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no net swim force acting on the mixture; only external body forces
appear. However, the suspension is a two-phase mixture of active
particles and fluid and in the continuum momentum balance for
the particle phase we show that a net swim force appears directly
and acts as an internal body force. This net swim force is crucial
for describing the dynamics of active matter and for computing
forces exerted on boundaries.

The swim force plays a pivotal role in the swim pressure5,
whose introduction provided a new approach to understanding
the behavior of active matter. Active Brownian Particles (ABPs)
that separate into dilute and dense regions are now understood
as a ‘gas-liquid’ coexistence. The decrease in the swim pressure
with concentration destabilizes the system resulting in phase sep-
aration5,6. The swim pressure is analogous to the osmotic pres-
sure of a chemical solute or of passive Brownian particles and is
the pressure needed to confine the active particles. In the dilute
limit the “ideal gas” swim pressure is Πswim = nζU2

0 τR/6 (in 3D),
where n is the number density of active particles, ζ is their drag
coefficient, U0 is the swim speed, and τR is their reorientation
time5.

While the swim pressure can be understood solely in terms of
this entropic confinement pressure and is independent of the size
of the swimmers5, micromechanically, the swim stress is given
by the moment of the swim force 〈σσσ swim〉 = −n〈xxxFFFswim〉, where
FFFswim = ζU0qqq, with qqq the orientation vector of the swimmer and
xxx its position. The position is simply xxx(t) =

∫ t
U0qqq(t ′)dt ′, and

thus, σσσ swim = −nζU2
0

∫ t〈qqq(t)qqq(t ′)〉dt ′ = −nζU2
0 τR/6 III (for times

t ≫ τR), arising from the random reorientation of the swimmer:
〈qqq(t)qqq(t ′)〉 = (III/3)exp{−2(t − t ′)/τR}. The ‘moment arm’ for the
swim stress is the swimmer’s run length, ℓ=U0τR.

The micromechanical definition of the swim stress thus involves
the swim force, which leads to questions about the ‘force-free’ na-
ture of low-Reynolds number swimming. Furthermore, the swim
stress sparked some recent discussion17 about whether it is a true
stress – Is it equal to the force per unit area on the bounding
walls? – especially when the dynamics give rise to polar order: a
non-zero average orientation of the particles, 〈qqq〉 6= 0.

In this paper we first show the origin and definition of the swim
force that is consistent with the notion of ‘force-free’ motion. We
then establish the global force (or momentum) balance for active
matter, focusing on the case when there is net polar order 〈qqq〉,
which corresponds to an average swim force 〈FFFswim〉. We show
that in the momentum balance for the active particles, the aver-
age swim force acts just like a body force, with the result that
the force/area exerted by active matter on a bounding wall is the
sum of the swim pressure and the ‘weight’ of the active particles.
Thus, the questions raised in Solon et al18 are straightforwardly
resolved and in a manner completely consistent with one’s intu-
ition about forces and pressures.

Further, we show that a sedimentation-like system is achieved
for 〈FFFswim〉 6= 0 without any external body force and a continuum
Boltzmann distribution holds just as for passive Brownian parti-
cles in a gravitational field. Active particles may also accumulate
adjacent to (or be depleted from) a boundary, for example in re-
sponse to an external stimulus (chemical, light, etc.). The inter-
esting aspect is that this accumulation (depletion) occurs without

there being any external force acting on the particles; it is a true
‘action at a distance.‘

Although an average swim force acting like a body force arises
naturally from the particle-level dynamics, it is nevertheless sur-
prising since, as mentioned before, it does not appear in the
macroscopic momentum balance for the entire suspension, or
mixture, of particles plus fluid.

2 The Swim Force

In self-propulsion at low Reynolds number by ‘force-free’ one
means that there is no external force causing the body to move.
The ‘internal’ forces that cause it to move arise from deformation
of the body surface and are part of the total hydrodynamic force
(and torque), which, from the linearity of Stokes flow, can be
written as

F
H = −RRRFU ·U

︸ ︷︷ ︸
−RRRFE : EEEs −RRRFB ⊙BBBs −·· ·
︸ ︷︷ ︸

= F
drag + F

swim , (1)

where we have grouped the force/torque together as a single vec-
tor, F H = (FFFH ,LLLH), and similarly for the translational/rotational
velocities: U = (UUU ,ΩΩΩ). The hydrodynamic tensors RRRFU , RRRFE ,
etc. are functions of the body geometry only and couple the force
to the velocity, to the ‘squirming set’ EEEs(t),BBBs(t), etc., which char-
acterize the ‘slip’ velocity at the body surface. A derivation of (1)
can be found in Appendix A.

In (1) the hydrodynamic force/torque is written as a sum of
two terms: (i) the hydrodynamic drag F drag and (ii) the propul-
sive or ‘swim’ force F swim. Equation (1) provides the definition of
the swim force. That it is a real measurable force can be appreci-
ated by recognizing that if one wanted to keep the swimmer from
moving, say by trapping it with optical tweezers, the force/torque
the trap would exert is precisely F swim.

In addition to the hydrodynamic drag and swim force, ac-
tive particles can also be subject to thermal Brownian motion
(F B = 2kBT RRRFU δ (t)), external forces such as buoyancy (F ext),
and interparticle forces, for example repulsive interactions to pre-
vent overlap at finite concentrations (F P) †.

In the simplest model of active particles the hydrodynamic re-
sistance tensor is an isotropic drag tensor RRRFU = ζ III and the swim
force is FFFswim = ζU0qqq. This is the ‘Active Brownian Particle’ (ABP)
model:

0 =−ζUUU +FFFswim +FFFB +FFFext +FFFP. (2)

The orientation vector qqq is subject to run-and-tumble or rotational
Brownian diffusion (DR = 1/τR), which are equivalent19, and fol-
lows directly from the torque balance. For a spherical swimmer,
ζ = 6πηa, where a is the particle size and η the viscosity of the
suspending Newtonian fluid. A more detailed derivation of (2)
can be found in Appendix A.

In this paper we focus on the ABP model (Eq. (2)), with both
translational and rotational diffusion: DT ,DR. The reorientation

† Hydrodynamic shear forces can also be present, but are not considered here; they
enter in Eq. (1).
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where 〈eee〉= 1/2(∇〈uuu〉+(∇〈uuu〉)†) is the average rate of strain ten-
sor and 〈p f 〉 is the average pressure in the fluid §. The fluid
pressure distribution does whatever is necessary to ensure the
incompressibility of the suspension average velocity, ∇ · 〈uuu〉 = 0.
For example, when polar order exactly balances gravity (Fig. 3),
〈σσσ (p)〉 is spatially constant, there is no flux of suspension (〈uuu〉= 0)
or particles (〈 jjjrel〉= 0) and the fluid pressure gradient is equal to
the external body force, ∇〈p f 〉= n〈FFFext〉.

In the case where the orienting field gave rise to a depletion
zone adjacent to the bottom wall, the suspension momentum bal-
ance shows that there will be a jump in the fluid pressure across
the transition region from no particles to bulk behavior of magni-
tude ∆〈p f 〉=−

∫ O(ℓ)
n〈Fswim〉dz.

Computational continuum-scale studies of active suspen-
sions10 employ the momentum balance (9).

7 Conclusions

Interpreting an average swim force as a body force was done at
two levels of description: (i) the global force balance (3), and (ii)
the continuum description (7). The global force balance looks
trivial because it involves only a simple sum of each swimmer’s
translational Langevin equation (2). The sum is performed with-
out any knowledge of how swimmers interact with the boundary,
how they orient in qqq-space, or how they are distributed in physi-
cal space. Also, no assumption of a ‘continuum’ is necessary and
therefore (3) is quite general.

With the continuum approach, however, the difficult problem
of determining the deformation and stress of active matter is
greatly simplified to solving (7) along with the conservation equa-
tion for the particle number density (8). Further, the consti-
tutive equation for the active stress, 〈σσσ (p)〉(φ ,PeR, . . .), is deter-
mined from homogeneous active matter systems6 and can then be
used to predict the behavior in inhomogeneous situations, just as
is done, for example, for the Navier-Stokes equations – the viscos-
ity is measured in a uniform simple shear flow and then used in
any flow geometry no matter how complex. When 〈FFFswim〉,〈FFFext〉

are specified, the continuum equations are closed and the con-
centration and stress, φ(xxx, t) and 〈σσσ (p)〉(xxx, t), can be determined
everywhere. The force on a boundary then follows from the stan-
dard continuum expression

∫

S〈σσσ
(p)〉 ·nnndS.

The continuum description, which predicted the Boltzmann
distributions for dilute systems, requires a separation of scales be-
tween the variation in macroscopic properties, such as n(z), etc.,
and the microscale, which for active matter is set by the swim-
mer’s run length, ℓ=U0τR (and/or particle size a). In very dilute
systems the run length can become large and if significant polar
order is induced at a boundary, a continuum description may not
be possible. In a future study20 we show how to accommodate
these ‘non-continuum’ effects in the description of active matter.

As a final remark, we have considered average swim forces that
are the result of polar order, 〈qqq〉 6= 0, as this is the most obvious
case. However, what is important is that there is average swim

§ There may also be a hydrodynamic stresslet contribution that takes the form:
n〈SSSH 〉 ∝ nζU0a〈qqqqqq〉.

force, 〈FFFswim〉 6= 0, not that there is polar order. Recently we have
shown6 that if there is a spatial variation in the intrinsic swim
speed U0(xxx) or reorientation time τR(xxx), as might happen if the
local fuel concentration varies, to leading order there is an aver-
age swim force: n〈FFFswim〉 = −〈σσσ swim〉 ·∇ ln(U0τR). This average
swim force must then appear in the global force balance (3) or
(6) and in the continuum description (7).
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Appendix A: The swim force of active matter

There is a recurring discussion in the literature about the nature
and origin of the force causing self-propelled bodies to move at
low Reynolds number. The discussion revolves about the notion
that since self-propulsion is a ‘force-free’ motion, one cannot say
that a self-propelled body experiences a Stokes drag. Or that the
propulsive force can be written as a swim force FFFswim = ζUUU0. And
if it is, this swim force is not a ‘true’ force. However, this is a
misunderstanding about what is force-free motion and the nature
of hydrodynamics at low Reynolds numbers.

The steady, non-accelerating motion of any body is force-free.
At low Reynolds numbers Re= ρUa/η ≪ 1, where ρ is the density
of the fluid, η is its viscosity, and U and a are the characteristic
velocity and length scales of the motion, respectively, the acceler-
ation of the fluid is negligible compared to the viscous and pres-
sure forces and all motion is thus force-free. (We also specify that
the inertia of the particle is negligible, which is characterized by
the Stokes number St = ρp/ρ ×Re ≪ 1, with ρp the particle den-
sity.) What is meant when one says that self-propulsion at low
Reynolds number is force-free is that there is no external force
causing the body to move. There are, however, internal forces
that cause it to move.

In the simplest description of self propulsion, consider a body
of fixed overall shape but whose surface can deform – a ‘squirmer.’
A paramecium is the classic biological example and phoretic col-
loidal particles can also be modeled as being propelled by a local
slip velocity at their surface22,23. At a point xxx on the surface
of a the body, the fluid velocity uuu(xxx) = UUU +ΩΩΩ× (xxx−XXX) + uuus(xxx),
where uuus is the ‘slip’ velocity, XXX is the body center, and UUU and ΩΩΩ

are the rigid-body translational and rotational motion of the body
about its center. The slip velocity can be expanded in moments
uuus(xxx′) = EEEs ·xxx′+BBBs :

(
xxx′xxx′− III(x′)2

)
+ · · · , where xxx′ = xxx−XXX , and the

tensors EEEs(t), BBBs(t), etc. are, in general, functions of time and are
determined by the swimming gait. The linearity of low-Reynolds
number or Stokes flow allows a familiar moment expansion24 of
the total hydrodynamic force/torque F H on the swimmer

F
H =−RRRFU ·U −RRRFE : EEES −RRRFB ⊙BBBS −·· · , (11)

where we have grouped the force/torque together as a single
vector in the same fashion as in Stokesian dynamics25, F H =

(FFFH ,LLLH), and similarly for the translational/rotational velocities:
U = (UUU ,ΩΩΩ). The hydrodynamic resistance tensors RRRFU , RRRFE ,
etc. are functions of the body geometry only and couple the force
to the velocity, to the ‘squirming set’ EEEs(t),BBBs(t), etc.
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In the Stokes flow regime, the rigid body’s motion is over-
damped and thus force-free: F H +F ext = 0, where F ext is any
external force such as gravity or an external torque. For a passive
(i.e. non-swimming or non-active) body when F ext = 0, F H = 0

and there is no motion. For a swimmer when F ext = 0, F H = 0

is still true, but U 6= 0 in (11) – the drag, −RRRFU ·U , cancels
the swimming part, −RRRFE : EEES −RRRFB ⊙BBBS −·· · . Indeed, we can
define

F
swim =−RRRFE : EEES −RRRFB ⊙BBBS −·· · , (12)

and
F

drag =−RRRFU ·U , (13)

and then the required force-free motion F H =F drag +F swim = 0

gives
U = RRR−1

FU
·F swim . (14)

Equation (12) is the definition of the swim force (and torque).
The reorientation of a nonBrownian swimmer that gives rise to its
random walk arises from the squirming set EEEs(t), etc. changing
direction (relative to the body fixed coordinate system). That
the swim force is a real measurable force can be appreciated by
recognizing that if one wanted to keep the swimmer from moving,
the force required is FFFswim.

We have considered the simplest model for self-propulsion,
namely a squirmer. However, as shown by Swan et al26 the exact
same structure applies for swimmers that propel by large defor-
mations of their body shape – the hydrodynamic resistance ten-
sors are now also functions of time but the definitions, (11) - (13),
apply at each instant.

It is important to note that a nonzero swim force does not imply
that the fluid velocity disturbance caused by the swimmer decays
as 1/r as it would for a body with a nonzero hydrodynamic force.
This is most clearly seen from the integral representation for the
solution to the Stokes equations. The velocity field outside a par-
ticle in Stokes flow can be expanded in force moments to give

ui(xxx) =− Ji jF
H
j − 1

2 εi jk∇kJilL
H
j

− 1
2

(
∇kJi j +∇ jJik

)
SH

jk

− 1
2 ∇ j∇kJilQ

H
jkl −·· · ,

(15)

where the Stokeslet, 8πηJi j(xxx) = δi j/r + xix j/r3, is evalu-
ated at the particle center. The hydrodynamic force and
torque are given by their usual expressions: FFFH =

∫
σσσ ·

nnndS, LLLH =
∫

xxx′ × σσσ · nnndS, and the stresslet is given by SSSH =
1
2

∫
[xxx′σσσ ·nnn+σσσ ·nnnxxx′−2η(uuusnnn+nnnuuus)]dS, with σσσ the fluid stress ten-

sor; there is a corresponding expression for the hydrodynamic
quadrupole QQQH , etc.

Since the drag force F drag balances the swim force there is no

hydrodynamic force or torque on the swimmer: F H = 0 (FFFH = 0,
LLLH = 0), and the velocity disturbance decays at leading order as
1/r2 coming from the stresslet SSSH . If the slip velocity does not
generate a stresslet, then the leading order velocity disturbance
decays as 1/r3 corresponding to the quadrupole QQQH . And so on
depending on the nature of the propulsive mechanism and the
body geometry. There is no difficulty (or ambiguity) in speaking

about a swim force and a drag force for a self-propelled body
and the velocity disturbance generated by the swimming body
decaying faster than 1/r. In fact, Blake22 and Ishikawa et al27

expanded the hydrodynamic interactions between two squirmers
in a series of surface radial and tangential velocity modes. These
modes may cancel such that the velocity disturbance decays as
1/rn, which can be very fast for large n.

Even for a single particle, hydrodynamics can also generate a
single particle contribution to the active stress σσσh ∼ nζU0a〈qqqqqq〉,
which scales as nζU0a, as opposed to the swim stress that scales
as nζU2

0 τR. As discussed by Takatori et al5 for fast swimmers
(PeR → 0), σσσh/σσσ swim ∼U0a/(U2

0 τR) = a/(U0τR) = PeR → 0.

Considering other forces that affect the motion of active parti-
cles, the overdamped Langevin equation of a set of swimmers can
be written as,

0 = F
drag +F

swim +F
B +F

ext +F
P, (16)

where F B = 2kBT RRRFU δ (t) is a Brownian force with zero mean,
F ext is any external force, and F P is a particle-particle interac-
tive or collision force. The resistance tensors are now functions of
both the individual swimmer body shape and the relative separa-
tion and orientation of all the swimmers, as is standard in Stoke-
sian dynamics.

In the simplest case where the hydrodynamic interactions
among the swimmers are neglected and only translational swim-
ming is relevant, the hydrodynamic resistance tensor RRRFU can
be simplified to an isotropic drag tensor ζ III, so that FFFdrag =−ζUUU ,
FFFswim = ζU0qqq, and we have the ‘Active Brownian Particle’ (ABP)
model Eq. (2) of the main text. Here, qqq(t) is the orientation vec-
tor for the swimming direction and is subject to run-and-tumble
motion or rotational Brownian diffusion, which are equivalent19,
and comes from the torque balance in (16). For a spherical swim-
mer, ζ = 6πηa and the swim force arises from the quadrupole
squirming set BBBs(t).

In this work we focus on this ABP model, with both transla-
tional (DT ) and rotational (DR) diffusivity. In this case the time
scale is set by 1/DR (= τR), and the reorientation Péclet number5

PeR = aDR/U0 = a/ℓ controls how far the swimmer travels in one
reorientation time – its run length ℓ=U0τR – compared to its size
a. The ratio DT /(a

2DR) controls the relative strength of transla-
tional Brownian diffusion and reorientational diffusion.

With F swim defined in (12), the suspension stress28,29 in the
absence of macroscopic shearing and external torques is:

〈σσσ〉=−〈p f 〉III + 〈σσσ swim〉+ 〈σσσB〉+ 〈σσσP〉 , (17)

where −〈p f 〉III is the isotropic (incompressible) fluid pressure,
〈σσσ swim〉 is the swim stress, 〈σσσB〉 = −nkBT III is the Brownian
stress29, and 〈σσσP〉 is the particle collision stress. The swim stress
〈σσσ swim〉 can be anisotropic if the swimmers’ reorienting process is
biased by, for example, an external torque. For the ABP model,
〈σσσ swim〉 has been thoroughly discussed in both the isotropic5 and
anisotropic8 cases. In the text, we have written the ‘particle stress’
〈σσσ (p)〉= 〈σσσ swim〉+〈σσσB〉+〈σσσP〉 as is customary in colloidal dynam-
ics.
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Appendix B: Anisotropic stress under ĤHH field

In this section we follow the convention of Frankel & Brenner30 to
derive the anisotropic swim diffusivity DDDswim and ideal gas swim
stress σσσ swim = −nζ DDDswim. Similar methods have also been used
in Zia & Brady31 and Takatori & Brady8. In Frankel & Brenner’s
theory qqq is a local degree of freedom. For the swimmers con-
sidered here, qqq is the orientation vector of each swimmer. The
steady state distribution, P∞

0 (qqq), is analytically solvable from the
Langevin equation for qqq:

dqqq

dt
= Ωcqqq× ĤHH + η̇ , (18)

where ĤHH is the unit vector in the direction of the orienting field,
Ωc is its magnitude, and η̇ is the rotational Brownian motion
characterized by DR.

The oreintation-average velocity is defined as:

〈UUU〉=
∫

qqq
P∞

0 (qqq)UUU(qqq)dqqq. (19)

By decomposing ∆UUU(qqq) =UUU(qqq)−〈UUU〉, the effective diffusivity is
given by

DDDswim =
∫

qqq
P∞

0 (qqq)BBB(qqq)∆UUU(qqq)dqqq, (20)

where the BBB field is the solution to

∇qqq ·
[
uuuP∞

0 BBB−ddd ·∇qqq(P
∞
0 BBB)

]
= ∆UUUP∞

0 , (21)

∫

qqq
P∞

0 BBBdqqq = 0, (22)

with appropriate BC in qqq space. Here uuu and ddd are velocity and
(intrinsic) diffusivity in qqq space, respectively. For swimmers in
this work, uuu is the torque applied by the ĤHH field, and ddd = DRIII is
the rotational diffusivity.

In a 2D system, qqq = (cosθ ,sinθ), and we define ĤHH = (0,1). The
steady probability distribution P∞

0 (θ) is:

P∞
0 (θ) =

exp(−χR cosθ)

πI0(χR)
, (23)

and the average orientation is

〈qz〉=
I1(χR)

I0(χR)
, (24)

where χR = ΩcτR = Ωc/DR, and I0, I1, In, . . . are Bessel functions.

With the mathematical expansion

exp(zcosθ) = I0(z)+2
∞

∑
n=1

In(z)cos(nθ), (25)

we have

Dswim
⊥ = 2

∞

∑
n=1

In(χR)

nχRI0(χR)
×

∫ π

−π

exp(−χR cosθ)sinθ sin(nθ)

2πI0(χR)
dθ .

(26)

The parallel diffusivity, Dswim
‖ , is more complicated. First define

f (p) =− (p+π)I1(χR)− sin pI0(χR)+

I1(χR)

(

p+π +2
I1(χR)sin p

I0(χR)
+ cos psin p

)

+
∞

∑
n=2

In(−χR)
(

−
I1(χR)sin(np)

nI0(χR)

+
cos(np)sin p−ncos psin(np)

n2 −1

)

.

(27)

and

B‖(θ) =
∫ θ

−π
exp(χR cos p) f (p)d p . (28)

Finally,

Dswim
‖ =

∫ π

−π

(

cosθ +
I1(χR)

I0(χR)

)

×

exp(−χR cosθ)

2πI0(χR)
B‖(θ)dθ .

(29)

These expressions are used for the anisotropic swim stress in the
text.

Appendix C: Solution of continuum equation

(7)

The solution of the continuum equation (7) at steady state re-
quires a constitute law: 〈σσσ (p)〉(φ ,U0,DT ,τR). For the results in
Fig. (2), the constitutive law can be found in the work of Takatori
& Brady6. For the results in Fig. (5), ksTs ≪ kBT since U0 is small,
and therefore the stress for passive Brownian particles in 2D32 is
used: 〈σσσ (p)〉(φ ,U0,DT ,τR) ∝ 1/(1−φ)2.
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