erfc (%) 1 e TR grfe (% + %\/1_1)

where erfc is the complementary error function, Z = /R, uw = s/N. The concentration profile
cf(z) for free chains is then defined in eq. (3)

Recalling that the total concentration c(z)
cq(z) +cp(2) = ¢y is uniform (see the end of the previous section) we find the profile for adsorbed
chains

1

cq(z) = cb/ [1—9¢(z,w)y(z,1—u)] du
0

In particular,

(12)

1

cq(0)/cp =~ / [1 — Fd(sev/u)Fd(5cv/1 — u)] du
0

where Fd(z) = exp(z?)erfc(z). The surface concentration of adsorbed chains, ¢,(0)/cp, is shown in

Fig. 1 as a function of s: ¢,(0) is small for »» < 1 and it is close to ¢; for 2> 1 (adsorbed
chains dominate near the surface):

8
ca(O)/cb:ﬁ%, » K 1; ca(O)/cbzl—l/%z, x> 1

Note that due to the large factor VN in eq. (11), the regime s > 1 can be realized even for a
small surface concentration of adsorbing centers.

Let us consider the two asymptotic regimes in more detail. For » < 1 we obtain

culo)for= <fo (3), (@) = 5= (14 35 exp (—33*) —22 (14 2 exe (5)

The function fo(Z) is displayed in Fig. 2. The total adsorbed mass is

(13)

T, =

/ ¢o(z)dz ~ cpxR = Noy, (14)
0

*The extrapolation length b is the distance between the physical surface (z = 6p) and the fictitious surface where
the linearly extrapolated 4(z) should vanish. [28]

®It may seem that eq. (10) requires uo ~ p < 1. However, this requirement is just an artifact of the continuous
chain model, while eq. (10) is more general: it is always valid as long as b > a.
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In the opposite regime, ¢ > 1, the dependence on s saturates:

@)/ fi (%), fl(:E):/Ol [1_erf<zja)erf<wf__u)]du (15)

The reduced concentration profile in this case is also shown in Fig. 2. The total adsorbed
amount,

Ty~ (2/V7) R (16)

is now independent of the concentration of attractive sites.

Using equations (6) (0, ~ cy6pp) and (11) ome finds 3 ~ /Npéy/a ~ /Np. Therefore, the regime
%> 1 can be naturally realized with p~1 and N > 1: in this case >~ N2> 1. As a useful
particular case we can assume that every chain unit in a surface layer of thickness &, is instantly
turned to the bonded state (i.e., these units get instantly trapped by the surface attractive sites).
By doing this we model surface/monomer interactions with the highest density of adsorbing sites.
Therefore, the resultant adsorbed layers must correspond to the asymptotic regime > 1. The
concentration profiles, ¢,(z), have been calculated for different é,/R = 0.05, 0.2, 0.5 directly using
the SCFT approach (see ref. [13] for details) based on the Edwards equation (4) involving the
potential field U(z) = uo(z) for the free (black) chains. The obtained profiles are identical in all
the three cases provided that z is redefined as the distance to the é;-layer of the trapped (white)
units, i.e. = = —§&, corresponds to the solid surface (Fig. 2). Moreover, the SCFT profiles also
coincide with the analytical prediction for > 1, eq. (15) (see Fig. 2). Interestingly, the total
number of adsorbed chains is 91, = R,—”(A—}—(Sb), where A = \/LFR. The &, contribution is neglected
in what follows since &, < R.

Two remarks are due here. First, strictly speaking, the calculated profiles c¢(z), c.(z) are valid
right after the coloring instant. What if they change afterwards? The answer is: if the potential
uo(z) is present, then the chain conformational distribution, eq. (7), is always at equilibrium, so
it does not change in time. If the system is incompressible (say, in the melt case), the required
molecular field uo(z), eq. (8), is created self-consistently (since the overall monomer density profile
would be inhomogeneous for any other potential, leading to a violation of the incompressibility
condition). In the case of a solution with a finite £, the concentration profile changes at = ~ £.
However, the effective boundary condition (9) is still applicable at larger distances z > ¢ due to
the repulsive molecular field u(z) which develops self-consistently in the proximal zone z ~ £. The
field u(z) is associated with an elevated total monomer concentration in this zone: u(z) ~ v*éc(z).
The concentration increment éc(z) is mainly due to adsorbed chains, ¢4(z), whose effect is reduced
by a depletion of free chains near the surface. To keep the total ¢ nearly constant we have to
demand 6c < ¢, for z>> ¢, which gives, by virtue of the Edwards equation, the condition ©

1 x
o v eq(z)dz > 1/ max(b,€) for = > ¢ (17)
0
Using egs. (13), (15) one can verify that the condition (17) is always true provided that ¢ < R,
i.e., in the semidilute or concentrated solution regimes. To resume, we find that the redistribution
of segments of free (or adsorbed) chains after an instantaneous surface bond formation is a
negligibly weak effect for = > €.

Another remark concerns the boundary condition. So far we assumed the neutral wall (Neumann)
condition, eq. (5). We argued above that due to the virtual incompressibility of the system the
true boundary condition is irrelevant for the free chain statistics at length scales z > £. However,
the surface bond formation (coloring) happens at short distances z ~ & < ¢, hence this process
may be affected by the polymer/wall interaction. However, the total number of adsorbed units
(per unit area) must be equal to the number of traps (= o,) which is known (it is assumed that

there are enough monomers in the é,—layer to saturate all traps, foéb c(z)dz > o4, since otherwise
instantaneous coloring would not be possible). As was established before [32], it is the total
number of units at the surface (= o,) that defines the concentration profiles at z > &, hence the

®The additional condition, = > ¢, is applied here since we are interested in the effect of the field wo(z) on the
large-scale monomer distribution, i.e., for > £. For the same reason we replace b with max(b,£): this change
does not affect the conformational distribution of chain segments on the length-scales larger than £.

Page 6 of 35
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effective boundary condition (9) and eq. (10) for b stay essentially valid in the general case, for
the arbitrary polymer/surface interaction (in particular, also when the surface with no attractive
sites is purely repulsive).

Let us now lift the assumption of an instant surface bond formation: it could be unrealistic in
the case of relatively strong bonds between polymer segments and colloidal surface. In this case,
the bond formation may be delayed by rather high activation energy barriers [29] (note that the
activation energy is relevant also for H-bonds; in the general case the barriers are related to
the free emergy involving both enthalpic and entropic contributions). To account for this effect
below we consider a continuous adsorption process using the following reaction-controlled kinetic
model: At any instant dt a black (free) unit can turn white (adsorbed) with probability dp = fdt,
where the rate f depends only the position z of the unit (but not on positions or colors of any
neighboring units). In the spirit of the mass action law the rate f = f(z,t) can be factorized as
f(z,t) = k(z) (o4 — o(t)), k(z) is the rate constant localized at z ~ &, and o, — ¢ is the current
surface concentration of the active (unsaturated) attractive centres. In this process the probability
p = p(#,t) that a unit at the position z is immobilized (white) is always independent on the
positions of other units, and the joint conformation/color distribution remains always equal to
the annealed distribution, eq. (7), so that the black loops are always at equilibrium with the
self-consistent molecular field wo(z,t) = —In(1 — p(z,t)). Hence no relaxation takes place between
the coloring events. The time dependent fraction of immobilized units, p = p(z,t), is defined by
the master equation

P k(@) a - o) (1-p) (19)

where
o(t) = cb/ p(z,t)dz
0
Assuming p < 1 we get (integrating eq. (18)):
[ee]
do/dt = Key(o — 04), KE/ k(z)dx
0

leading to

o) = ou (1-¢77), pla1) = —0(2];@‘)

where 7 = 1/(Kcp) is the characteristic bond-formation time. Hence, for ¢>> 7 we have ¢ ~ o,
and the joint conformation/color distribution becomes exactly the same as after the instant
coloring event considered above. So, eq. (12) and other equations below it remain applicable after
the bond-formation process. *

3. FPI interaction between parallel solid surfaces with attractive centres

The polymer/surface interactions considered in the previous section make sure that the polymer
is partially adsorbed at the colloidal surface due to the presence of attractive sites there. The
thickness of the adsorbed layer is always defined by the polymer coil size R. In what follows we
assume that the colloidal particle size D, is larger than the layer thickness, D.>> R. Then, by
virtue of the Derjaguin approximation, the interaction of colloidal particles can be reduced to the
interaction between parallel flat solid surfaces, that is to the case of a polymer solution in a slit
pore (0 < z < h).

In this section we focus on the regime > < 1 where the adsorbed layer is rather dilute: the
free chains dominate by concentration everywhere, c,(z) < c¢¢(z) ~ ¢p. The profile cg(z) is thus
only weakly inhomogeneous, so the molecular field u = u(z) required to generate the inhomogeneity
is also weak, uN <« 1. The statistics of adsorbed chains is then basically not affected by the

"The condition p < 1, which is equivalent to o, € cpbp, is not necessary for this conclusion.
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molecular field, and the effect of two confining surfaces (z = 0 and z = k) can be taken into
account by the reflection principle [16,33,34] leading to a periodically extended concentration
profile c,(z) (defining the monomer distribution of adsorbed chains):

o0

ca(z) = Y eP(lz—nhl) (19)

nN=—00

(1)

where ¢, ’(z) is the adsorbed concentration profile in the semi-space z > 0 next to a single solid
surface at # = 0, as considered in the previous section. Note that the total amount of adsorbed
polymer is fixed

h
/ co(z)dz = 2Ty ~ 2¢p xR
0

The total concentration is nearly constant and is equal to the bulk concentration c¢; since we
consider a semidilute of concentrated solution with & <« R (which is true for cv*N > 1, see

eq. (1)) and A > &
r(2) + cale) = (20)

(This condition may be violated at short h, the implications are considered in section 6.2.)
The grand thermodynamic potential £ of the system (per unit area), is

h
Q[c]:.?-"[c]—/.cb/ cdz + Ik
0

where F[c] is the free energy, u; and II; are the monomer chemical potential and osmotic
pressure in the bulk. The potential € includes the contribution €;,; due to monomer interactions
and the conformational term o,y reflecting a depletion of the number of chain conformations
in an inhomogeneous state (see ref. [13]): Q= Qcons + Qine,

1 h
Quony [ = Famg 6 = 3y [ cde S (21)
N 0

where Feonys[c] is the conformational free energy,

h
Qunt [e] = /0 [Fint(€) — pint(es)e + Ming(cy)] de (22)

where fini(c) is the (osmotic) free energy denmsity due to excluded-volume monomer interactions,
and  pint(c) = Ofint(c)/0c, Wint(c) = cpint(c) — fint(c) are the corresponding parts of the local
chemical potential and the local osmotic pressure. In the third virial approximation

fint(c) = ve® /2 + we® /6 (23)

tint(€) = ve + we? /2, int(c) == ve? /2 + we /3

hence

h
voow
Qin:/ c—cb2—+—c—|—2cb dz
o= [ (ema) [3+ 5 e+ 2a)]

Note now that $£2;,; ~ const = 0 due to the incompressibility, and the same is nearly true
regarding the conformational contribution of adsorbed chains (which are dominated by the free
chains). Therefore,

Q ~ const + Qeongtles(z)]

i.e., we should focus on the conformational free energy of unattached chains which should be
obtained as a function of h.

The general expression for F.on¢ (per unit area) in a slit (0 < # < h), as predicted by the
GSDE theory [16,14,13], is (cf. eq. (B2) in ref. [13]):
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a® M (Vep)? "ep(a) | (eres
fco’n‘f [Cf(CE)] =~ Z/O wa +/0 Tln (W) dz—
2
N CrefMo + NhZfD |77q| (24)
where n(z) = \/ep(z)/cres — cp(2)/Cres, ng = fo )cos(gz)dz, ¢ = 2nn/h, n=0,+1,+2..., and

1—(1+ k%) exp(—k?)
k2 — 1+ exp(—k?)

fo(k) =

where k = qR. Note that c,.; is a free parameter of the theory; it is normally chosen as to
(nearly) minimize 79 (to ensure that n(z) < 1 for # ~ h/2). In the regime we consider currently
ct(z) is close to ¢ everywhere, hence ¢,y = ¢; is the appropriate choice.

Using eq. (21) we get the thermodynamic potential Qcopy:

2

h
teng e % [T e L[ (7 m) st 575 3 JolaR) (25)

Ct
where n(z) = \/cj(z)/cy — c4(x)/cy. Eqgs. (24), (25) are applicable if |n,| < R, h.
(z

c
Taking into account that cf(z) =~ ¢y —cal(z), co € ¢, and ¢, is defined in eq. (19), we simplify
the FPI interaction energy €(h) >~ Qonslcs] + const, as

Q(R) = S 3 (1482 + fo(b)] le(a)’ (26)

where const is omitted, k£ = gqR, and

(q) = 2 h cfll)(x) cos(gz)dz (27)

Cy

where ¢! )( ) =~ sxcpfo(x/R) is the single-wall adsorbed profile involved in eq. (19). The function
fo(Z) is defined in eq. (13). Using this equation we obtain

¢(q) ~ 2»Rgp(¢R)

where

gp(k) = (k2 — 1+ exp(—k ))

k4

is the Debye function. As a result we get the FPI interaction energy between 2 plates at the
distance h, W(h) = Q(h) — Q(c0): 8

W(k) = 20 (/R 29)
where
w(ﬁ)=%zgp(k)—I, I:/_oo gD(k)gzOJS (29)

k = 2mn/h, n = 0,%+1,. The function w(h) is displayed in Fig. 3 (black solid curve), it
monotonically decreases w1th h, w(h) ~ 1/h—I for h < 1, and it vanishes exponentially (as
h~*exp (—h%/4)) for h> 3.

The FPI interaction is therefore always repulsive (serving for stabilization) which gets stronger
at shorter A < R. Physically, this is a depletion repulsion: it is related to a progressive depletion

8The interaction potential is shifted in order to have W () =0.
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of the free chain concentration c¢; in the slit as h decreases. In fact, c;/cpy ~ 1 —2xR/h for
h < R (at, say, = = h/2), while the total concentration ¢ remains constant there (c = c3).

The theory developed above is applicable as long as n(h/2) < 1, that is for c,/c; < 1
corresponding to h/R = h > 2sc. The following generalization can be applied to treat the regime
h ~ 3 < 1: It is enough to simply change c,.; in eq. (24) to ¢y =~ Bep with B =1— h*/h,
which is close to the mean ¢y in the slit (as long as h>>¢). Here

h* =2l /cp =~ 2R (30)

For h < R the first and the last terms in eq. (24) become negligible, so for h* < h < R the
remaining terms lead to

212 cya? he c
W(h)+ Rb :Qconf:fconf‘FWb(—,Blan—}—l) ~
th "
<P g pmp), p=1-n/h (31)

Note that the above equation is valid also for h comparable with h*, and that eq. (31) agrees
with eq. (28) for h > h*. The general result including all terms in eq. (24) is obtained based
on egs. (28), (31):

2EAY o (h/R), h> R (32)

where

w%(i_z):w(l_z)—%—l—l[l—l- (%—1) In (1—2%)] (33)

F

Note that w,(h*) ~ 1 —TI for » < 1. The function wg(h) is also shown in Fig. 3 (red curve).
It is clear that the repulsion becomes stronger for >z > 0: the potential energy increases more
than twice at h &~ h* as compared with the universal prediction for s = 0.

Eq. (32) is not applicable for A < h* since the incompressibility condition (20) is violated in
this regime: Here the mean concentration of adsorbed chains exceeds cp, so adsorbed layers are
compressed while the free chains are almost totally expelled from the slit. This is the regime
of a steric stabilization where the thermodynamic potential is dominated by the excluded-volume
part, eq. (22)

Qint(R) = hfins(csh™/h)
where ]?,-nt(c) = fint(c) — print(cp)e + Mint(cp), and the total interaction energy

W(h) = ant(h) + Qcon]‘(h) - Qconf(oo) =

~ (g n %cb(h*/h n 2)) (b /h—1)h+ jv—” (h — Ih*) (34)
increases strongly for h < h*. Noteworthy, the subdominant second conformational term remains
positive (therefore, works for stabilization) for h > 0.75xh* ~ 1.5x?R, i.e. also for separations
well below h*. For h*/h—1<« 1 eq. (34) gives

X (h* 2 _

X (7 _ 1) + w%(h*)] (35)

2:c%¢cpa?
wi(h) = 2

2

where X = v"¢y N is the reduced interaction parameter and
v = v+ we (36)

The reduced potential W(h) for h < h* is also shown in Fig. 3 with dashed lines (for X = 10
and 20).

Thus, the interaction between solid surfaces considered in this section can be described as the
free polymer induced depletion repulsion (enhanced due to the soft layer of adsorbed chains) for
h > h* and as the steric repulsion for A < h*.

10
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4. The effect of different lengths of adsorbed and free chains on the
FPI interactions

Let us generalize the theory to the case when the molecular weights of adsorbed and free chains
are different. This situation can be achieved, for example, by incubating the colloidal particles
in a polymer solution with polymerization index N, to form the adsorbed layers, and then by
replacing the free polymer with chains of a different polymerization index Ny = N. In this case
the adsorbed layer thickness is defined by the size R, = a\/N, = nyR, where R =aVN is the coil
size (gyration radius) of free chains, n, = R,/R = \/N,/N. The layer density is then controlled
by the parameter

Oq

R

= ”
azcy,

so the adsorbed layer profile for > < 1 is (cf. eq. (13)):

c((ll)(:c) = »cpfo(z/Ra)
and

2 [oe)
o(q) = . cfll)(:c) cos(gz)dz = 2R,9p(qR,)
0

The FPI interaction potential is defined in eq. (26) leading to:

W(h) = Q(h) — () = ”%w(h/& n)

Note that the reduced potential w(h,n,) = w(h) for n, = 1. It is of interest to reveal the
asymptotic behavior of the reduced potential for n, > 1 and n, < 1. For ng > 1 the interaction
energy is always positive and decays monotonically with h:

_ na/h , h<n,
ST ™ (o) exp (= () 8) , Rowmg (e 7D 9)
For n, < 1 the behavior is more interesting: In this case the adsorbed layers are thin, so
for h > n, the interaction is similar to depletion repulsion between non-adsorbing surfaces in a
semidilute solution [16,14]:

w(hyna) = (n2/2) wine(R), B> ma, my <1 (39)

where the function u;n; is defined in ref. [16]. However, a strong potential well (w < 0) is found
for h < ng. This attractive well is a purely ground-state dominance (GSD) effect generated by
the square-gradient term (the first term in the r.h.s. of eq. (24)). The concentration gradients
coming from the two opposite adsorbed layers nearly compensate each other at z ~ h/2 leading to
a negative contribution to the GSD free energy, and the magnitude of this contribution increases
with the degree of overlap between the layers which strengthens at shorter A. With this GSD
effect eq. (39) should be amended:

w(hyng) =~ (ni/Z) [umt(l_z) — (const /nz) (na/l_z)eexp (— (l_z/na)z /8) ] , h>n,, n, <1

The attraction dominates for n? <k < 4n,./In(1/n,). °

®Note that the above equation is useful to highlight the asymptotic behavior of the function w(h,n.). However,
for its numerical calculations the exact eq. (37) should be used instead.

11
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In practice, the most relevant case is n, ~ 1. The reduced potential was calculated numerically
for several ng ~ 1. The results are shown in Fig. 4. The depletion repulsion is obviously enhanced
for ny, > 1. For n, <1 an attraction region (energy well) is developed. However, the attraction
is negligible for n, > 0.8 (the depth of the well is smaller than 1/200). For n, < 0.8 the well
depth rapidly grows, while its position shifts to smaller A.

We stress that the FPI interaction considered here is always of depletion nature (related to
the entropy of free chains), including the depletion repulsion predicted for n, > 0.8 and depletion
attraction for n, < 0.8.

5. FPI interaction for high concentration of attractive centres

The case of high concentration of adsorbing centres, > >> 1, is considered using the SCFT
approach [13] for different N,/N. A slight generalization of the model is applied here: we allow
for an increase of the polymer bulk concentration (from cpo to ¢;) after formation of the adsorbed
polymer layer. It is assumed (now as an approximation) that the adsorbed polymer profile is
still given by the reflection procedure, eq. (19), with

cM(z) = cofi(z/Ra)

(cf. eq. (15)), and that, accordingly, the boundary conditions for free chains at the solid surfaces
are of the Neumann type, eqs. (2), (5). The reduced adsorbed profiles, c,(z)/cso vs. z/R,, are
shown in Fig. 5 for different h/R, = 0.6, 1.4, 2.8, 3.8, 10. It is clear that for large h > 5R, the
adsorbed polymer is localized near the surfaces, while its concentration becomes nearly uniform
for h < R,. Note that the area under the curves is always the same (= 2/\/7).

The FPI interaction potential generally scales as (cf. eq. (28))

cba2 =

W(h) = Z2-W (h/R) (40)

As argued in section 3 the polymer solution can be viewed as nearly incompressible (see eq. (20))
in a semidilute or concentrated regime (i.e., for X = v*¢; N > 1) at the length-scales beyond the
correlation length, h > ¢. Therefore, the FPI potential is not expected to depend strongly on the
virial parameters in this regime. This point is validated by our SCFT results for the reduced
potential shown in Fig. 6 for different X and r, = cpo/cp. The dependence of W on X was
therefore disregarded in further calculations.

The reduced FPI potentials for different 7, = cpo/cpy and n, = 1 (adsorbed and free chains are
the same) are shown in Fig. 7. It is obvious that the FPI interaction is always repulsive here.
As one would expect, W(h) gets stronger and its range increases at larger 7,. The potential
curves are similar, but seem to be shifted with respect to each other along both axes. The
curves can be superimposed rather well by rescaling both W and h (not shown).

For 7, € 1 the SCFT results can be verified analytically. 1In this case ¢, < ¢, so the
concentration profile of free chains, c¢s(z), is only weakly inhomogeneous. Therefore, eq. (26)
becomes applicable together with eq. (27) (by virtue of the incompressibility condition (20)).
Thence we get

1
W(h) ~ Zr?niwim(h/R) (41)
where

Wint (}_Z) =

U =

ST L+ R+ fo (k)] er(kna)

p1(z) = 2/ fi(z) cos(zz)dz
0
and k = 27n/h, n =0,%1,... as before. Using eq. (15) we find

o1(2) = 2=+ [2D4(5) = D2

12
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where
2 o 2
Dy(z) = e / e dz
0

is the Dawson function. '° Eq. (41) predicts that the reduced potential W should scale as r?
for r, < 1. The SCFT results are compared in Fig. 8 with the analytical prediction, eq. (41),
for ng =1. A good agreement can be observed for r;, < 0.1, while more generally the asymptotic
analytical curve slightly underestimates the repulsion magnitude (for r, < 0.2).

The dependence of the interaction potential on the adsorbed layer thickness (n,) is shown in
Fig. 9. The qualitative picture is similar to what was predicted in the previous section for more
dilute adsorbed layer, > < 1: The interaction is always repulsive for n, 2> 0.8, while for n, < 0.8
a local potential well is developed. Its depth increases sharply as n, is further decreased (see
Fig. 10a). Simultaneously, the range of attraction shifts to shorter h (see Fig. 11).

The repulsion regime is formally re-entered at even shorter distances. However, this short-range
repulsion is not useful for stabilization (in view of the deep potential well at larger h) and it is
not resolved numerically for n, < 0.1. The attraction region (for n, < 0.8) is preceded by the
distal repulsion barrier (at longer separations h) whose height is not large (see Fig. 10b). Both
the repulsion and attraction interaction forces demonstrated here originate from the FPI effect
due to the confinement dependence of the conformational free energy of free chains.

The leftmost solid curve in Fig. 9 corresponds to the potential W, (k) for purely repulsive solid
surfaces [13] with no soft adsorbed layer at all. It is interesting that the potential curves for
low n, tend to Wp,(h). This may seem a bit surprising as the Neumann boundary conditions
(eq. (5)) are applied in the case of the soft layer, while the conditions are of Dirichlet type
(#(0) = 0) for the purely repulsive surfaces. The explanation is rather simple: in the limit n, < 1
the adsorbed layer is thin hence the adsorbed chains do not affect the free chains outside this
thin layer. On the other hand, the presence of a however thin adsorbed layer (of course, it is
always assumed that its thickness exceeds the monomer size) prohibits a considerable penetration
of free monomers down to the solid surface and leads to the effective boundary condition 3% =0
for free chains at the surface. This is why W(h) — W, (k) for n, — 0 (and X — o0).

6. Interaction between spherical particles
6.1. Distal region

We are now in a position to evaluate the FPI interaction between spherical particles of diameter
D, assuming D, > R. By virtue of the Derjaguin approximation the interaction energy is

U(h) =~ (x/2)D, /hoo W(h)dh (42)
The FPI solvation force is
F(h) = - 90 = (x/2)D.W(h)

Let us consider as before the regime of relatively large separations, A > R > {. Based on the
results of the previous sections, we therefore predict that in this regime the FPI solvation force
is essentially always repulsive F(h) > 0 if n, = R,/R > 0.8, i.e., if the adsorbed layer thickness is
not too small compared to the free coil size R.

Eq. (42) can be rewritten using eq. (40) as

U(h) ~ ARU(}_Z),
where

™
AR = (W/Z)Dccbaz = Echﬁbaf/vl (43)

10T hus, the function ¢1(2) is an analytical function of z, ¢1(0) = 4/+/7, p1(2) > 1227*/ /7 for z > 1.
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is the characteristic interaction energy (in kp7 units), and
o(h) = / W (h)dh
3

For example, with D, = 200nm the constant A according to eq. (43) is Ag ~ 80 for polystyrene
(PS) solution in toluene, ¢, = 0.5 (a, ~ 7.54, v; ~ 18043 [13]) or for PEO in water, ¢, = 0.3
(as ~ 5.54, vy ~ 6543 [13]). Assuming that the monomer volume v; ~ a®, we can estimate it as
Ap ~ ¢ch/as-

The FPI potential is plotted in Fig. 12(a) for Agp =80, > 1, r, =1 and different n,. It is
clear that the energy well which is developed at h > 2R is unimportant if n, > 0.6 (in this case
the well depth is less than ~ 1.5kpT, so colloid destabilization is avoided [1]) '!. More precisely,
the stability criterion is n, > n*(Ag), where the critical n* < 1 is slightly increasing with Ag:
for example, n* ~ 0.6 for Ar ~ 80, and n* ~ 0.7 for Agr ~ 400.

For the opposite regime of low density of attractive centres, > < 1, we obtain using
egs. (42), (37):

[ee]
U(h) ~ Z%ZAR/ w(h,ng)dh (44)
h

The corresponding potential curves are plotted in Fig. 12(b) for »?Ar = 10 and different n,. In
this case the critical n, is n* & 0.6, while it increases to n* a2 0.7 for »2Ap = 30.

Let us now consider the total interaction potential Uint(h) = U(h) 4+ Ug(h) including both the
FPI potential and the van der Waals attraction [36]

AH -Dc
24h

Ug(h) = (45)
where Apy is the Hamaker constant. The total potential is shown in Fig. 13 using the
FPI interaction data from Fig. 12(a) for D, = 200nm, R =~ 3nm (corresponding to PS chains
with polymerization index N = 100) and Ay = 1 kpT (roughly corresponding to PS latex in
toluene [35]). 2 One can observe that in this case the FPI depletion repulsion imparts colloid
stabilization for n, 2 0.7.

6.2. The proximal region: depletion repulsion vs. depletion attraction

So far we considered the interaction at distances exceeding the solution correlation length,
h > &, neglecting the short-range contribution to W(h) effective at h ~ £. In the general case
the GSDE theory predicts [13,14]

W(h) = We(h) + Wy, (h) (46)

where W,(h) is the long-range contribution calculated above (see egs. (28), (40), and Wy, (h) is
the classical short-range interaction obtained within the GSD approximation. For purely repulsive
walls the GSD result (established in ref. [13] using the third virial approximation, eq. (23)) is

Wy ~ —Azcbazﬁ_le_h/5 (47)

where A = 4(1+ 1/a), a« = 2+ 3v/(cpw), and £ is defined in eq. (1). Note that for A ~ & we
need not distinguish between free and adsorbed chains since both the free chain size and the
size of the typical (dominating by mass) loops/tails of adsorbed chains are much larger than .
Eq. (47) represents the asymptotic behavior of W,, for h>> ¢. It is sufficient for our analysis
since normally h/¢ is large in the region of interest where the two terms in eq. (46) compete. 13

There is another physical restriction on eq. (47): it is valid as long as there is equilibrium
between the slit and the bulk solution that is if some free chains do penetrate into the slit. This

At this stage we neglect the van der Waals (vdW) attraction between colloidal particles assuming that they
are matched dielectrically with the solvent.

2Note that Ag for the hydrocarbon/water media pair is not much larger, Ag ~ 1 — 2kpT, [36].

13The reason is that W,, always dominates over W at h ~ ¢ in the regime of interest, s < 0.5.
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is not the case any more (within the GSD approximation) for h < h*, where h* = 2T';/¢; and
2T, is the total amount of adsorbed polymer in the slit. At such high compression we return
to the classical steric repulsion: W(h) is approximately given by the excess emergy of monomer
interactions in the slit

W (h) ~ (g + Zen(hfh+ 2)) (b /h—1)"h, h<H (48)

For n, =1 and small > the FPI interaction energy between two spherical particles (D.) reads

(cf. eq. (46)):

Urpr(h) = Ue(h) + Uye(h), h>h" (49)
where
Uc(h) =~ Z%ZAR/ w,(h)dh
h

w,(h) is defined in eq. (33), h* = 2xR and
Uyo(h) ~ —ApA%e /¢ (50)

The reduced FPI potential, Uppr/Ag, calculated using egs. (49), (33), (50) for different ¢/R
and s, is plotted against h/h* in Fig. 14. It is clear that the effect of depletion repulsion
prevails (against attraction) for larger s or for shorter &.

For s < 1 the interaction potential Uppr(h) can be also obtained analytically in the region
h < R (since the critical region of the emerging potential well corresponds to h/R = h* ~ 2u).
In this case eq. (33) can be simplified as

- 1 h h*
On using also egs. (49), (50) we obtain

Urpr(h) ~ Ar {2%2 ln% — Aze—h/é} (51)

This dependence can be illustrated by the curves in Fig. 14(a). Note that eq. (51), valid for
h < R, is in agreement with the results of the previous section, eq. (44) for n, = 1, valid for
h>> ¢ (i.e., the two analytical predictions cross over smoothly and agree in the region £ € h < R
where their validity regions overlap).

The following conclusions can be drawn based on this result: In the absence of a vdW attraction
the thermodynamic stabilization of the system (i.e., suppression of the depletion flocculation) is
expected if a potential well does not develop at h s h*, i.e. if A%e~"/¢ < 2:%In(R/h*), roughly
leading to the following criterion

¢/R < 3/In(3/5), »< 1 (52)

If the above condition is violated, a stabilization of kinetic nature is still possible provided that
the energy barrier U* is high enough, U* > 15. From eq. (51) we deduce U* ~ 2Ags?|In(2x)|.
Then, for example, for s> = 0.3 the FPI stabilization may be expected either if £/R < 0.15, or if
AR 2 80 (the latter condition follows from the requirement U™ > 15).

Note that the FPI interaction only was considered above. Generally, the full interaction potential
is the sum of the FPI and vdW contributions. The vdW attraction can be added to the FPI
potential to obtain the total interparticle potential for a particular colloidal system once the
relevant Hamaker constant is known.

7. Discussion and Conclusions

1. In this paper we considered the free polymer induced (FPI) interactions between colloidal
particles dispersed in a polymer solution. The surfaces of the particles are decorated with some
strongly attractive sites able to trap polymer segments. The self-assembled adsorbed polymer
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layers are thus formed around the particles. It is shown that interaction of free polymer with
these fluffy layers gives rise to a depletion repulsion force between colloidal particles. This
depletion interaction is due to a redistribution of free polymer chains (their depletion inside the
soft layers) implying progressively higher entropic cost at shorter separations h between colloidal
particles. The repulsion therefore stems from the excess ideal-gas free energy of unattached chains.
The effect is significant in the semidilute or concentrated solution regime where polymer coils
overlap strongly, ¢ > ¢y, so that the polymer correlation length ¢ is small compared to the coil
size R, £ < R (in the marginal solvent regime this condition reduces to X = v*¢; N > 1, where
v* is the effective monomer interaction parameter, cf. eq. (1)). *

2. The structure of the fluffy layer is analyzed both in the case of instant anchoring of polymer
segments near the traps and as a result of the adsorption process with reaction-controlled kinetics
(the latter is relevant if the polymer/surface bond formation is a slow activation process). We
establish that the resultant adsorbed concentration profile ¢,(z) is the same in both cases, being
related to the equilibrium polymer distribution in the presence of an auxiliary potential field
localized near the solid surfaces. Moreover, it turns out that the profile ¢,(z) is rather universal
(as long as the considered length-scale exceeds &): the profile depends essentially on the single
parameter s which is proportional to the surface concentration o, of adsorbing sites and to
R x /N (cf. eqs. (11), (13), (15)). The total adsorbance T, increases with s for #x <1 (see
eq. (14)) and saturates for s> 1 (T'y is the total number of repeat units belonging to adsorbed
chains per unit area). Interestingly, the crossover regime s ~ 1 corresponds to a low surface
concentration of attractive sites in the case of long chains, N > 1.

The effective thickness h*/2 of the fluffy layer is proportional to the surface coverage: h*/2 =
Ty/cp; h* always increases with the chain length N (cf. egs. (14), (16)):

b~ 2Nog/ep , # K1 (53)
=\ @/ VmaVF x> 1

3. At h > h* the free polymer necessarily penetrates in the gap region in order to maintain
the total concentration c(z) there nearly equal to c¢; (c(z) = ca(z) + cp(2); note that c(z) must
be exactly uniform in the limit v*c; N — o). Therefore, the free energy of excluded-volume
interactions is constant (independent of h) in this regime. The conformational free energy of
adsorbed chains is also nearly comstant. ' The polymer-induced repulsion in this regime is
therefore primary due to the excess conformational free energy of unattached (free) polymer
chains.

Noteworthy, the condition c¢(z) = ¢; eliminates the concentration contrast between the soft layers
and the bulk solution, hence the presence of soft layers does not lead to an increase of the
effective range of the vdW attraction (unlike the case of the classical steric stabilization where
the attraction range can be enhanced by the thickness of attached polymer layers).

4. It is important to distinguish the FPI depletion repulsion, which is operative at A > A*, from
the polymer-induced steric repulsion. The steric repulsion is not effective at A > h*, but is at
work for shorter h. For h < h* the mean concentration of adsorbed polymer in the gap h between
the solid surfaces exceeds the bulk concentration c¢p, hence the repulsive solvation force is due
to a significant increase of the free energy of excluded-volume interactions between polymer units
inside the gap. In this regime the free polymer does not penetrate in the gap any more (apart
from an exponentially small amount for v*c; NV >> 1). Physically, the stabilization effect for h < h*
is thus due to the repulsion between compressed adsorbed layers. In particular, for 1 —h/h* < 1
the repulsive solvation force is proportional to (cf. eq. (48)) W(h) ~ 0.5v*cih* (1 —h/h*)z.

5. The main results on the polymer effect for colloidal interactions can be summarized as
follows. Three FPI mechanisms are generally predicted here: long-range depletion repulsion (for
h > h*), steric repulsion (for h < h*) and short-range depletion attraction (for h < ¢). The first
two mechanism are associated with the soft surface layers.

The soft layer is unimportant (too thin or dilute) if h* < &, so the results for naked colloidal
particles [13] are applicable in this case of relatively minor interest: Here the FPI interaction is
repulsive for h > 10£, while depletion attraction is effective at smaller separations. The energy

4Note that the theory which formally requires the marginal solvent regime for the free polymer, is applicable not
only for marginal solvents near the theta-point, but also for practically good solvents (like toluene for polystyrene)
as discussed at the beginning of section 2.1.

15This statement can be rigorously proved for s < 1.
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barrier due to the long-range depletion repulsion is normally not sufficient to render kinetic
stabilization of colloidal systems against vdW and depletion flocculation effects. [13]

However, the situation is different if A" > £ Three interaction regimes can be distinguished
in this case: (i) depletion repulsion dominates at h>> h*, (ii) two opposite depletion effects can
compete at h > h*, (iii) steric repulsion dominates over depletion attraction for h < h*. The
colloidal stability is defined mostly by the competition regime (ii). Then, the general condition
of thermodynamic stability can be obtained based on the FPI interaction potential calculated in
sections 6.1, 6.2 for »>> 1 and > <1 (cf. eq. (52)):

&/R < min (»/1In(3/),0.5) (54)

This condition is roughly equivalent to ¢ < h* (cf. eq. (53)). The criterion (54) shows that the
thermodynamic stability increases as &/R gets smaller, or as s gets larger. Both tendencies are
illustrated in Fig. 14: Fig. 14(a) shows that stabilization is expected for s > 0.3 if {/R =0.125,
while Fig. 14(b) indicates that for s = 0.5 the stability is achieved for £/R < 0.25.

Recalling that £/R decreases and i increases with N we conclude that the FPI thermodynamic
stabilization (in the presence of fluffy adsorbed layers) can be always achieved with sufficiently
long polymer chains. This is in contrast to the case of colloidal particles with naked surfaces [13]
where an indefinite increase of N rather leads to an opposite effect: a suppression of the FPI
repulsion (and the corresponding energy barrier) and eventual destabilization of the colloidal
system.

6. It is noteworthy that the criterion (54) can be rewritten as N > N*. The critical chain
length N* depends on concentration ¢; and other parameters. Omitting numerical and log factors
for simplicity, we get using egs. (54), (1), (11):

v { a@) (0aVT) e 2 e~ 02 (va?) (55)

1/ (cpv*) , cp Ser

The corresponding region of colloidal stability is shown schematically in Fig. 15 with variables
¢y, N. It shows that the depletion repulsion is not strong enough for short chains, N < N;, where

2/3
the threshold N; ~ (L) increases at low o,. Remarkably, the diagram also shows that there

TLv*
. . e . . . . . 2/3
is an optimal stabilization concentration ¢; which is proportional to aa/ , so ¢; can be low for

small surface concentration of adsorbing sites. At ¢ = c; the depletion stabilization is effective for
the widest range of molecular weights, N > N;. Note that for ¢; < ¢pqps the phase diagram is
nearly universal in the reduced variables N/N; vs. c¢p/es.

Turning to the concentration dependence of the FPI effect, the diagram of Fig. 15 predicts a
finite concentration window of stability at ¢* < ¢ < ¢™*, where ¢* ~ ¢;Ny/N, ¢ ~ ¢ (N/Nl)z.
The system is unstable outside this window, for ¢ < ¢* and for ¢ > ¢** (of course, ¢** could
formally grow beyond the maximum concentration ¢y = 1/v1; in this case the second instability
region disappears). A similar sequence of effects (stabilization, destabilization) due to an increase
of the added polymer concentration have been observed in certain colloidal systems [1]. It is
reminiscent of the re-entrant solidification by varying temperature observed in classical polymer-
colloid depletion systems and predicted with classical depletion and bridging interactions [7]. Our
results (cf. Fig. 15) show that polymer concentration can be used instead of temperature to
produce a similar effect.

7. It is remarkable that the FPI depletion repulsion predicted in this study is strongly enhanced
due to the presence of adsorbed fluffy layers. This is true for c; > ¢*, i.e. when R > ¢. Indeed,
let us compare the magnitudes of the depletion repulsion energy in the cases when the colloidal
surface is naked and impenetrable and when it is covered by a soft adsorbed layer. In the
naked case the emergy is proportional to [13,14] Upared/D: ~ cpé%/N, while in the soft layer case
Usopt ~ s2cpa® for 3 <1 (cf. eqs. (43), (44)). Therefore

Usoft/Unaked ~ %2R2/£27 >’ S 1 (56)

and, in particular, Usop¢/Unaked ~ v*Necy > 1 for s ~ 1. The enhancement ratio increases further
(for numerical reasons) and saturates in the case of denser layers, » > 1. Therefore, the presence
of soft layer significantly strengthens the FPI repulsion if (/R <« min(s,1). The latter condition
is roughly equivalent to N > N*, so it can be always satisfied with long enough chains, even if
the surface concentration o, of attractive sites is low. It is therefore revealed that the steric and
depletion stabilization mechanisms work cumulatively in the case of partial polymer adsorption,
giving rise to a significant enhancement of the overall stabilization effect.
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8. Let us consider the solvent quality effects. The results of this paper show that the FPI
stabilization assisted by soft surface layers is more efficient in better solvent conditions: the
threshold N* (defining the onset of stabilization, cf. eqgs. (55)) always decreases as the solvent
quality defined by v* is increased. In other words, the regime of basically repulsive FPI interaction
potential (with no or negligible attraction wells) is established for higher solvent quality (as N*
decreases below the chain length N following an increase of v*).

Turning to temperature dependence of the depletion stabilization effect, that N* depends on T
mainly via the effective virial parameter v* (N* decreases with v*, cf. eq. (55)). In the athermal
good solvent regime v* is nearly independent of 7, and so is N*. However, in the marginal
solvent regime (this paper is focussed on) v* normally depend on 7' due to a competition between
steric repulsion and enthalpic attraction of polymer segments. A temperature increase normally
leads to a better polymer solubility (higher v*), hence giving rise to an improved colloidal stability
(lower N*).

9. The theoretical results summarized above can provide a tentative explanation of certain
striking observations concerning the effect of poly(ethylene oxide) (PEO) aqueous solutions on
interactions between solid surfaces. There are contradictory evidences on whether the added PEO
adsorbs on the glass or polystyrene surfaces, and whether it imparts a depletion attraction or
not. [37,38] The model involving surface traps (o,) considered in the present paper allows for
both behaviors, the control parameter being N/N*. The adsorbed layer is negligible (too dilute)
if N/N* is small, hence the classical depletion attraction is dominated in this case. By contrast,
for large N/N* the adsorbed layer is considerable, and depletion repulsion wins. For ¢ > c¢; the
ratio N/N* is proportional to No, (cf. eq. (55)). Therefore, for the given surfaces, an attraction
is expected for short PEO chain and repulsion for long chains. Moreover, for a fixed N both
behaviors are also possible if o, is varied.

Our results are also consistent with the findings [19,20] that small concentrations of high
molecular weight free PEO can provide (or significantly contribute to) the stabilization of gold
nanoparticles in aqueous solutions. To apply the model we hypothesize that some PEO segments
can adsorb onto gold surface. [21] 1 For ¢ < ¢; the predicted stability criterion (N/N* > 1) leads
to the condition Ne¢ > const in agreement with experimental results [19] on stability of AuNPs
for different PEO concentrations and molecular weights.

10. The theory of this paper is also generalized to comprise the systems with different length
of adsorbed (N,) and free (N) chains. Such a system can be obtained, for example, if colloidal
particles are initially dispersed in solution of Ng-chains, and then free N,-chains are replaced by
the N-chains. It is shown that a significant distal attraction well (as opposed to the proximal
minimum at h ~ £ considered above, see point 5) is developed at h ~ 2R - 3R if adsorbed
chains are considerably shorter than free chains. Conversely, the distal attraction is negligible if

N,/N > n*, where typically n* ~ 0.6 — 0.7 depending on the polymer/colloidal parameters (see
Figs. 12, 13). Therefore, the FPI colloidal stabilization in the considered systems is possible if
N,/N > 0.4 - 0.5.

These predictions are in a qualitative agreement with the results on interaction of micelles in
block-copolymer/homopolymer mixtures [40] showing that micelles repel each other if the length
Ny of free homopolymers is below a certain threshold, N, < N;, related to the thickness of
the copolymer/homopolymer interpenetration layer. Our results also agree qualitatively with the
predictions and experimental results [41-43] on interactions between solid surfaces covered with
grafted polymer layers (N, chains) and immersed in a polymer solution (N; chains): an attraction
minimum was predicted there for Ny > Nj. However, in contrast to our results, the obtained
N]Z" was typically shorter than N,, and it was found to decrease further at higher grafting
densities [41]. This discrepancy points to an important difference between the grafted layers
considered before and the self-assembled adsorbed layers studied here.
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1The reversibility of PEO adsorption onto the gold surfaces seems to be an issue. Here we assume that some
PEO fragments can be irreversibly adsorbed on gold nanoparticles due to formation of trains of surface bonds
(PEO segments can form H-bonds with citrate molecules covering the gold surface [39,21]).
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FIGURE CAPTIONS

FIG. 1. The dependence of the reduced concentration in the adsorbed layer at the solid surface,
¢4(0)/cp, on the reduced surface concentration of attractive sites, .

FIG. 2. The reduced concentration profiles of adsorbed chains vs. reduced distance, z/R, to a
single flat wall: c.(z)/(xcp) = fo(z/R) for > < 1 (curve 1); cq(z)/cy = fi(z/R) for s > 1
(curve 2). The second curve actually represents 4 coinciding curves obtained numerically using
the SCFT approach for 6,/R = 0.05, 0.2, 0.5 as described in the text (the SCFT curves are
shifted along the horizontal axis: c¢4(z + &)/cp is plotted vs. z for each &) and analytically
using eq. (15).
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FIG. 3. The reduced interaction potential for » < 1: w = W(h) vs. h="h/R (cf. eq. (29)).
Black curve: w vs. h for » — 0; red curve: w = wg2(h) for = 0.2 and h > h* = 2R (cf.
eq. (33)). Dashed curves (calculated using eq. (35)): the short distance part (h < h*) of the
reduced potential for » = 0.2 and X = v*¢, N = 10 (dashed blue), X =20 (dashed black).

__R _
2x2cpa?

FIG. 4. The reduced interaction potential w = ﬁW(h) vs. h="h/R for » < 1 and different
ng. The potential was calculated using eq. (37). (a) The curves for n, = 0.4, 0.6, 0.7, 0.8, 1,
1.2, 1.5, 2 (from left to right). (b) A magification of the region |w| < 0.04 for n, = 0.7, 0.8,

1.0, 1.2.

FIG. 5. The reduced concentration of adsorbed chains, c¢,(z)/cpo, in the slit of width h between
2 solid surfaces vs. the distance z to the nearest surface, 0 < z < h/2, for h/R, = 0.6, 1.4,
2.8, 3.8, 10 (top to bottom); R, = ay/N, is the Gaussian gyration radius of an adsorbed chain.

FIG. 6. The reduced interaction potential W vs. reduced separation h = h/R between the solid
surfaces for n, =1, X =50, 100, 200, 500 (from left to right) and r, = 0.1 (a), r, = 0.9 (b).

FIG. 7. The reduced potential W(R) for different 7, = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85,
0.9, 0.95, 0.98 (from left to right), n, =1, X = 500.

FIG. 8. The reduced interaction potential W/r? vs. h=h/R for n, = 1. The curves from left to
right correspond to: (1) theory, eq. (41), for r, < 1; (2-4) SCFT results for r, = 0.05, 0.1, 0.2.

FIG. 9. (a) The reduced FPI interaction potential W vs. h, calculated using the SCFT approach
for different length of adsorbed polymer, n, = R,/R = 0.1, 0.2, 1/3, 0.5 (dashed curves), 4/7,
2/3, 0.8, 1 (solid curves from left to right). 7, =1 and X =500 in all the cases. The leftmost
solid curve corresponds to purely repulsive surfaces and no adsorbed layer, that is to n, = 0
(see the text). (b) The same data zoomed in.

FIG. 10. (a) The depth of the attraction well, |Winin|, as a function of n,. (b) The height of
the distal (secondary) repulsion barrier, W5, as a function of n, (the dashed line comes from
part (a) for comparison).

FIG. 11. The n,-dependence of the positions of the attraction well, hmin (solid curve) and the
distal barrier, h% (dashed).

FIG. 12. The FPI interaction potential U(h) vs. h/R: (a) The SCFT results for > 1, Ar = 80,
rp =1 and n, =1, 0.8, 0.67, 0.57 (from right to left). U(h) was calculated based on the
data shown in figure 9. (b) Analytical results obtained using eq. (44) for » < 1, »?Ar = 10
and n, = 1, 0.8, 0.7, 0.6 (from right to left). The inset shows a blow-up of the region
1.5 < h/R < 4.

FIG. 13. The total interaction potential Uit(h) = U(R)+Ug(h) vs. h/R for D, = 200nm, R =~ 3nm,
Ag =1 kT and U(h) for different n, = 0.57, 0.67, 0.8, 1 (from left to right) corresponding to
the data shown in Fig. 12(a).

FIG. 14. The dependence of the reduced polymer-induced interaction potential between spherical
particles Uppr/Ar on their separation h for h > h*. (a) &£/R = 0.125, » = 0.25, 0.3, 0.4, 0.5
(from bottom to top). (b) s = 0.5, £/R =0.15, 0.2, 0.25, 0.3 (from top to bottom). All the
potential curves are calculated using egs. (49), (33), (50).

FIG. 15. The region of colloidal stability (where the FPI repulsion dominates) is located above
the critical line in the ¢, N plane. The characteristic concentration and polymerization index

2/3
are ci ~ (aa/a)z/B/(v*)l/B, Ny ~ ( & ) ; Cmaz = 1/v1.
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