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Coarse-grained models have already been entertained in the

last few years such as the elastic filament model8 and a cross-

linked polymer model13; in the latter, a multiply-looped chain

via cross-linking is connected to a linear one to form a ring.

Each model has both merits and limitations. In terms of com-

plexity, our polymer model is an intermediate one. For this rea-

son, it accomplishes what others may not. Our polymer model

can be examined in a wide parameter space, while containing

the essential details: chain connectivity, excluded-volume inter-

actions between chain segments, and symmetrical vs. asymmetri-

cal organization as well as a packing uncertainty assumed in our

fluctuating-boundary picture. An emerging picture from this con-

sideration is consistent with our view that the necessity of cross-

linking varies with the parameter choices. Using our model, we

map out a detailed physical picture of how chromosome-like or-

ganization is achieved by a confined polymer.

This paper is organized as follows: we outlines the simulation

procedure in Sec. 2 and introduce a coarse-grained model of the

E. coli chromosome in Sec. 3. We present and discuss our results

in Sec. 4.

2 Simulation Methods

In our molecular dynamics simulations, the bead-spring model is

used for an asymmetrical or copolymer ring, consisting of two

types of beads or monomers: “big” and “small.” The interaction

between two beads, a distance r apart, is described by Weeks-

Chandler-Anderson (WCA) potential23,24:

UWCA(r) =
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Here ε and σi j represent the strength and range of the WCA po-

tential, respectively. The subscripts i and j (= 1,2) are used to

refer to big and small beads: σ1 = σ11, σ2 = σ22, and σ12 = σ21 =

(σ1 +σ2)/2. If we choose σ2 =
1
4

σ1, then σ12 = σ21 =
5
8

σ1.

The interaction of monomers with the confining wall can be

specified similarly. Here we assume that the wall is made of imag-

inary beads, which are the same kind as big monomers. (For

physics grounds, one can argue that the choice of beads for the

wall is not so critical.) As a monomer (big or small) touches the

wall, it would be repelled as if there were an “image” bead of size

σ1.

Chain connectivity is ensured by the finite extensible nonlinear

elastic (FENE) potential25 between two consecutive monomers of

the same kind or different kind
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where ki j = k0

(

σ/σi j

)2
is the spring constant, r0

i j = r0

(

σi j/σ
)

is

the range of the potential. (Recall i or j refers to the monomer

type: big or small.) In our simulations, k0 = 30.0ε/σ2 and r0 =

1.5σ . Note here that σ is used as length units. For a homogenous

polymer, it is customary to set σ to the monomer size.

The velocity Verlet method is used to integrate Newton’s equa-

tion of motion. If m is the mass of a particle subject to the WCA

potential, τ0 = σ
√

m/ε can be used as the unit of time. Let m1 and

m2 be the mass of big and small monomers, respectively. In our

simulations, we set m = m1 and let time advance with a discrete

time step δ t = 0.0002τ0. Langevin thermostat is used with the

damping constant 0.1τ−1
0

to keep the temperature at T = 1.0ε/kB,

where kB is Boltzmann constant. †

Here we explore a few variations of a polymer chromosome

model. First, we trap an asymmetrical ring in a concentric-shell

cylinder, as shown in Fig. 1. The concentric-shell cylinder consists

of an inner cylinder (core region) surrounded with a peripheral

region bounded by an outer concentric shell. Its geometry is fully

specified in terms of four parameters: Din, Dout, Lin, and Lout,

ı.e., the diameters and lengths of the inner and outer cylinders,

respectively. On the other hand, the asymmetrical ring can be

viewed as being made of two linear homogeneous “subchains”

with the two ends of one chain connected to those of the other so

as to form a ring; if the big-monomer subchain or the “body chain”

carries N1 monomers, the other one or the “crossing chain” con-

sists of N2 small monomers. It is assumed that the big monomers

are confined to the inner cylinder or the core region and small

ones can be anywhere inside the outer cylindrical shell.

As a variation, we also consider a ring polymer with a varying

degree of asymmetry in a simple cylindrical space (ı.e, Lout = Lin

and Dout = Din). Unless the polymer is sufficiently asymmetrical,

however, the ring polymer rotates along its contour. For a global

organization, we use an external mechanism and connect the two

ends of the body chain at the cylinder pole via a molecular spring,

characterized by a harmonic potential U = 1
2

K (z− z0)
2, where K

is a spring constant and z is the position of the end monomer

attached at z0 at the cylinder end.

Initially, the polymer ring is confined with the two subchains

arranged in parallel in a cylinder with open ends and is almost

fully stretched along its long axis. We then equilibrate the ring

for more than 107 time steps. After equilibration, the cylinder is

closed with pistons and the polymer is compressed gradually over

107 time steps by moving the piston inward until the piston-piston

distance reaches a designated value ∼ Lin. The system is allowed

to equilibrate from its initial condition. This two-step procedure

for chain equilibration is desired for our much compressed poly-

mer, since it ensures that the initial state is free from unfavorable

entanglement or kinetic trapping. It would not, however, influ-

ence equilibrium quantities. After this initial preparation, we per-

form the simulation run for 2× 109 time steps and obtain data

every 2000 time steps. All simulations are repeated for eight dif-

ferent initial chain conformations randomly chosen. To obtain an

ensemble average of any relevant quantity, we first take its time

average for a given initial state and then obtain an average over

all realizations of the initial state randomly chosen.

We use σ defined below Eq. 2 and m1 as units of lengths and

mass in our system, respectively; in most cases considered in this

work, σ1 will be chosen to be σ .

† The choice of the damping constant is not so crucial, since we focus on equilibrium

quantities. It is more crucial for dynamics 26.
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3 Modeling the nucleoid

First, we introduce a coarse-grained model of the E. coli chro-

mosome based on the known results: the circular chromosome

is negatively supercoiled into topologically-independent domains

or structural units, tightly packed in part by molecular crowd-

ing inside an overall-cylindrical space, ı.e., the nucleoid20,27–29

(see Ref.24 for recent numerical and theoretical efforts). The

structural units and their boundaries are highly dynamic20. Be-

yond this general picture, however, the details vary from refer-

ence to reference20,27–30. Early studies suggest that each domain

or structural unit of the chromosome consists of about tens of

thousand base pairs of DNA20,27,28. As a result, the chromosome

carries 100-500 structural units of size ∼ 100nm each. More recent

studies suggest that the number of structural units is in the range

15-65 (per chromosome) with the size of each in the range 130 to

440nm14,29.

This degree of variance is not surprising, considering that the

structural unit is rather a conceptual entity; there is no clear-cut

boundary between the two neighboring units or domains. It is

essentially set by the collective action of various chromosome-

associated proteins, especially supercoiling/cross-linking ones.

Separating length scales in terms of protein action may not neces-

sarily be unique. For instance, see Ref.29 for a recent attempt, in

which the structural unit was interpreted as a length scale, inside

which the effect of cross-linking is not explicitly felt. ‡

The dimensions of E. coli cells/nucleoids and the global orga-

nization of the chromosome vary with growth conditions and cell

ages. As noted earlier, the chromosome resembles a donut (or

a branched donut)14 under fast-growth rates or a sausage with

a stretch connecting its ends under slow-growth rates5–7. New

born-cells under slow-growth rates contain single sausage-like

chromosomes; about 90% of the chromosome forms the body and

the rest makes up the crossing region, as illustrated in Fig. 1. The

measured nucleoid dimensions range from 1.64 µm×0.48 µm31 to

1.8 µm×0.8 µm32. These deviate somewhat from the earlier mea-

surement27: 1.39 µm× 0.24 µm (this length is somewhat smaller

than the population average 1.9 µm18). Fast-growing cells are

somewhat larger14 but otherwise their sizes fall in similar ranges.

While various nucleoid-associated proteins are known in the

literature18,30, the precise mechanism of chromosome organiza-

tion is still elusive. For instance, the physical effects the local

action of proteins brings about have not been well understood

at the quantitative level (see for instance Refs.18,30). In our

approach, they are coarse-grained into a few cylinder-polymer

parameters (e.g., ring asymmetry). In particular, the structural

units, which are topologically constrained, are approximated as

repelling monomers of size σ1 each (defined in Sec. 2). We

then employ a few variations of a confined-polymer model for

exploring how the E. coli chromosome is spatially organized: (i)

an asymmetric ring polymer formed by small monomers on one

side and large ones on the other, confined (but otherwise free) in

‡ A more traditional view of a domain or a structural unit is ‘the region relaxed by an

interruption in the DNA’ 20. Similarly, in our picture, the effect of cross-linking does

not propagate beyond a domain.

a concentric-shell cylinder (see Fig. 1), (ii) an asymmetric ring

chain with the two big end monomers fixed at the two ends

(poles) of a simple cylinder via molecular springs, and (iii) an

asymmetric ring with a varying degree of symmetry in a sim-

ple cylinder (this includes a symmetric chain as a special case)

without any cylinder-wall attachment. Note however that we pri-

marily use model (i) and employ others for comparison purposes.

Finally, we choose σ1 in this model as length units and set σ1 to

σ , which is introduced below Eq. 2.

For the asymmetric case in a concentric-shell cylinder (model

(i)), we choose Din = 7, Dout = 8, and Lin = 28 (4:1) in units of

σ , where (...) is the corresponding aspect ratio. Here and be-

low, we measure lengths in units of σ and mass in units of m

described in Sec. 2, unless otherwise stated. As for the num-

ber of big monomers N1, we try a set of acceptable values:

N1 = {80,120,160,200, ...,440}. For Lin = 28 and N1 = 200, the

volume fraction of monomers is about 0.1 or 10%.

On the other hand, the crossing region constitutes about 9%

of the chromosome or contains about 460K base pairs8. This

loosely-packed DNA stretch connects two ends of the body a few

micrometers apart. The persistence length of double-stranded

DNA is about 150 base pairs (50nm). If we consider 300 base

pair (100nm) equivalents as Kuhn lengths and the crossing re-

gion as a freely-joined chain with self-avoidance, we are tempted

to choose N2 = 1800. Considering that these 100nm subunits

experience four-fold compation by supercoiling, the diameter of

small monomers mimicking the crossing region is set to σ2 = 1/4.

The mass of monomers in the crossing region is chosen to be

m2 = 0.015, which is determined by comparing the mass of 150

base pairs of DNA and the sphere of diameter 1/4. (As it turns

out, however, the parameter choices for the crossing region is not

very important, because the spatial distribution of big monomers

is not so sensitive to the crossing region.)

Our parameter choices for model (ii) are similar to those for

model (i), because of the similarity between the two models. Ex-

cept for the simple-cylinder geometry used in model (ii), they

are essentially identical to those for model (i) with the aspect ra-

tio 4:1. As a result, Din = Dout = 7, Lin = Lout = 28, N2 = 1800,

m2 = 0.015 and σ2 = 1/4. In addition, the two ends of the body

chain are attached to the cylinder ends (poles) through molec-

ular springs characterized by a spring constant K. We choose

K = {0.1,1.0} (in units of ε/σ2) such that the energy needed

to randomize the parallel orientation of the ring is ≈ 10kBT for

K = 0.1 and ≈ 100kBT for K = 1.0. Furthermore, we use two dif-

ferent choices of σ1: σ = 1,2 (in units of σ introduced in Sec. 2).

We then choose N1 = 200 for σ1 = 1 and N1 = {20,25,30} for

σ1 = 2.

In models (i) and (ii), concentric-shell confinement or an

external constraint is required for the proper orientation of a

ring polymer. In model (iii), this complexity is removed. In-

stead, we examine to what extent the global organization is ac-

complished through the interplay between ring asymmetry and

simple-cylindrical confinement. To this end, we use a range of

D = Din = Dout = {4,5,6}, and the length is L = Lin = Lout =

{30,50,∞}. Also, the size of big monomers is varied as σ1 =

{1.0,1.1, · · · ,2.5}, while the size of small monomers is fixed at

4 | 1–16
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σ2 = 1. The mass of all monomers is m1 = m2 = 1 (in units of m),

regardless of the diameter of the monomers. Our choices include

σ1 = 1.0 and σ1 ≥ D/2 as special cases: if the former represents a

symmetric ring, the latter ensures that chain back-folding is for-

bidden.

4 Spatial organization of a model nucleoid

In this section, we first employ model (i), ı.e., an asymmetric ring

polymer or a diblock copolymer ring in a concentric shell cylinder,

and examine how it is spatially organized. We then contrast it

with other models.

4.1 Spatial distributions of loci in the body

We first test our polymer model (i) against the known distribu-

tions of several loci: oriC, C4, lac, A11, and E10, chosen from

Ref.8 (see Figs. 2 and 4 in Ref.8 as well as our Figs. 1 and 2). §

What is relevant to our modeling is their genomic position with

reference to oriC. Their genomic positions in units of the total ge-

nomic length are about 7%, 23%, 34%, and 73% (or −27%) for

C4, lac, A11, and E10, respectively. ¶ The corresponding contour

position in our polymer model should reflect the varying packing

level between the body and the crossing region, as discussed in

the last section. The success of our modeling depends in part on

how we choose the parameters. For this model, we have chosen

the parameters N1 = 200, N2 = 1800, Lin = 28, Lout = 31, Din = 7,

and Dout = 8. As a result, the expect ratio of the inner cylinder is

4:1.

The graph in Fig. 2(a) shows the resulting spatial distributions

of oriC, A11, and E10 in the body (solid lines with symbols) as

well as Gaussian fits to them (dashed lines). Except for its long

decaying tail, the distribution of oriC is essentially Gaussian. On

the other hand, the distribution of the other two loci (E10 and

A11) is somewhat asymmetrical, since they experience the asym-

metric confinement from the cylinder poles. Similarly to the dis-

tribution of oriC, the other distributions also have a long-decaying

tail but on one side of the peak. Excluding the long-decaying tail,

the results in Fig. 2(a) are nearly the same as those reported in

Ref.8 in all respects: the location and width (∼ 10% of cell length)

of their peak as well as the distortion of an otherwise Gaussian

distribution near the end of the cell.

What is the origin of the long-decaying tail which is absent in

the observed chromosome locus distribution? Conversely speak-

ing, what biological effects diminish the long-decaying tail in an

otherwise polymer-like object? Cross-linking is an obvious choice.

Some DNA-bound proteins (e.g., MukB and H-NS) cross-link two

segments (see Ref.29,30 and references therein). Such topologi-

cal constraints freeze some of the positional fluctuations of seg-

ments, and can influence the locus distribution. As a result, the

long-decaying tail will be suppressed more effectively than the

§ Refer to the Supporting Information of Ref. 8 for the locus labeling scheme and for

the details of the E. coli strains (IL01t, IL05, and IL06) used for chromosome-locus

measurements.

¶ We estimated the genomic positions of these loci against the MG1655 E. coli

genome sequence (4641652 base-pair long) by using the information in Ref. 8 and

http://www.ecogene.org.

peak-proximate part of the distribution, because of a higher free

energy cost for the long-tail fluctuation or the positional fluctua-

tion of loci that contributes to the long tail of locus distributions.

The Gaussian fitting suppresses this unfavorable fluctuation, sim-

ilarly to what we would expect from cross-linking. See below in

this subsection for additional discussions.

According to our results in Fig. 2(a), it appears that the proper

positioning (∼ 10% of cell length), especially of oriC at midcell,

would not require an external mechanism. With our parameter

choices, the effect of cross-linking is rather quantitative and can

be mimicked by suppressing the long-decaying tail of locus distri-

butions. (Note cross-linking between proximate segments along

the contour is already absorbed into monomers.) The physical

effects arising from concentric-shell confinement and excluded

volume interactions suffice. This does not, however, exclude the

possibility of an external mechanism such as attachment of DNA

segments to the cell surface. What remains unclear is the molecu-

lar origin of concentric-shell confinement, which can be clarified

in future work.

Fig. 2(b) shows the distribution of inter-locus distances of two

loci from oriC: C4 and lac, also chosen from Ref.8. Similarly to the

single-locus distributions in Fig. 2(a), the inter-locus distribution

(curve with filled symbols) also displays a long-decaying tail. The

dashed line is a Gaussian fit to the original distribution. In par-

allel with what was observed with single-locus distributions, the

Gaussian-fit distribution appears to be more chromosome-like8.

Also superimposed are the distributions of inter-locus distances

defined as the ‘farthermost distances’33. Consider a subchain con-

sisting of monomers i, i+1, ..., j, as illustrated on the top right cor-

ner of Fig. 2. If zi j = |zi − z j| is the original (end-to-end) distance

of this subchain (in the longitudinal direction), z̄i j represents the

farthermost distance. Alternatively, imagine enclosing it with an

imaginary tube. The length of the tube coincides with z̄i j. Intrigu-

ingly, the resulting distribution is in good qualitative agreement

with the Gaussian fit, in the sense that the long-decaying tail is

suppressed. The only difference is that the farthermost-distance

distribution is somewhat narrower and its peak is a bit shifted to

the right. For the reason discussed below, we favor the inter-locus

distribution based on the farthermost distance.

Of related interest are the variances of the locus positions in

the body: both single-locus and inter-locus variances as a func-

tion of the genomic distance from oriC in units of the body-chain

length (see the illustration on the top left corner in Fig. 2 for the

sign convention for the genomic distance from oriC). A natural

way to estimate a single-locus variance is to use the Gaussian-fit

function rather than the original distribution. Note that this will

merely improve a quantitative agreement between our estimates

and the chromosome data8 by suppressing the long-decaying tail

of the distribution (see the Appendix for additional details). The

resulting locus variances are represented by the red (single-locus)

and blue (inter-locus) line with filled symbols in Fig. 2(c).

However, we note that this method for calculating inter-locus

variances is rather tedious though systematic. Furthermore, the

results in Fig. 2(b) suggest that the original inter-locus distances

can be coarse-grained into the farthermost distances. Also shown

Fig. 2(c) is the inter-locus variance based on the farthermost-

6 | 1–16
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distance distribution.

To further test our analysis, we have obtained locus variances

using a constrained asymmetric ring polymer in a simple cylinder

or model (ii) for N = 25 and σ1 = 2σ (so as to keep the volume

fraction of monomers unchanged) and presented the results in

the Appendix. Recall that this choice falls in the acceptable range

for the E. coli chromosome. The resulting “bare” variances com-

pares favorably with the results in Fig. 2(c). In particular, the

inter-locus variance appears to agree better with the farthermost-

distance variance than with the one based on a Gaussian ap-

proximation. Accordingly, we favor the farthermost inter-locus

variance and use it below as a representative one, unless other-

wise stated. Importantly, this extra consideration validates our

intuition: choosing bigger monomers is equivalent to subsum-

ing more details (e.g., cross-linking) into each monomer, as also

noted in Ref.19. This is consistent with our view that the degree

with which cross-linking alters locus distributions varies with the

parameter choices.

The results for the single-locus variances in Fig. 2 agree well

with the chromosome data in Ref.8. In particular, the width of

the single-locus distribution or the standard deviation of the lo-

cus position, estimated to be ≈ 0.09Lin, is essentially identical to

the experimental finding. Also the inter-locus variance relative to

oriC (the blue solid line with filled or open symbols) is initially

V-shaped but decreases or becomes flat toward the body ends,

because of the pole-confinement effect they experience, similarly

to what we expect from a mechanical-spring analogy (with the

two ends held fixed) and in accord with Ref.8. The difference

between the two sets of inter-locus variances can be attributed

to the way they are coarse-grained into chromosome-like ones –

so as to mimic the effect of cross-linking as discussed earlier. Be-

cause of the uncertainties in locus measurements8 (see the Sup-

porting Information), further clarification of our polymer model

would necessitate more accurate data for locus variances.

The good agreement between our results and experimental

data8 is rather unexpected in light of a recent computational ap-

proach, in which the significance of cross-linking is highlighted13.

As noted recently19, however, some discrepancy between poly-

mer models is only deceptive one. Also as noted above, the extent

to which cross-linking modifies variances depends on the param-

eter choices.

Why is an overall rotation of the ring polymer along its contour

discouraged in model (i) (in the absence of an external mech-

anism), as implied by our results in Fig. 2? For the parameter

choices relevant for E. coli, a linear chain in a cylindrical space is

linearly organized (see Ref.19 and references therein). It is thus

unlikely that the chain is reoriented with the two ends switched in

the opposite directions. This picture does not necessarily applies

to a ring polymer. In our view, the global organization in model

(i) is a combined effect of the nucleoid (concentric-shell) geom-

etry and the asymmetrical-ring nature. Unlike a linear chain, a

symmetrical ring can rotate along its contour in a “simple” cylin-

drical space with no free energy cost, because of its symmetry. In

contrast, the rotatability of an asymmetrical ring depends on the

ratio σ1/σ2 as well as D, among others. In the limit of σ1/σ2 ≫ 1

and σ1 → D, rotation is discouraged. In this case, the free energy

cost for overlapping sections of the body chain into a “hairpin”15

disfavors a rotation of the ring.

For the values of D, σi, and Ni (i = 1,2) relevant for the E. coli

chromosome, however, the asymmetrical ring can rotate in a sim-

ple cylinder but not necessarily in the concentric shell (see Fig. 6).

When the body chain is localized in the inner cylinder, the cross-

ing chain is better excluded from the inner cylinder. As a result,

the linear organization of the body chain is better preserved in

the concentric-shell cylinder than in an equivalent simple cylin-

der. This is responsible for the observed global organization of

the ring polymer. As detailed in the next subsection, the choice of

N1 is also implicated in the overall orientation of the ring.

As mentioned earlier, our results do not necessarily exclude

the possibility of an external mechanism for nucleoid positioning.

They rather imply that an external or internal constraint would be

required for the precise single-locus positioning of a symmetrical

ring (donut-shape chromosome). For instance, the donut-shape

chromosome in Caulobacter crescentus is known to be anchored

to the cell wall at ParS sites11.

4.2 Partitioning of subchains

A recent experimental study suggests that the terminal region re-

sides preferentially in the peripheral region of the nucleoid10.

To test our model against this observation, we have calculated

monomer distributions and plotted our results in Fig. 3. In all

graphs, tangerine is used for the body chain and green for the

crossing chain. We first use model (i) with the same parameters

used in Fig. 2 (e.g., N1 = 200). Fig. 3(a) shows the resulting vol-

ume fraction of monomers in the radial (r) and longitudinal (z)

directions, as illustrated on the top. This graph suggests that the

two subchains are partitioned in a parallel orientation with the

crossing chain residing preferentially in the peripheral region and

its two ends localized at the poles, similarly to what is known

about the asymmetric E. coli chromosome10. Linear organization

of the body along the long axis of the cylinder (Fig. 2) means that

on average it fills the inner cylinder uniformly and crowds out the

crossing chain, leading to the observed sub-chain organization in

Fig. 3(a).

What is less clear is the biological basis of the concentric-shell

cylinder model. But the consequence is obvious. In the corre-

sponding simple-cylinder model referred to as model (ii) (see the

illustration on the top panel in Fig. 3(b)), in which the body-

chain ends are attached to the cylinder poles, the general trend

observed with the concentric-shell cylinder model is somewhat

reversed, as shown in Fig. 3(b). The body chain tends to be ex-

cluded from the central part of the cylinder, where the crossing

chain preferentially resides. This can be understood based on the

following physical picture. First, ignore the crossing chain. The

big monomers will be distributed so as to maximize the entropy

(energy is irrelevant in an athermal case as in our consideration

here). Earlier, it was shown that monomers in a confined space

show wall-layering, ı.e., leading to their volume fraction peaked

near the cylinder wall33, as seen in the results in Fig. 3(b).

While the general picture in Fig. 3 is relevant for the asym-

metric E. coli chromosome (from a slowly-growing cell), it should

1–16 | 7
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not be over-interpreted. For the symmetric-ring chromosome (un-

der fast-growth conditions), there is now much evidence that the

two arms or subchains of the ring are well-separated in the ra-

dial direction14. This can be attributed to two complementary ef-

fects: excluded-volume repulsion between the two subchains and

crowding effects14,29; the crowding effect can induce a depletion

force not only between two monomers and but also between a

monomer and the cylinder wall. A recent study shows that under

certain conditions, the latter dominates, leading to cylinder-wall

adsorption of chain segments and a separation of the two oppos-

ing arms34.

4.3 The parameter N1 - how to choose

The parameter choices have so far been motivated by the exist-

ing E. coli data. Nevertheless, the parameter N1 (or the number

of structural units) is more variable than others. (In this subsec-

tion, we drop the subscript 1.) To understand how crucial the

choice of N is, we have calculated and plotted locus-variances

for a sizable range of N values and the mean internal distance
〈(

zi − z j

)2 〉1/2
in Fig. 4(a)(b) and Fig. 4(c), respectively. For the

reason described above, we have obtained single-locus variances

using Gaussian-fit approximations and inter-locus ones using the

farthermost-distance distributions. On the dashed horizontal line

in (a), the accuracy or standard deviation of locus positions is

0.09 = 9%, as seen with E. coli chromosomes8; the dashed hori-

zontal line in (c) is to denote the value of Din = 7. Different colors

correspond to different N values and the color scheme is the same

in all graphs in Fig. 4. (The illustration on the top left corner in-

cludes the sign convention for the genomic distance from oriC.)

Let us first consider the locus variances as a function of the

genomic or contour distance in units of the body-chain length

in Fig. 4(a)(b). The difference between the small and large-N

cases, i.e., N < 200 and N ≥ 200, appears to be qualitative. While

the results for N ≥ 200 are chromosome-like, those obtained for

N < 200 deviate from what one would expect from chromosomes.

Notably, the effect of cylinder-end confinement is felt differently:

for large N, this effect tends to suppress single-locus variances,

as seen with a constrained mechanical spring with the two ends

held fixed. The results for large N (N = 200,240,280, ...) in both

(a) and (b) compare favorably with E. coli data8.

The large-N behavior of the locus variances in Fig. 4 is cor-

related with what the results in Fig. 2 suggest: the body chain

compressed longitudinally but remaining linearly organized (see

Fig. 4(c) for this), effectively crowding out the crossing chain

from the inner cylinder. As a result, the confined ring is glob-

ally organized with the two subchains in parallel. This explains

the main feature of the results in Fig. 4(a)(b) for (N ≥ 200), in

particular the decreasing tail of single-locus variances toward the

body-chain ends, preferentially localizing at the cylinder ends.

The maximum value of the single-locus variances is larger for

larger N as long as N ≥ 200, as shown in Fig. 4(a). This ob-

servation can be explained in terms of the N dependence of ζ‖,

the length scale beyond which a confined chain is linearly orga-

nized16. Within this length, the chain is disordered. The emer-

gence of this additional length is unique to the case of closed con-

finement or a compressed chain16. In this case, ζ‖ increases as N

increases. ‖ This is consistent with the observed N dependence of

single-locus variances for N ≥ 200. ∗∗

For small N, however, the crossing chain is less excluded from

the inner cylinder and mix better with the body chain. This can

lower the free energy cost for chain rotation, as if both subchains

were in the inner cylinder. This enhances the positional fluctua-

tion of monomers near the end of the body chain, which would

otherwise be confined to the pole region. As a result, the trend

observed with the large-N single-locus variance is reversed in this

case. This also explains the monotonically increasing inter-locus

variance for small N in Fig. 4(b). This drawback can be remedied

by attaching chain segments to the cylinder wall as discussed in

the Appendix. On the other hand, the inter-locus variances are

less sensitive to the degree of a global organization. This explains

why they change more or less uniformly with N, even though

there is still a noticeable difference between the two sets of data

(large N and small N).

4.4 Spatial Organization for the Crossing Region: fluctuat-

ing boundary model

We have further explored our model nucleoid and examined how

loci in the crossing region are spatially arranged along the long

axis of the cell. Less is, however, known about the crossing region

compared to the nucleoid body8,10. In this section, we content

ourselves by mapping out a few possible scenarios that can be

tested experimentally in the future. Nevertheless, we will attempt

to put this effort in a biological context and use our predictions

to understand quantitatively relevant biological data.

For this consideration, we use the concentric-shell cylinder

model (i). First, we have obtained and plotted in Fig. 5(a) the

locus distributions of three loci in the crossing region: 1/2 and

2/3 from ter in units of the genomic length of the crossing region

as well as ter itself, assumed to be located opposite oriC. We have

chosen N = 200 and the same cylinder parameters used in the pre-

vious subsections. As shown in the graph, the locus near the body

(2/3 from ter) tends to be at the cylinder end. On the other hand,

the locus ter has a broad distribution centered in the middle. The

middle one (1/2 from ter) seems to have a distribution that falls

between the other two.

However, these results are qualitatively different from the ex-

perimental data that indicate ‘M’-shape or double-peak distribu-

tions of ter or ter-proximate sites (see the Supporting Information

of Ref.8). In our original model, the boundary between the body

and the crossing region is fixed. We now relax this constraint and

introduce a “fluctuating-boundary” model, where the boundary

is defined with some precision (see the illustration on the top of

‖This trend will not be reversed by Gaussian-fit approximations or coarse-graining of

lengths through zi j → z̄i j .

∗∗The N-dependence of locus variances shown in Fig. 4 is not so conclusive for chro-

mosome organization, since cross-linking or other biological effects are implicated

in the latter case. These effects are only approximately captured in our results. In

particular, there is evidence that the bacterial chromosome is length-wise folded 35,

ı.e., proximate segments along the contour are more closely clustered. As discussed

recently 19, this can be considered as shortening ζ‖, more so for larger N.
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Fig. 5); the genomic position of the boundary is assumed to fol-

lows a Gaussian distribution with a standard deviation δ . When

δ = 3.3% is used, the distribution of the ter site in Fig. 5(b) be-

comes M-shaped, similarly to what was seen with the asymmetri-

cal E. coli chromosome8.

If taken together with our results in Fig. 5, the observation

of M-shaped distributions8 appears to be a result of molecu-

lar uncertainties in chromosome packing, as reflected in our

fluctuating-boundary model. This idea is in part (but not solely)

inspired by a recent experimental observation regarding DNA

replication in slowly-growing E. coli cells36. As illustrated on

the top of Fig. 5, the circular DNA in the cell is replicated bi-

directionally from the single replication origin oriC. It was shown

that replication in one direction (in the left replichore) proceeds

a bit faster, ı.e., by ∼ 7min36. Since replication and packing occur

concomitantly, this “asymmetry" between left and right replichore

replication can then lead to packing asymmetry as assumed in the

fluctuating-boundary model and as illustrated in Fig. 5. Consid-

ering the time for replicating the entire genome is ∼ 61min, this

difference translates into δ = 5.7% ††, which is comparable to

what we used.

A related (possibly complementary) point is the molecular

mechanism by which DNA replication ends. The terminus region

contains ten 23 bp ter sites: five on the left replichore and five

on the right replichore37,38. As the E. coli chromosome is repli-

cated bi-directionally from oriC, the two replicating forks proceed

in the opposite directions and meet about halfway from oriC in

the terminus region; replication stops there. More precisely, the

determination site falls between the two closest ter sites on the

opposite replichores, which are about 5.8% of the entire genome

apart37,38. This is comparable to 2δ we chose.

Because of the coarse-grained nature of our approach and bi-

ological uncertainties, especially about chromosome packing, the

value of δ is not to be taken too literally. Depending on how this is

taken into account, a ter-proximate locus can be localized at one

of the poles or elsewhere. To map out a general picture of how the

choice of δ influences ter distributions, we have obtained ter dis-

tributions with various choices of δ and plotted them in the graph

in Fig. 5(c). The appearance of an M or double-peak distribution

is obvious for δ ≈ 3%.

Despite some success in accounting for the distributions of ter-

proximate loci, our discussion in this subsection remains open for

further exploration. To the best of our knowledge, the mechanism

for packing the bacterial chromosome into the body and crossing

region has not been well understood4. A related observation is

that the boundary between structural domains is dynamic rather

than static20. How these uncertainties and stochasticity enter into

the picture is unclear. Further considerations along this line will

be desirable.

†† Recall how δ is defined in Fig. 5. This is the “width" of the Gaussian ter distribution

measured from the peak location.

4.5 Symmetrical vs. asymmetrical rings

So far, we have used a concentric-shell cylinder or an external

mechanism so as to partition the subchains properly for our pa-

rameter choices. For the typical parameters used in Fig. 2 and

Fig. 3, the asymmetrical ring tends to rotate along its contour

in a cell-mimicking simple cylinder, but not in a corresponding

concentric-shell cylinder. To further exploit our ring polymer

model and map out a more complete polymer picture of the nu-

cleoid, especially under different growth conditions, we have also

considered a ring polymer with a varying degree of ring asymme-

try trapped in a simple cylinder. In particular, we have examined

the necessity of an external mechanism for the global organiza-

tion of the confined polymer, e.g., oriC localized at midcell. To this

end, we have examined the degree with which the two subchains

are organized in a parallel orientation. It is measured in terms

of 〈λ 〉/Lring and the distribution of λ , where λ is the overlap dis-

tance between the two subchains, Lring is the average length of

the entire ring, as illustrated in Fig. 6, and 〈...〉 is an ensemble

average. Note that Lring is the maximum value that λ can take

on.

On physics grounds, the quantity 〈λ 〉/Lring is expected to

change from 1/2 (randomly organized or freely rotatable along

the contour) to 1 (perfectly aligned) with the standard devia-

tion varying from
√

1/12 to 0, as marked by the dashed lines

on the graph in Fig. 6(a). The graph clearly shows how ring

asymmetry influences subchain orientation. As σ1/D increases

(ı.e., the ring becomes more asymmetrical), parallel organiza-

tion becomes preferred: 〈λ 〉 → Lring. For this, we have chosen

σ1 = {1.0,1.1, · · · ,2.5}, as small as σ2 = 1 and as big as half of the

cylinder diameter, and D = 4,5,6 (all in units of σ introduced in

Sec. 2). Furthermore, N1 is chosen to be the biggest integer sat-

isfying (4/3)π (σ1/2)3
N1 ≤ (4/3)π (σ2/2)3

N2, while N2 is fixed at

100. As a result, some values of N1 turn out to be too small to rep-

resent the E. coli chromosome. Here our main focus is on extract-

ing general trends, regarding the global organization of rings, but

not on mimicking the chromosome. The meaning of this choice

is most obvious for L = ∞. In this case, the total volume fraction

of monomers remains almost constant, as σ1 or N1 varies, allow-

ing us to focus on the “shape" parameters. Additionally, for the

symmetric case of σ1 = σ2, N1 = N2.

The transition from the freely rotatable to parallel state occurs

at σ1/D ≈ 0.4-0.45. The main effect of longitudinal compression

(squares) appears to make the transition somewhat steeper, pos-

sibly by delaying the onset of the transition. With the typical pa-

rameter choices used in Figs. 2 and 3, the asymmetric ring rotates

in a simple cylinder, but not in a concentric cylinder.

Fig. 6(b) shows the probability distribution of λ for a few

choices of σ1 with σ2 = 1. The distribution for a freely rotatable

state would be uniform, as described by the red line obtained for

σ1 = σ2 = 1. The decaying tail of this curve at λ ≈ 40 can be

attributed to chain-end fluctuations. When the subchains are or-

ganized in parallel conformations, λ tends to Lring, resulting in

a narrower distribution, as is particularly the case for the blue

line obtained for σ1/D = 5/12; this curve corresponds to the blue

circle marked by an arrow in Fig. 6(a). Even for as small σ1 as
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Appendix

In the Appendix, we examine how much locus variances depend

on the way they are obtained, the model used, and the parameter

choices.

Fig. 8(a) shows both single-locus (red) and inter-locus (blue)

variances obtained with our concentric-shell cylinder model or

model (i) for Din = 7, Lin = 28, and N = N1 = 200. In this graph,

three sets of data are compared. The solid lines with filled sym-

bols are Gaussian-fit approximations and the solid line with open

symbols is based on the distribution of the farthermost distance

z̄i j; the dashed lines obtained without any of these approxima-

tions are plotted on the right axis. The consequence of using a

Gaussian fit or z̄i j is obvious: variances obtained this way are

smaller than the original ones (dashed lines). Which set of data

is the most chromosome-like?

The results in Fig. 4 suggest that the concentric-shell cylin-

der model remains applicable for N ≥ 200. As described earlier,

the value of N is to coincide with the number of structural units

or topological domains nd . The acceptable values of N for this

model, as suggested by Fig. 4, fall in the rather larger range of

nd . To remedy this limitation and to further exploit our polymer

model, we also consider a somewhat distinct model referred to

as model (ii): a constrained asymmetrical ring polymer in a sim-

ple cylinder with the two monomers at the end of the body chain

attached to the cylinder pole via a spring, as illustrated in Fig. 8

(top right corner). The main advantage of this model is that it

allows us to choose N smaller than required for model (i). (See

Fig. 3 for the drawbacks of this model.) For sufficiently small N, a

Gaussian approximation or coarse-graining of lengths via zi j → z̄i j

is not required as evidenced below.

Fig. 8(b) summaries our results obtained with model (ii). For

this, we have chosen the parameters as follows: K = {0.1,1.0} (in

units of ε/σ2), σ1 = 2σ , σ2 = σ/4, N = N1 = {20,25,30} (so as

to keep the volume fraction roughly the same as in Fig. 2), and

N2 = 1800. Without a Gaussian approximation or coarse-graining

of lengths, this model with K = 0.1 shows a chromosome-like or-

ganization and reproduces desired variances (see the graph on

the left). With the choice K = 1.0, however, the calculated vari-

ances are a bit too small (see the graph on the right). The com-

parison between the cases K = 0.1 and K = 1.0 suggests that the

former choice is more appropriate.

We favor the Gaussian approximation for single-locus variances

and the coarse-grained inter-locus variances (via zi j → z̄i j) over

others in that they compare more favorably with chromosome

data8 or those in Fig. 8(b). For the parameters chosen, there is

a noticeable quantitative difference between the coarse-grained

and bare inter-locus variances (see Fig. 8(a)). But the difference

between single-locus variances appears to be minor.

What are the limitations of model (ii)? In this model, the chain

is only sightly compressed; if relaxed in a corresponding open

cylinder, the chain is about 150% of Lout = Lin. At first glance,

this model appears to be somewhat artificial in the sense that

the bacterial chromosome is in a much compressed state within

the nucloeid. For instance, a recent experiment suggests that the

E. coli chromosome should undergo about 10 fold-compaction

by crowding effects so as to fit the cell29 (note that the chro-

mosome was already partially condensed by chromosome-bound

proteins, which would have to be further compressed). We be-

lieve this is rather a seeming discrepancy. First, recall that each

structural unit is a dynamic structure (Sec. 3) and remains rather

constrained in the cell. Each monomer in this model represents

this constrained unit, a feature our coarse-grained model does not

take into account.

Despite its potential limitation, the main advantage of this

model (ii) is that it produces expected locus distributions. Impor-

tantly, this validates our intuition: choosing bigger monomers is

equivalent to subsuming more details (e.g., coarse-graining) into

each monomer, as noted in Ref.19.
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