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Purely elastic flow instabilities in microscale cross-slot devices  

P. C. Sousa,
a
 F.T. Pinho,

b
 M.S.N. Oliveira 

c
 and M. A. Alves

 a 

We present an experimental investigation of viscoelastic fluid flow in a cross-slot microgeometry under low Reynolds 

number flow conditions. By using several viscoelastic fluids, we investigate the effects of the microchannel bounding walls 

and of the polymer solution concentration on the flow patterns. We demonstrate that for concentrated polymer solutions, 

the flow undergoes a bifurcation above a critical Weissenberg number (Wi) in which the flow becomes asymmetric but 

remains steady. The appearance of this elastic instability depends on the channel aspect ratio, defined as the ratio 

between the depth and the width of the channels. At high aspect ratios, when bounding wall effects are reduced, two 

types of elastic instabilities were observed, one in which the flow becomes asymmetric and steady, followed by a second 

instability at higher Wi, in which the flow becomes time-dependent. When the aspect ratio decreases, the bounding walls 

have a stabilizing effect preventing the occurrence of the steady asymmetric flow and postponing the transition to 

unsteady flow to higher Wi. For less concentrated solutions, the first elastic instability to steady asymmetric flow is absent 

and only the time-dependent flow instability is observed. 

Introduction 

Complex fluids often exhibit unexpected flow phenomena, 

even in the absence of nonlinearities associated with inertia, 

as extensively documented by Boger and Walters.
1
 In 

particular, viscoelastic fluid flow can develop elastic 

instabilities,
2-5

 which in microfluidics are often purely elastic 

due to the typically low Reynolds number (Re) flows. The small 

length scales together with the high deformation rates 

typically found in microfluidic systems enable the generation 

of high Deborah (De) or Weissenberg (Wi) number flows, 

characterized by negligible inertial effects, hence leading to 

high elasticity number (El = Wi/Re) flows.  These conditions 

induce strong viscoelastic flow effects even for dilute polymer 

solutions that would exhibit Newtonian-like behaviour at the 

macro-scale. 

 

The onset of purely elastic flow instabilities occurs above 

critical flow conditions and is due to the combination of 

streamline curvature and large normal stresses. McKinley and 

co-workers
6,7

 proposed a dimensionless criterion that can be 

used to estimate the critical conditions for the onset of purely 

elastic flow instabilities. 

One geometrical configuration that has been extensively used 

in the investigation of nonlinear effects in complex fluids is the 

cross-slot arrangement.
8-24

 It consists of two perpendicular, 

bisecting channels with opposing inlets and opposing outlets 

resulting in a flow field with a stagnation point at the centre of 

symmetry (cf. Fig. 1), where the flow velocity is zero and the 

velocity gradient is finite.
13

 A strong extensional flow is 

generated in the vicinity of the stagnation point and, for 

viscoelastic fluids, a nonlinear increase in the first normal 

stress difference (or similarly in the extensional viscosity) with 

flow rate promotes the onset of elastic instabilities. In 

addition, near the stagnation point the residence time is 

sufficiently long for the polymer molecules to reach a steady-

state elongation allowing the estimation of the steady-state 

extensional viscosity, for example using birefringence 

measurements.
10,11,13-18 

Arratia et al.
8 

experimentally investigated the flow of a dilute 

polymeric solution in a cross-slot device and observed the 

existence of two types of purely elastic flow instabilities that 

occur as the flow rate increases. In the first instability the flow 

patterns become asymmetric but remain steady with the fluid 

entering in each of the opposing inlet channels exiting 

preferentially through one outlet. At higher flow rates, a 

second elastic instability sets in, in which the flow becomes 

time-dependent. Similar experimental observations were also 

reported in the same year by Pathak and Hudson
10 

using a 

micellar solution. In the following year, Poole et al.
9
 simulated 

numerically the two-dimensional cross-slot flow of an upper-

convected Maxwell (UCM) fluid at low and negligible Re and 

predicted qualitatively the flow behaviour observed 

experimentally. In addition, the authors demonstrated that the 

transition to a steady asymmetry flow is purely elastic in 

nature and that inertial effects reduce the strength 
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Fig. 1 The cross-slot geometry: (a) schematic representation showing the 
relevant variables and coordinate system and (b) bright field image showing the 
two inlets and two outlets. The stagnation point (S) is also represented. 

of the asymmetry and delay the onset of the elastic instability 

to higher De. Following these three pioneering works, the 

viscoelastic fluid flow through a cross-slot geometry has 

received renewed attention in order to explore the rheological 

conditions that can affect the onset of purely elastic flow 

instabilities
11,12,17,18,20,21 

and was considered an important open 

mathematical problem for non-Newtonian fluids.
22 

Poole et al.
23 

investigated numerically the three-dimensional 

flow of an UCM fluid under creeping flow conditions by varying 

the depth of the geometry from conditions corresponding to 

quasi-Hele Shaw flow (low aspect ratio) to quasi-two 

dimensional flow (high aspect ratio). Subsequently, Poole et 

al.
24 

 predicted numerically the cross-slot flow using an 

Oldroyd-B model and a simplified Phan-Thien−Tanner model in 

order to assess the effects of the solvent viscosity and finite 

extensibility on the flow patterns, and they found that the 

steady asymmetric and unsteady flow regimes occur at 

different flow conditions, depending on the rheological 

parameters of the viscoelastic model. The effect of the type of 

solvent and viscosity on the viscoelastic fluid flow behaviour 

has been investigated experimentally in other applications, 

including rheometric flows
25

 or flows through microfluidic 

planar contractions.
26,27

 For instance, Rodd et al.
27

 used 

viscoelastic solutions with a constant concentration of 

polyethylene oxide (PEO) while varying the viscosity of the 

solvent, in order to vary El between 2.8 and 68. The same flow 

regimes (Newtonian-like flow, steady viscoelastic flow, 

diverging streamlines and vortex growth) were found for all 

solutions investigated, although at high elasticity numbers the 

transitions between the flow regimes occurred at higher Wi.   

Motivated by the numerical studies of Poole et al.,
23,24 

here we 

investigate experimentally the effects of the aspect ratio of the 

channel, imposed by the bounding walls of the geometry, and 

of the rheological characteristics of the viscoelastic fluids on 

the onset of the purely elastic instabilities observed in a cross-

slot device. We use several viscoelastic fluids with different 

rheological characteristics, in order to explore experimentally 

the conditions that lead to the onset of the purely elastic flow 

instabilities in microscale cross-slot devices. 

Material and methods 

Microchannel fabrication and experimental techniques 

The microfluidic devices used in this work were fabricated 

from SU-8 photoresist moulds and are made of 

polydimethysiloxane (PDMS; Sylgard 184, Dow Corning) using 

standard soft-lithography.
28 

Fig. 1 shows a bright field image of 

a typical channel and relevant dimensions. We used three sets 

of cross-slots with microchannels that are 100 µm in width (w) 

and have depths (h) of 51 µm, 101 µm and 156 µm resulting in 

aspect ratios (AR = h/w) of 0.5, 1.0 and 1.6, respectively. The 

length of the inlet/outlet channels is large enough (at least 

18w in length) to ensure that the flow is fully-developed far 

from the region of interest for all flow conditions investigated. 

Flow rates (Q) of equal magnitude are imposed in all the four 

channels. For that purpose, a syringe pump with three 

independent modules (neMESYS, Cetoni GmbH) was used to 

inject equal flow rates at the two inlets and remove fluid from 

one outlet at the same flow rate. The remaining outlet is 

connected to a tube open to the atmosphere. For flow 

visualizations, the fluids were seeded with 1 µm fluorescent 

tracer particles (Nile Red particles, Molecular Probes, 

Invitrogen, Ex/Em: 520/575 nm). Flow visualizations were 

based on long exposure photography with the microchannels 

placed on an inverted epi-fluorescence microscope (DMI 

5000M, Leica Microsystems GmbH) equipped with a 20 × 

objective lens (numerical aperture, NA = 0.4) and a CCD 

camera (DFC350 FX, Leica Microsystems GmbH) or a sCMOS 

camera (Neo 5.5, Andor). The illumination was provided by a 

100 W mercury lamp operating together with an adequate 

filter cube. Visualizations of the flow patterns were performed 

at the centre plane of the microchannel, z = 0, at mid-distance 

between top and bottom bounding walls. 

 

Test fluids 

The viscoelastic solutions used were prepared by adding 

polyacrylamide (PAA, Mw = 18 ×10
6
, Polysciences Inc.) or PEO 

(Mw = 8 ×10
6
, Sigma Aldrich) to a Newtonian solvent, which 

was either water or a mixture of water and glycerol, as 

summarized in Table 1. A Newtonian fluid (distilled water) was 

also used as reference. The fluids were characterized 

rheologically in shear flow at T = 20.0 °C using a stress-

Q

Q Q
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18 w

h

w

w
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Table 1 Composition and rheological parameters of the viscoelastic fluids used. For all fluids, the shear viscosity data and the first normal stress difference data were fitted using 

the same values of the parameters of the model, except for fluids PAA300, PAA200+70%Glyc and PEO300, for which the values of the time constant and the power-law like index 

used in the fitting of the shear viscosity data are different from those used in fitting of the first normal-stress difference data.  

Fluid 
Polymer 

(ppm) 

Glycerol 

(% w/w) 

η0 

(Pa s) 

ηS 

(Pa s) 

Λ 
(s) 

n 

( - ) 

λ0 
(s) 

β 
( - ) 

c
* 

(ppm) 

λc 

(s) 

PAA300+50%Glyc 300 50 2.8 0.0061 80 0.44 13 0.0022 95 0.178 

PAA300 300 - 3.50 0.001 60 
0.30† 

0.50‡ 
0.55 0.00029 45 0.066 

PAA200+70%Glyc 200 70 3.00 0.023 
140† 

200‡ 

0.47† 

0.60‡ 
3.0 0.0077 

 

130 0.658 

PAA190+80%Glyc 190 80 1.90 0.063 32 0.50 8.0 0.033 150 0.390 

PAA120+70%Glyc 120 70 0.35 0.023 15 0.60 1.0 0.066 130 0.160 

PAA100+90%Glyc 100 90 1.70 0.22 30 0.55 5.0 0.13 170 0.484 

PAA100 100 - 0.22 0.001 60 0.48 2.5 0.0045 45 0.012 

PAA70+90%Glyc 70 90 0.82 0.22 10 0.50 4.0 0.27 170 0.351 

PEO300 300 - 0.0023 0.001 
0.07† 

- ‡ 

0.87† 

1.0‡ 
0.003 0.43 350 0.040 

PEO5000 5000 - 1.33 0.001 3 0.48 0.7 0.00075 350 0.228 

† shear viscosity data fit; ‡ first normal-stress difference data fit. 

controlled rheometer (Physica MCR301, Anton Paar). For all 

fluids, the shear viscosity (η) and the first normal-stress 

difference (N1) measurements were fitted to a White-Metzner 

model:
29,30

 

( ) 2 ( )λ γ η γ
∇

+ = D& && && && &pp pτ ττ ττ ττ τ , (1) 

where pτ is the polymer extra-stress tensor, ( )λ γ&&&&  is the shear 

rate dependent relaxation time defined below and p

∇
τ  is the 

upper-convected derivative of the polymeric extra-stress 

tensor, 

T
∇ ∂

= + ⋅∇ − ∇ ⋅ − ⋅∇
∂

τ
τ u τ u τ τ u

p
p p p p

t
. (2) 

The total extra-stress tensor τ  is defined as the sum of the 

solvent and polymeric contributions, = +τ τ τp s , where the 

solvent contribution is given by 
T

( )s sη= ∇ + ∇τ u u . In the 

nonlinear White-Metzner model, both the shear viscosity and 

the first normal-stress difference depend on the shear rate,

2 :γ = D D&&&& , where 
T1

( )
2

= ∇ + ∇D u u

 

is the rate of 

deformation tensor. The shear viscosity function is given by a 

Carreau model,
30

 ( )
(1 )/2

2

0( ) ( ) / 1η γ η η Λγ
−

 = − +
 

& && && && &
n

p s  and the first 

normal-stress difference is 2
1 2 ( ) ( )η γ λ γ γ= & & && & && & && & &

pN , where ηs is the 

high shear rate viscosity, which approaches the solvent 

viscosity for dilute polymer solutions, η0 is the zero-shear rate 

viscosity, Λ is a time constant, n the power-law like index and

( )λ γ&&&&  is also given by a Carreau model, ( )
(1 )/2

2

0 / 1λ λ Λγ
−

 = +
 

&&&&
n

. The shear viscosity and first normal-stress difference data 

measured in steady shear flow as well as the White-Metzner 

model fits are shown in Fig. 2. For most fluids, we use the 

same values of the parameters of the model to fit the data of 

both polymer shear viscosity and first normal-stress difference 

thus using an elastic modulus, ( ) / ( )η γ λ γ= & && && && &
pG , which is 

independent of shear rate. The exceptions are the PAA300, 

PAA200+70%Glyc and PEO300 fluids, for which the parameters 

n and Λ used to fit the polymer viscosity function were 

different from those used in the relaxation time to fit the first 

normal-stress difference data. The rheological parameters of 

the White-Metzner model are listed in Table 1 and are 

included to allow future comparisons of the experimental data 

with numerical simulations. The critical overlap concentration 

c
*
, is also presented in Table 1 and was calculated according to 

Graessley
31

 as c
* 

= 0.77/[η], where [η] is the intrinsic viscosity, 

which was measured for PAA solutions with a U-tube capillary 

viscometer using various solutions with the same solvent and 

different polymer concentrations. The intrinsic viscosity was 

determined using Huggins equation.
32

 The critical overlap 

concentration was determined experimentally for PAA 

solutions composed of 90%, 60% and 0% of glycerol and was 
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estimated for the remaining PAA solutions. For aqueous PEO 

solutions the overlap concentration was calculated from the 

correlation obtained by Tirtaatmadja et al. 
33

 for the intrinsic 

viscosity ( [ ]η = 0.65
0.072 wM , with [ ]η  in units of cm

3
/g).  We 

note that for dilute polymer solutions the zero-shear rate 

viscosity is expected to increase linearly with polymer 

concentration (η η β= ≈ + *
0 / 1 / 1 /s c c ) but a quadratic 

increase was found for the PAA solutions. The relaxation times 

measured in uniaxial extensional flow (λc) using a capillary 

break-up extensional rheometer (HAAKE CaBER
TM

1, Thermo 

Scientific) are also presented in Table 1 together with the 

values of the solvent viscosity ratio, β, defined as β = ηs/η0. 

Results and Discussion 

For all aspect ratios and flow conditions investigated with the 

Newtonian fluid (maximum Remax = 27.0 for AR = 0.5,

 

Fig. 2 Steady shear viscosity and first normal stress difference as function of shear rate. The symbols represent the experimental data, the solid lines the fits of the White-Metzner 

model and the dashed line represents 20× the minimum measurable viscosity, which was calculated based on the minimum torque (0.1 µNm) of the shear rheometer used. 

Remax = 13.6 for AR = 1.0, Remax = 8.9 for AR = 1.6), the flow 

remains steady and symmetric as illustrated in Fig. 3a. We 

define the Reynolds number as / ( )ρ η γ= &&&&Re Uw , where ρ  is the 

fluid density and U the average velocity in the channels. For 

the non-Newtonian fluids, we use the shear rate dependent 

viscosity evaluated at a characteristic shear rate, / ( / 2)γ =&&&& U w . 

The results show that the micro-geometry is symmetric and 

that any slight geometric imperfections do not affect the fluid 

flow significantly, ensuring that any flow asymmetries 

observed for viscoelastic fluid flow (see discussion below) are 

not due to imperfections in the channels. The flow behaviour 

observed for the viscoelastic fluids is far more complex than 

that found for the Newtonian fluid. For all viscoelastic fluids 

investigated, we observed that viscoelasticity can lead to the 

onset of different types of purely elastic instabilities, 

depending on the rheological properties of the fluids. For 

some viscoelastic fluids, such as PAA100+90%Glyc, only one 

type of elastic instability was observed at high flow rates, in 

which there is a direct transition from symmetric steady flow 

to unsteady flow above a critical Weissenberg number, here 

defined as / ( / 2)λ= cWi U w . Note that due to the fact that the 

flow in the cross-slot device is strongly extensional, in the 

definition of Wi we use the relaxation time measured in 

extensional flow using the CaBER
TM

1 extensional rheometer. 

For other fluids, such as PAA300+50%Glyc, two flow transitions 

are observed, the first one in which the flow becomes 

asymmetric, but remains steady (cf. Fig. 3bii) and a second one 

for higher Wi in which the flow becomes unsteady, as 

illustrated in Fig. 3biii. For viscoelastic fluids, the type of flow 

transitions depend also on the aspect ratio of the cross-slot, 

and this was investigated using the PAA300+50%Glyc fluid. For 

the highest aspect ratios investigated (AR = 1 and 1.6), the flow 

is steady symmetric at low Weissenberg numbers (cf. Fig. 3bi). 

When Wi is increased, the flow becomes steady asymmetric 

within an intermediate range of Wi as shown in Fig. (3bii). This 

phenomenon, also observed in the experimental and 

numerical works of Arratia et al.
8
 and Poole et al.,

23
 

respectively, is here described as the first purely elastic 

instability. The term purely elastic stems from the fact that the 

Reynolds numbers are small, hence inertial effects are 

negligible and the instabilities are a consequence of elastic 

effects alone. In agreement with the numerical results 

obtained by Poole et al.,
9
 the effect of inertia on the instability 

is negligible as found when comparing a creeping flow (Re = 0) 

with a low-Re flow (Re < 1 approximately). When the flow is 

steady asymmetric, a lip vortex is also observed in each inlet 

channel just upstream of the corners (supplementary movie). 

The formation of lip vortices close to re-entrant corners has 

also been extensively investigated in contraction flows
34-36

 and 

in  flows in sharp 90 degree micro-bends.
37

 Further increasing 

the flow rate above a second critical Wi value, the flow 

exhibits a second purely elastic instability, becoming time-

dependent (cf. Fig. 3biii and supplementary movie). For low AR 

(AR = 0.5), the viscoelastic fluid flow is steady and symmetric 

at low flow rates, with small lip vortices appearing upstream of 

the four corners. When the flow rate (or Wi) is increased, the 

lip vortices grow and the flow patterns change directly from a 

steady symmetric condition to an unsteady state. To 

summarize, Fig. 4 shows a map of the flow patterns identified 

for the PAA300+50%Glyc fluid flowing in the cross-slot device 

and their location on the H − Wi parameter space. 
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(a) Newtonian fluid  

                                  
  

 

(b) Viscoelastic fluid   

 
Fig. 3 Flow patterns in the cross-slot geometry with AR = 1.0. (a) Newtonian fluid flow. (b) PAA300+50%Glyc viscoelastic fluid: (i) Newtonian-like symmetric flow behaviour, (ii) 

steady asymmetric flow, (iii) time-dependent flow (illustrative flow field at a given instant of the oscillation cycle). 

We use a normalized aspect ratio H,
 

defined as 

H  ≡ h / (h + w) = AR / (AR + 1),
23

 which varies in the range 

between H = 0 (for AR→0 corresponding to the Hele-Shaw 

flow limit) and H = 1 (for AR→ ∞ corresponding to the two-

dimensional flow limit). The range of Reynolds numbers 

attained for each aspect ratio investigated are also given in Fig. 

4 to highlight the negligible effect of inertia on the viscoelastic 

fluid flow. The flow patterns reported in the map of Fig. 4 were 

identified in three different regions: (I) symmetric flow; (II) 

steady asymmetric flow (first purely elastic instability); and (III) 

time-dependent flow (second purely elastic flow instability). 

For the time-dependent regime, we show three images to 

illustrate the oscillatory nature of the flow. It should be noted 

that Region III can be reached from Region II or directly from 

Region I by increasing Wi, through a purely elastic instability of 

the second type. The different flow behaviour depends on the 

channel aspect ratio. For AR ≥  1 (H ≥ 0.5), the first elastic 

instability is observed, whereas for lower AR (H = 0.34) the 

steady asymmetric flow regime does not appear. The bounding 

walls (z = ±h/2) have a stabilizing effect, since the decrease in 

channel depth (or AR) increases the wall influence via 

enhanced shear stresses thus reducing the influence of 

extensional effects. In addition, for the higher AR investigated, 

corresponding to H = 0.50 and 0.61, the critical Wi at which 

the two flow transitions occur seems not to depend 

significantly on the channel aspect ratio. In contrast, the 

numerical predictions of Poole et al.
23

 showed that the second 

elastic instability appears at gradually smaller Wi as the AR is 

decreased and the Hele-Shaw flow is approached (H→0), but 

in their case a UCM model was used in the simulations. Such 

model cannot predict the shear-thinning of the viscosity and of 

the relaxation time observed with the fluids used in this work. 

 

Another motivation of this work was to understand why the 

first elastic instability sets in only for some viscoelastic fluids, 

whereas for other viscoelastic fluids the transition occurs 

directly to time-dependent flow independently of the channel 

AR. For that purpose, we considered all the PAA solutions 

described in Table 1, which have significantly different solvent 

viscosity ratios and different elasticity levels. The plot in Fig. 

5(a) indicates the presence or absence of the first instability in 

a map of viscosity ratio and Elasticity number for all PAA 

solutions tested and AR = 1.0. 
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(a) 

 

 

 
I – symmetric flow 

II – steady asymmetric flow 

III – time-dependent flow 

 

(b) 

  

 

 

 

 

H = 0.34 

Wi = 9.66  

Re = 0.0096 

 

 

 

H = 0.61 

Wi = 3.19  

Re = 0.0019 

 

 

 

H = 0.61 

Wi = 19.1 

Re = 0.026 

Fig. 4 (a) Flow pattern map. (b) The images obtained using the PAA300+50%Glyc fluid (β = 0.0022) illustrate the flow patterns in the three regions of the map. From top to bottom: 

(I) Newtonian-like or symmetric flow; (II) steady asymmetric flow; (III) time-dependent flow (three instants are shown).  The dashed lines in the flow pattern map are simply a 

guide to the eye of the expected separation between the three types of flow. The Reynolds number varies in the following ranges: 8.8×10
-4 ≤ Re ≤ 1.30 for H = 0.34; 

2.9×10
-6 ≤ Re ≤ 9.36×10

-2 
 for H = 0.50; and 1.5×10

-6 ≤ Re ≤ 8.3×10
-2 

 for H = 0.61. 

The Elasticity number is defined as El = Wi/Re0 = 2λcη0/(ρw
2
) 

and is independent of the flow rate. As shown, the rheological 

parameter that has a major influence on the onset of the first 

purely elastic instability is the solvent viscosity ratio. 

Viscoelastic fluids with .0 05β <
%%%%

 (more concentrated polymer 

solutions) experience a first transition through a steady 

asymmetric flow, whereas for the fluids with larger β, the flow 

changes directly from Newtonian-like to time-dependent flow 

above a critical Wi. Experiments using the two PEO solutions 

were also carried out. The flow visualization results are not 

shown here for conciseness, but the corresponding Wi-β map 

is qualitatively similar to Fig. 5(b), with the more concentrated 

solution (lower β) showing the onset of the first and second 

instabilities at ≈ 2Wi and ≈ 100Wi , respectively, whereas for 

the dilute solution (higher β), the flow changes directly from 

Newtonian-like to unsteady flow at ≈ 50Wi . The types of flow 

transitions are identical for both PAA and PEO polymer 

solutions, but occur at different values of Wi for each β.  

It is important to note that the critical Wi values for the onset 

of the first elastic instability observed with the PAA solutions 

are lower than 1 [c.f. Fig. 5(b)], especially for the more 

concentrated solutions, and it may argued that elastic effects 

are unimportant because under these conditions the polymer 

molecules remain coiled. However, the CaBER relaxation 

times, used in the calculation of Wi, are probably 

underestimated. We also calculated the shear relaxation times 

estimated from the rheological oscillatory shear data (

0ω
λ ω

→
′ ′′= lim ( / )s G G , where G’ and G’’ are the storage and loss 

moduli, and ω  is the angular frequency of oscillation) and we 

found that the extensional relaxation times are all significantly 

lower than these shear relaxation times, and also those that 

can be computed from the N1 data illustrated in Figure 1. 

Similar results were obtained by Arnolds et al.
38

 for PEO 

solutions, in which the authors also found that the ratio 

between the extensional and shear relaxation times decreases 

significantly with increasing concentration or molecular weight 

of polymer. Nevertheless, instead of using a relaxation time 

determined from a shear flow, which leads to critical Wi values 

above 1, we opted to use the extensional relaxation times 

because the flow in the cross-slot device is strongly 

extensional.  

The onset of steady asymmetric flow seems to be related with 

the compressive flow near the cross-slot centre generated by 

the two inlet channels.
9
 The collision of the inlet streams 

generates opposite normal forces, the resulting momentum 

decreases near the stagnation point and, due to continuity, the 
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Fig. 5 (a) Solvent viscosity ratio β as a function of Elasticity number for the PAA solutions used. The circles represent the cases for which we did not observe the first purely elastic 

instability and the flow changes directly from steady symmetric to time-dependent above a critical Wi. The viscoelastic fluids which showed the occurrence of the two types of 

elastic instabilities are represented by the squares. The dashed line provides a guide to the eye separating the type of elastic instabilities in the β-El map. (b) Classification of the 

flow field for different Wi for all viscoelastic fluids tested, each one corresponding to constant solvent viscosity ratio. The channel aspect ratio is AR = 1.0. 

fluid is pushed towards the corners triggering the onset of a 

flow asymmetry.
9
 According to McKinley and co- workers,

6,7
 

the dimensionless criterion that must be exceeded for the 

onset of purely elastic flow instabilities can be expressed as

211
crit

λ τ
ηγ

 
≥ 

 R &&&&

U
M , where R is the local radius of curvature, U the 

local streamwise velocity, 11τ the streamwise tensile stress and

γ&&&&  the local shear rate. Hence, an increase of the normal 

stresses, combined with small streamline radii of curvature 

and high streamwise velocities
 
meets the criterion for the 

appearance of the elastic instability. As the aspect ratio of the 

channel decreases, the critical region moves towards the 

corners of the geometry, where the streamwise velocity and 

shear rate increase,
23

 high tensile stresses develop and the 

radius of curvature is small. In this case, the fluid experiences 

the onset of the second type of elastic instability whereas the 

asymmetric flow does not occur which is primarily driven by 

the strong extensional flow at the cross-slot centre. 

Conclusions 

A range of viscoelastic fluids and a reference Newtonian fluid 

were used to study experimentally the extensional flow in a 

cross-slot micro-geometry, focusing on the onset of elastic 

instabilities under negligible inertial flow conditions. The 

experimental results suggest that the solvent viscosity ratio is 

a key parameter for the observation of the steady asymmetric 

flow instability. For .0 05β >
%%%%

, only one type of purely elastic 

instability is observed, whereby the flow transitions from a 

steady symmetric regime to a time-dependent flow. In 

contrast, for more concentrated polymer solutions ( . )0 05β <
%%%%

another type of instability was identified, in which the flow 

becomes asymmetric, but remains steady. For these fluids, the 

microchannel aspect ratio was shown to play also an 

important role in determining the flow transitions. The 

experimental results show that the channel bounding walls 

have a stabilizing effect, and for small channel aspect ratios 

(AR ≤ 0.5) the steady flow asymmetry is supressed and the 

flow changes directly from a steady and symmetric condition 

to an unsteady state at higher Wi. Increasing the aspect ratio 

of the channels reduces shear effects and leads to a stronger 

extensional flow as Wi is increased, and the flow becomes 

steady and asymmetric (first purely elastic instability) within 

an intermediate range of Wi, while remaining symmetric and 

steady for low Wi as long β is small. Increasing further the flow 

rate, above a second critical Wi, a second type of instability 

was observed in which the flow becomes unsteady. 
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