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Clearly, the elastic behavior for real polymer chains is strikingly

different than the Hookean response for ideal chains.

A key limitation of the Marko-Siggia and Langevin force rela-

tions is that these relations were obtained for ideal chains, and

thus cannot account for the excluded volume interactions and the

concomitant nonlinear-low force elasticity of a real chain. For

very stiff chains, where the persistence length lp is much larger

than the backbone width w, the excluded volume is weak.10,11

However, for single-stranded DNA and many synthetic polymers,

the monomer anisotropy ratio lp/w is modest and excluded vol-

ume effects can be important.10 It would be highly desirable to

have an interpolation formula similar to Eq. (3) to interpret force-

extension experiments with such molecules.12,13 Such a formula

is even more important for modeling the behavior of these poly-

mers in flow using coarse-grained, bead-spring models. For ef-

ficient modeling, each spring must represent a large number of

persistence lengths. When bead-spring models are used to study

polymer dynamics at the relatively low flow strengths encoun-

tered in many experimental systems, excluded volume within a

spring can become important.

In the present contribution, we propose an interpolation for-

mula for wormlike chains that connects the Pincus regime9 in the

presence of strong excluded volume interactions to the Marko-

Siggia result3 for ideal wormlike chains. Using simulations of

a discrete wormlike chain model, we show that this interpola-

tion formula provides a good description of the force-extension

behavior for all values of the monomer anisotropy ratio lp/w we

studied over experimentally relevant values of the fractional ex-

tension. A key challenge in our work is simulating chains with

high resolution of the chain backbone up to a sufficiently high

molecular weight to observe the Pincus regime.14 While it is pos-

sible to reach such high molecular weights by reducing the num-

ber of degrees of freedom with a lattice model15 or by reducing

the resolution of the chain backbone with a bead-rod model,16

the off-lattice pruned-enriched Rosenbluth method (PERM) used

previously to study discrete wormlike chains in free solution10

and in confinement17–21 is readily adapted to the force-extension

problem.15 Using this approach, we are able to simulate asymp-

totically long chains down to small values of the fractional exten-

sion (z ≈ 0.1) over a wide range of lp/w values, thereby accessing

all of the relevant regimes. The results of these simulations not

only allow us to assess the accuracy of our interpolation formula

relative to the Marko-Siggia force relation, but also provide strong

support for the existence of the Pincus regime.

2 Interpolation formula for the stretching of

real wormlike chains

We propose that Eq. (3) should be replaced by an excluded

volume-wormlike chain (EV-WLC) interpolation formula consist-

ing of two parts,

F = Flow +Fhigh (5)

The quantity

Flow =
z1.5

0.21(w/lp)1/2 +(2/3)z1/2
(6)

is the dominant contribution for small z, with the constant 0.21

determined from a fit to our simulation data. Conversely, the term

Fhigh =
1

4(1− z)2
−

(

1

4
+

z

2

)

(7)

is the dominant contribution at high z. Note that the leading-

order term in Fhigh is O(z2) for small z. Since the constant 0.21 in

Eq. (6) was determined by fitting to simulation data for a discrete

wormlike chain model, this parameter may differ for an inter-

polation formula describing a continuous wormlike chain model.

However, it is worth keeping in mind that the overall form of the

EV-WLC interpolation formula (i.e., the limiting behavior and the

crossovers between different regimes) does not assume a discrete

wormlike chain model.

The rationale for this formula is threefold:

First, when the chain is strongly stretched (z ≈ 1), excluded

volume should not be important and the Marko-Siggia result for

ideal chains applies. It is readily confirmed that Eq. (5) reduces

to Eq. (3) in this limit. Note that this saturation value is cor-

rect for a continuous wormlike chain. For a discrete wormlike

chain, which we will use for our simulations here, the saturation

value shifts from the wormlike chain behavior F ∼ (1− z)−2 to

the freely-jointed chain result F ∼ (1− z)−1 for sufficiently high

forces.22

Second, for small values of the extension, the leading-order be-

havior of Eq. (5) should reduce to Pincus’s scaling result for weak

stretching in the presence of excluded volume.9 Pincus’s theory

is based on the existence of a tensile screening length ξt = kBT/ f

that competes with the Flory radius RF = L3/5l
1/5
p w1/5 for a worm-

like chain of contour length L.2 The force-extension behavior can

be obtained by a scaling argument where tensile blobs of size ξt

contain a contour length

Lblob = ξ
5/3
t l

−1/3
p w−1/3 (8)

The fractional extension is then given by z = ξt/Lblob, leading to9

F ∼ z3/2(lp/w)1/2 (9)

This is indeed the leading-order behavior of Flow. Since Fhigh ∼

O(z2) for small z, and it is also the leading-order behavior of

Eq. (5) for small z.

Third, Flow should exhibit a crossover from Pincus behavior to

ideal wormlike chain behavior. The Pincus regime crosses over to

the ideal scaling regime when the tensile blob size is commensu-

rate with the thermal blob size, ξt
∼= l2

p/w.16 The crossover point

is

F∗ ∼= w/lp (10)

with a corresponding fractional extension

z∗ ∼= w/lp (11)

This is indeed the fractional extension where the two quantities

in the denominator of Flow are balanced.

Before moving on, we should note that Eq. (5) is not intended

to be a model for freely-jointed chains. The force-extension inter-

polation behavior of freely-jointed chains has been addressed pre-
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viously in a similar interpolation approach by Rahadkrishnan and

Underhill.23 Equation (5) should not reduce to a freely-jointed

chain model in the limit lp = w because the saturation behavior of

the wormlike chain model is qualitatively different than a freely-

jointed chain model.22 For this reason, we only consider cases

lp > w to test the EV-WLC formula.

3 Simulation method

We obtained force-extension data for a discrete wormlike chain

model10,24 using pruned-enriched Rosenbluth method (PERM)

simulations.25 Our simulations are the off-lattice analog of previ-

ous lattice simulations by Hsu and Binder.15 The discrete worm-

like chain model consists of a series of N inextensible bonds of

length a. We use touching beads such that a = w, where w is

the width of the chain. The contour length of the chain is thus

L = Nw = (Nb −1)w, where Nb is the number of beads. A bending

energy

βUbend = κ
N−1

∑
j=1

(1− cosθ j) (12)

is imposed between contiguous trios of beads, where β = (kBT )−1

is the inverse Boltzmann factor and θ j is the angle formed by the

beads. The bending energy κ is related to the persistence length

by21,26

lp

w
=

κ

κ +1−κ cothκ
(13)

Excluded volume interactions are treated by a hard core potential

βUEV =

{

∞, |ri j| ≤ w

0, |ri j > w
(14)

between non-contiguous beads.

In each tour of the PERM simulations, the first bead is placed

at the origin. Due to the translational invariance of the imposed

force, this initial condition leads to no loss of generality. For the

nth chain growth step, we make k = 5 trial moves by selecting

points on the unit sphere from the discrete wormlike chain distri-

bution in the absence of excluded volume or the external force.17

As a result, the reference state for our simulations is an ideal dis-

crete wormlike chain at zero force. The jth trial move to place the

nth bead at position r
( j)
n is assigned an atmosphere

an
( j) = exp

[

−β
(

UEV − f · r
( j)
n

)]

(15)

where UEV is the excluded volume caused by placing this bead

and f is the force. We then select one of the k trial moves with

probability

pn
( j) =

a
( j)
n

ωn
(16)

where

ωn =
k

∑
j=1

an
( j) (17)

is the Rosenbluth weight for step n.

During a given tour, we track the cumulative weight of a con-

figuration,

Wn =
n

∏
i=0

ωn. (18)

and enforce pruning and enriching steps via Grassberger’s algo-

rithm.25 If at some step n a chain’s cumulative weight is too high

relative to the target weight, we “enrich” by generating a copy

of the configuration and splitting the weight Wn between the two

copies. Conversely, if at some step n the chain’s cumulative weight

is too low relative to the target weight, it is “pruned” and growth

terminates at that step. In Grassberger’s algorithm, the target

weight is adjusted on-the-fly based on the current status of the

simulation to improve sampling efficiency.25 For each value of

lp/w, we conducted at least 105 tours so that the standard error

of the mean, assumed to be the sampling error, is small compared

to the symbol size in the plots.

As a chain growth method, PERM naturally produces equilib-

rium data as a function of molecular weight. For a chain consist-

ing of n steps, the average fractional extension is

zn =

∑
t

W
(t)
n z

(t)
n

∑
t

W
(t)
n

(19)

where W
(t)
n is the cumulative weight of configuration t in the en-

semble and z
(t)
n is the corresponding extension of the configura-

tion in that tour

z
(t)
n =

r
(t)
n · f

(n−1)w
(20)

with r
(t)
n the vector position of the nth bead of configuration t and

(n−1)w is the contour length at step n. We run our simulations to

sufficiently high molecular weights such that z becomes indepen-

dent of n. The number of beads used for the data in this paper

appear in Tables S1 and S2 in the ESI.†. As a result, we sim-

ply report the asymptotic value of z in what follows. Evidence in

support of this claim is provided in Fig. S1 of the ESI.†.

In the course of our discussion, it will also prove useful to com-

pute the excess free energy ∆FEV caused by excluded volume.

For this calculation, we repeat our simulations at a force f set-

ting UEV = 0. In PERM, the free energy for growth out to step n

relative to the reference state is

βFn =− ln〈Wn〉 (21)

where the angle brackets indicate an average value. The excess

free energy for chains grown out to step n is then given by20

β∆FEV
n =− ln

〈Wn〉

〈W ideal
n 〉

(22)

where W ideal
n is the cumulative weight from PERM simulations in

the absence of excluded volume.

4 Results

We begin by comparing the simulation data we obtained for

real discrete wormlike chains to the response of ideal continu-

ous wormlike chains given by the Marko-Siggia interpolation for-

mula in Eq. (3). As shown in Fig. 1, the force-extension behav-

ior at high stretch is insensitive to the monomer anisotropy ratio

lp/w. However, the elastic behavior depends on the monomer

anisotropy ratio at low forces. For a stiff chain, the deviation be-
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lp/w = 10.5

Fig. 1 Comparison between discrete wormlike chain simulation data and

the Marko-Siggia interpolation formula (solid line) in Eq. (3) and the EV-

WLC interpolation formula (dashed lines) in Eq. (5) for a relatively flexible

chain (lp/w = 1.5) and a stiff chain (lp/w = 10.5). The triangle indicates

the Pincus scaling in Eq. (4). Similar plots for other values of lp/w are

provided as Fig. S2 in the ESI.†.

tween the Marko-Siggia interpolation formula and the simulation

data is small, even at rather small values of the fractional exten-

sion. For the more flexible chain, the deviation from the Marko-

Siggia interpolation formulation is substantial and persists over a

wide range of fractional extensions. In both cases, the EV-WLC

interpolation formula reasonably captures both the saturation be-

havior at high forces and the deviation from the Marko-Siggia

interpolation formula at low forces.

We included the Pincus scaling in Eq. (4) beside the low-force

data in Fig. 1. The data do appear to follow Pincus scaling for

sufficiently low forces, and we will address this issue in a quan-

titative manner shortly. For the moment, it suffices to note that

the Pincus scaling is not a good description of the chain for all

forces, which follows directly from its derivation.9 As a result,

we defer the error in the Pincus scaling to a later point, and fo-

cus for the moment exclusively on the Marko-Siggia interpolation

formula and the EV-WLC interpolation formula.

The most important question to resolve, from a practical stand-

point, is when the stretching of semiflexible chains should be

modeled by the Marko-Siggia interpolation formula in Eq. (3) and

when the EV-WLC interpolation formula in Eq. (5) provides a bet-

ter description. To answer this question in a quantitative manner,

we evaluated the error in these formulas for discrete wormlike

chains as

ε =
|z̃− z|

z
(23)

with z being the value obtained from the simulation and z̃ being

the value from the interpolation formulas in Eqs. (3) or (5). Natu-

rally, the error is a function of the force. Figure 2 shows the error

for the data in Fig. 1. As expected, the error in the Marko-Siggia

formula increases as the force decreases due to excluded volume

effects. Moreover, for the stiff chain with lp/w = 10.5, we see

10−3

10−2

10−1

100

10−2 10−1 100 101 102 103

lp/w = 1.5

ǫ

F

10−3

10−2

10−1

100

10−2 10−1 100 101 102 103

lp/w = 10.5

ǫ

F

�a�

�b�

Fig. 2 Plot of the error ε (Eq. (23)) between simulation data and the

Marko-Siggia interpolation formula (red circles) and the EV-WLC inter-

polation (blue triangles) as a function of dimensionless force F for (a) a

relatively flexible chain (lp/w = 1.5) and (b) a stiff chain (lp/w = 10.5).

Similar plots for other values of lp/w are provided as Fig. S3 in the ESI.†.

that the Marko-Siggia interpolation formula indeed only exhibits

errors of a few percent once the excluded volume effects are sup-

pressed at high forces. The error also increases for the EV-WLC

formula as the force decreases, since the interpolation formula

only approximately captures the crossover between Pincus scal-

ing and the Hookean response.

The data in Fig. 2 also provide insight into modeling the

stretching of double-stranded DNA, which is a very common

model polymer whose monomer anisotropy in a high ionic

strength buffer is similar to lp/w = 10.5.10 Our data for discrete

wormlike chains support the use of the Marko-Siggia interpola-

tion formula in models of double-stranded DNA in flow.7,8 How-

ever, it is worth noting that lp/w decreases as the ionic strength

decreases because the electrostatic interactions affect the per-

sistence length and the width differently.10 For very low ionic

strengths, the EV-WLC interpolation formula may prove to be
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Fig. 3 Average error, εavg, for the Marko-Siggia and EV-WLC interpolation

formulas as a function of lp/w.

more accurate for double-stranded DNA than the Marko-Siggia

formula.

We have obtained data at many different monomer

anisotropies, and plots similar to Fig. 1 and Fig. 2 for these other

values of lp/w are provided as Figs. S2 and S3 in the ESI.† Fig-

ure 3 summarizes the overall result, reporting the average error

over all forces where we have obtained data. The average error

for the EV-WLC interpolation is always smaller than the average

error in the Marko-Siggia interpolation formula, independent of

lp/w. A closer inspection of the error as a function of force in

Fig. 2 and the additional data provided in Fig. S3 of the ESI†

shows that this trend persists for all values of the force except the

saturation regime, where the two interpolation formulas are es-

sentially the same. Thus, we expect that the EV-WLC interpolation

formula in Eq. (5) will prove quite useful for modeling relatively

flexible wormlike chains.

The error in both the Marko-Siggia and EV-WLC formulas both

increase as the chain becomes more flexible. For the Marko-Siggia

interpolation formula, we suspect that much of this error is due

to a failure capture the low-force behavior, as Fig. 3 reports the

average value of the error over all forces. For the EV-WLC for-

mula, we previously proposed that the error arises primarily due

to the approximate way that Eq. (5) treats the cross-over between

the Pincus scaling and Hookean behavior. However, for both the

Marko-Siggia and EV-WLC formulas, some of the error may also

arise from the use of theories for continuous chains to describe

data obtained from simulations of a discrete wormlike chains. In-

deed, as lp/w decreases, the discreteness of the model becomes

increasingly important. For both interpolation formulas, the error

in the interpolation formula increases as the discreteness of the

model increases.

In the course of obtaining the force-extension data required to

produce Fig. 3, we obtained a large amount of data that should

correspond to the Pincus regime. Thus, it is worthwhile to take a

moment to see whether our data are consistent with Eqs. (9) and

10−1

100

101

102

10−2 10−1 100 101 102

Pincus blobs

z
l p
/
w

Flp/w

�a�

�b�

0

0.5

10−2 10−1 100 101 102

Pincus Blobs

β
△

F
E
V
/
L

Flp/w

lp/w = 1
lp/w = 1.5
lp/w = 2.5
lp/w = 3.5
lp/w = 4.5
lp/w = 5.5
lp/w = 6.5
lp/w = 7.5
lp/w = 10.5
lp/w = 15.5

Fig. 4 Plot of (a) the rescaled extension zlp/w versus the rescaled force

Flp/w and (b) excess free energy per unit length, β∆FEV/L, for different

values of lp/w. The vertical dot-dashed line denotes the boundary of the

(shaded) Pincus regime. The dashed line in panel (a) is the regression

result to the Pincus regime. The symbols for different values of lp/w are

the same in panel (a) and (b).

(11) and to assess quantitatively the error between the Pincus

force law and the simulation data. For this purpose, we also in-

cluded data for a freely-jointed chain (lp = w) in Fig. 4. While the

freely-jointed chain does not give the same limiting behavior as a

wormlike chain at high extensions, it produces a Pincus regime.

Figure 4a provides a rescaled force-extension plot demonstrating

the collapse in the Pincus regime with a crossover correspond-

ing to Eq. (11). To test the scaling in Eq. (9), we extracted the

data corresponding to the Pincus regime and used linear regres-

sion to determine the prefactor and exponent for the scaling law.

This analysis led to an exponent F0.71. This exponent is consistent

with Pincus’s analysis using the Flory radius2 RF = Lν (lpw)(1−ν)/2,

which leads to16

F ∼ zν/(1−ν)(lp/w)(2ν−1)/(1−ν) (24)

The change in the exponent from z∼ F2/3 in Eq. (9) to z∼ F0.71 in

Eq. (24) using ν = 0.587597 as the Flory exponent27 is identical
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to the case of the scaling law for the extension of semiflexible

polymers confined in channels in the de Gennes regime.28 For

the data in Fig. 4 corresponding to the Pincus regime, the force-

extension

F = 1.5z1.42

(

lp

w

)0.42

(25)

where the prefactor is obtained from the linear regression in

Fig. 4, leads to an average error of 0.036. Figure 4b provides the

corresponding values of the excess free energy due to excluded

volume, demonstrating that the onset of excluded volume inter-

actions is coincident with the Pincus scaling for the chain exten-

sion.

5 Discussion

The key result of our paper is the development and evaluation

of the EV-WLC interpolation formula in Eq. (5). Based on the

error analysis in Fig. 3 it appears that the EV-WLC interpolation

formula provides a good description of the force-extension be-

havior of wormlike chains. However, we need to be careful about

extending the EV-WLC interpolation formula in Eq. (5) to poly-

mers with isotropic monomers where lp becomes very close to the

chain width w. As pointed out by Dobrynin et al.,22 at very high

forces, the saturation behavior switches from the wormlike chain

result to the flexible chain result (i.e. the Langevin function) as

the bending energy decreases. In principle, it should be possible

incorporate this crossover for the saturation behavior for arbitrary

stiffness κ into our EV-WLC interpolation formula, since Dobrynin

et al.22 have already determined how to interpolate between the

flexible and wormlike stretching for ideal chains.

The EV-WLC interpolation formula is most useful for modest

ratios of lp/w, and these values characterize a number of im-

portant polymer systems. Single-stranded DNA is a polymer

with enormous biological relevance that exhibits nearly isotropic

monomers. There is a growing experimental interest in using

single-stranded DNA as a model polymer.11,29 Using biochemi-

cal synthesis methods, single-stranded DNA molecules with ≈104

bases containing designer sequences with minimal base paring

can readily be synthesized and uniformly labeled with fluorescent

dyes, thereby enabling the direct visualization of single chain dy-

namics using fluorescence microscopy.29 Due to the very small

persistence length of single-stranded DNA (lp ≈ 1-2 nm under

modest salt concentrations),12 single-stranded DNA chains with

contour lengths L ≈ 15-20 µm correspond to NK ≈ 7,500-10,000

Kuhn segments compared to only NK ≈ 150-190 for double-

stranded DNA of similar contour length. The ability to study

single chain dynamics of long chain, highly flexible polymers

opens a new window into observing non-linear phenomena and

chain dynamics in flow, which are heavily influenced by dominant

EV and intramolecular hydrodynamic interactions.30 From this

perspective, the non-equilibrium flow dynamics of highly flexi-

ble polymers such as single-stranded DNA is expected to differ

qualitatively compared to linear λ -DNA of similar contour length

L. Our enthusiasm towards using the EV-WLC model for single-

stranded DNA is tempered by the possibility that the results could

be affected by torsional constraints, which are included in some

coarse-grained models, such as the 3-SPN model,31 but not in

others, such as OX-DNA.32. Ultimately, the importance (or lack

thereof) of torsion on the force-extension behavior of ssDNA is a

question that needs to be resolved experimentally. Our EV-WLC

formula provides a framework for addressing this question, since

it assumes no torsional potential.

On the chemistry side, a broad class of synthetic polymers

would also be described by the EV-WLC interpolation formula.

In particular, we anticipate that the EV-WLC formula will describe

the elastic behavior of synthetic polymers that have bulky side

groups but do not form helical structures, thereby maintaining

modest values of lp/w. In many ways, we do not yet know which

polymers will be described by the EV-WLC formula because the

low-force elasticity has not yet been rigorously investigated for

most synthetic polymers using single molecule force spectroscopy.

Whereas AFM can faithfully measure the high-force elasticity of

single polymers, magnetic tweezers are one method capable of in-

terrogating the low-force regime; however, this approach has only

been applied to a handful of polymers such as single-stranded

DNA12 and poly(ethylene glycol).13

Poly(ethylene glycol) or PEG presents an interesting case in

the context of developing interpolation formulas for chain elas-

ticity. Gaub and coworkers33 performed AFM measurements on

PEG and observed that the polymer forms water-mediated super-

structures in aqueous solutions. As a result, and perhaps unex-

pectedly, PEG is well described by the Marko-Siggia force relation

(Eq. (3)) in the limit of high forces in water. On the other hand,

stretching PEG in an aprotic solvent (hexadecane) resulted in

force-extension curves that were well fit by the inverse Langevin

function (Eq. (2)), which is characteristic of stretching a flexible

polymer in a theta solvent in the absence of EV interactions. Re-

cently, magnetic tweezers were used to probe the force-extension

behavior of PEG in the low force regime,13 which revealed that

PEG exhibits both the Pincus and Hookean regimes in aqueous

solutions. However, the Pincus regime only survives up to very

small extensions z ≈ 0.06, perhaps due to local rigidification of

the polymer backbone due to the formation of superstructures in

aqueous solution. From this view, it is clear that the existence

of solvent-polymer interactions for PEG results in an increase in

monomer rigidity and somewhat unexpected behavior. Overall,

the lessons from these results clearly illustrate that the details of

the chemistry, solvent interactions, and local molecular structure

are key to determining the emergent force-extension behavior for

any macromolecule.

The availability of the EV-WLC interpolation formula opens up a

new avenue for coarse-grained modeling of such polymers in flow.

In typical bead-spring models, a polymer chain is described by a

series of beads (friction points) connected by massless springs.

The entropic penalty for stretching the chain is captured by a

spring force, while enthalpic effects arising from intramolecular

excluded volume interactions are imposed by a pairwise poten-

tial between beads. An alternate approach is to use Eq. (5) to

simultaneously capture the effects of stretching and the internal

excluded volume interactions due to the subchain represented by

the spring. We envision that such a model could prove very useful

for modeling the dynamics of such polymers in flow.

While our primary emphasis in this paper is the development
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and testing of the EV-WLC interpolation formula, the results we

have obtained for stretching in the Pincus regime should also be

viewed in light of the existing simulation and experimental liter-

ature. From the simulation side, our data are part of a grow-

ing body of literature14–16 demonstrating the existence of the

Pincus regime, that is, a low-force non-linear elasticity for poly-

mers in a good solvent. Our key contributions in this respect are

methodological, showing that off-lattice PERM simulations of a

discrete wormlike chain model can reach sufficiently high molec-

ular weights to observe Pincus scaling even for rather stiff chains,

and in the thermodynamics of the Pincus regime, with Fig. 4b

clearly demonstrating that the Pincus regime exists due to ex-

cluded volume interactions. From the experimental side, mov-

ing forward, it will be worthwhile to see how our data relate to

the force-extension properties of single-stranded DNA12 and new

classes of synthetic polymers that can be studied using magnetic

tweezers.13

6 Conclusions

In the present contribution, we have shown that an interpola-

tion formula that incorporates excluded volume interactions leads

to more accurate predictions of the force-extension behavior of

discrete wormlike chains than the classic Marko-Siggia interpola-

tion formula, which was developed for ideal continuous wormlike

chains. The EV-WLC interpolation formula will prove particularly

important for polymers with relatively small range of monomer

anisotropies lp/w, as these values characterize many important

experimental systems such as single-stranded DNA and synthetic

polymers that contain bulky side groups but do not form helices.

We anticipate that the EV-WLC interpolation formula will prove

useful as a model for the force-extension behavior of such poly-

mers as such experimental data become available.12,13 Even more

importantly, we expect that the EV-WLC interpolation formula

will provide a quantitatively accurate force law for coarse-grained

simulations of these polymers in flow.
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