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Micro‐mechanics of nanostructured carbon/shape memory 
polymer hybrid thin film 

Ming Lei,‡ab Ben Xu,‡b Yutao Pei,c Haibao Lu＊a and Yongqing Fu＊b 

This paper investigates mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeleton 

structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) 

with  CNF/MWCNT  concentrations  instead of a decrease of Tg in nanocomposites filled by spherical particles, and an 

increase in mechanical properties on both macro- and μm- scales.  Compared  with  CNFs,  MWCNTs  showed  a  better 

mechanical  enhancement  for  PS  nanocomposite  due  to  their  uniform  distribution  in  the  nanocomposites.  In 

nanoindentation  tests using  the Berkovich  tips,  indentation  size effects and pile‐up  effects appeared obviously  for  the 

nanocomposites, but not for the pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs 

related to the secondary structures formed by nanofillers, including two aspects, i.e., filler‐polymer interfacial connections 

and geometrical factors of nanofillers. The filler‐polymer interfacial connections were strongly dependent on temperature, 

thus  leading  the  oppsite  changing  trend  of  loss  tangent  with  nanofiller  concentrations  respectively  at  low  and  high 

temperature. The geometrical factors of nanofillers was related to testing scles, further leading to the appearance of pile‐

up  effects  for nanocomposites  in  the nanoindentation  tests,  in which  the  size of  indents was  close  to  the  size of  the 

nanofiller  skeleton.  

1 Introduction 

Shape memory polymers (SMPs) can recover their original 
shapes from deformed states upon various external stimuli 
including heat, electric field, magnetic field and light, and their 
shape memory mechanism is based on reversible energy 
conversion in polymer chain movements, as shown in Fig. 1.1-6 
The programmable shape memory ability of the SMPs has 
potential applications in sensors/actuators7, biomedical 
devices8-9 and aerospace industries10. Currently, great effort has 
been made to modify the existing SMPs for the improved 
mechanical, functional and shape memory properties by adding 
various nanofillers, aiming to overcome the low stiffness and 
strength of the pure SMPs which remarkably limit the 
applications when comparing to other shape memory materials 
such as shape memory alloys or ceramics.11-14 Both carbon 
nanofibers (CNFs) and carbon nanotubes (CNTs) received great 
attentions recently as they can effectively improve both the 
mechanical and functional (such as electrical and optical) 
properties of the SMP matrix. For example, Leng, et al.15 
reported novel infrared activating ability of shape memory 

nanocomposites with various carbon nanofillers. Ni, et al.16 
found the dramatic improvement in the macroscopic 
mechanical properties and shape recovery ability by adding 
CNTs inside shape memory polyurethane. Gunes, et al.17 
synthesized shape memory polyurethane based nanocomposites 
by adding carbon black and CNFs for the enhanced electrical 
properties and electro-active recovery ratio. Jung, et al.18 
prepared carboxyl groups modified CNT reinforced shape 
memory polyurethane nanocomposites by cross-linking 
polymerization, and achieved high-performance shape memory. 

There are a lot of reports for the characterization of 
mechanical and shape recovery properties of the SMP 
nanocomposites, most of which focus on the macroscopic 
mechanical tests, such as tensile tests, dynamic 
thermomechanical analysis (DMA), etc.19-20. Limited effort has 
been made to understand the nm-/μm-scale mechanical 

 

 

Fig. 1 A schematic diagram of shape recovery of shape 
memory nanocomposites with rod/tube shape fillers. 
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enhancement of those SMP nanocomposites. However, this 
micro-mechanism is essential to understand the enhancement 
mechanism, to grasp the stretch induced softening effect, and 
to utilize shape memory polymers/nanocomposites in micro-
device applications.19-21 Nanoindentation is a well-known 
method for the nm-/μm-scale mechanical characterization of 
materials, which could be used to study the deformation of 
reinforcement phase.22 Previous studies have been made on the 
nanoindentation of pure SMPs. For example, Wornyo, et al.23 
investigated the deformation behavior of diethylene glycol 
dimethacrylate and polyethylene glycol dimethacrylate shape 
memory copolymer networks with various organic 
components based on the nanoindentation results. Fulcher, et 
al.24 provided a detailed approach on the thermomechanical 
characterization of a thermosetting epoxy based SMPs by 
nanoindentation tests at different temperatures. Nelson, et al.25 
reported a temperature-dependent nano-scale recovery of a 
thermosetting epoxy based SMPs using the tip of atomic force 
microscopy (AFM). However, only a few studies are available 
for the nanoindentation research on the SMP 
nanocomposites.26-27 

As a further exploration of our previous studies on the 
thermal-mechanical properties and shape memory performance 
of nanocomposites reinforced by spherical particles,27-28 this 
study is focused on the micro-mechanics and strengthening 
mechanism of polystyrene (PS) based CNF/MWCNT 
nanocomposites. Scanning electron microscope (SEM) was 
used to identify the micro-structures of CNF/MWCNT 
nanocomposites. Dynamic mechanical analysis (DMA) was 
used to determine the influence of nanofillers on thermal-
mechanical properties of nanocomposites, and the 
nanoindentation tests were used to characterize the micro-
mechanical properties. Atomic force microscope (AFM) was 
employed to quantitatively study the indents left by the 
Berkovich tips. Finally, theoretical analysis was done to 
understand the mechanical enhancement mechanism of 
CNFs/MWCNTs. This work is focused on the enhancement 
mechanism of CNFs/MWCNTs on shape memory polymer, 
which would be helpful for understanding the Mullins' effect19-

20, establishing constitutive equations29 and designing tunable 
wrinkle devices30. 

2 Materials and experiments 

As-received CNFs (PR-19-LHT-OX, average diameter=100～
200 nm, l/d=150～1000, PYROGRAF Products Inc., USA) and 
multi-wall CNTs (MWCNTs, average diameter=110～170 nm, 
l/d=30～90, SIGMA, UK) were dried in an oven at 120 °C for 
48 hours to remove the moisture. The nanofillers were 
dispersed in toluene (SIGMA, UK) with a surfactant, sodium 
dodecyl benzene sulfonate (SDBS, SIGMA, UK). The mixture 
was stirred ultrasonically at a speed of 1000 rpm for 6 hours. 

Then, a styrene-based precursor (styrene content ≥ 85 wt.%) 
was added in the solution and the mixture was agitated 
ultrasonically for 3 hours at a rotation speed of 1000 rpm. 
Finally, benzoyl peroxide based curing agent (Luperox ATC50, 
SIGMA, UK) was added and the mixture was stirred 
ultrasonically at 1000 rpm for another 1 hour. Film samples of 
SMP and nanocomposites with a thickness of 0.2 mm were 
casted into the PTFE mould and baked at 75 °C for 36 hours. 
Samples with exact shape were processed according to ASTM 
D638 for tensile testing. 

SEM (Tescan Lyra FIB/SEM-FEG) was used to observe 
the micro-structures of the nanocomposites. DMA tests were 
carried out in tension mode with a TA Instruments DMA 2980 
at a frequency of 1 Hz with a default 0.1% peak to peak 
amplitude, a heating rate of 2 °C/min, and a temperature range 
from 25 °C to 100 °C. Nanoindentation was carried out using a 
Tribo-Indenter system (Triboscope, Hysitron Inc., Minneapolis, 
USA) with a standard diamond Berkovich tip. The 
measurement was taken at room temperature (~20 °C). An 
acoustic enclosure was adopted to prevent the acoustic 
interferences from the environment. The indentation procedures 
were programmed into three steps, as shown in Fig. 2. The first 
step is to increase the load to a maximum value with a loading 
rate of 200 μN/s, followed by a 5-second holding time at the 
maximum load. This load holding step was applied to minimize 
the effects of material creep on the estimated values of modulus 
and hardness, and to investigate the viscous effect on the nm-
/μm-scale.31 The third step is to retrieve the indenter tip from 
the sample with an unloading rate of 200 μN/s. Finally, two 2×
2 arrays of indents were left on each sample. 

2 21 11 sample indentor

r sample indentorE E E

  
                       (1) 

 

Fig. 2 The typical load/unload-displacement curve for 
nanoindentation tests on shape memory nanocomposites. 
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nanocomposites which is mainly due to the micro-defects 
introduced by the aggregates of CNFs. The Tg variation of 
nanocomposites strengthened by CNFs/MWCNTs is totally 
different from those nanocomposites filled by spherical 
particles, whose Tg decreases slightly with the nanofiller 
concentration as reported in our previous work.27 This 
phenomenon indicates that there is a strong filler-filler 
interaction for CNFs/MWCNTs inside the hybrid system. 

 The DMA results characterize the macroscopic 
thermomechanical properties of shape memory 
nanocomposites, and will be discussed at both low temperature 
(Tl) and high temperature (Th), i.e., corresponding to the two 
operating temperatures in a standard shape memory 
programming prucedure.4, 27  To study thermal-mechanics and 
shape recovery of shape memory polymers/nanocomposites, 
previous researchers proposed a phenomenological approach to 
divide the SMP matrix into two phases, i.e., in glassy state and 
rubbery state, and further assumed that polymer matrix should 
be fully frozen into glassy state at Tl and also fully activated 
into rubbery state at Th.

29, 36 The thermomechanical properties 
of nanocomposites at Tl and Th determine their shape memory 
performances in shape fixing step and in shape recovery step. 
In this study, the Tl and Th were set as 25 oC and 90 oC (~Tg+20 
oC). 

As shown in Fig. S3, storage modulus E' of these two types 
of nanocomposites at Tl increases with nanofiller 
concentrations, and reach a maximum value of 711 MPa for the 
3 wt.% MWCNT/PS nanocomposites. Due to the softening 
effect of polymer matrix, values of E' decrease rapidly in the 
vicinity of Tg. At Th, values of E' still increase with nanofiller 
concentrations, and then reach a maximum value of 3 MPa for 
the 3 wt.% MWCNT/PS nanocomposites.  

As shown in Fig. S4, loss modulus E'' of MWCNT/PS 
nanocomposites at Tl increases with MWCNT concentrations 
and reaches a maximum value of 90 MPa. For CNF/PS 
nanocomposites, values of E'' at Tl firstly decrease, and then 
increase with CNF concentrations, which is mainly due to the 

aggregates of CNFs inside the hybrid system. However, at Th 
E'' values of these two types of nanocomposites increase with 
nanofiller concentrations, and reach a maximum value of 1.7 
MPa for the 3 wt.% MWCNT/PS nanocomposites. 

Results of DMA tests reveal that MWCNTs have a better 
macroscale enhancement effect than CNTs, which could be 
attributed to the uniform distribution of MWCNTs, as shown in 
Fig.3. Compared with the mechanical properties of the pure PS, 
the increases of storage modulus and loss modulus with filler 
concentrations indicate that the abilities of MWCNT/PS 
composites to resist both elastic deformation and creep 
deformation are strengthened by the addition of MWCNTs at 
both Tl and Th. 

As shown in Fig. S5, values of loss tangent tanδ for these 
two types of nanocomposites decrease with nanofiller 
concentrations at Tl, but increase at Th. The hybrid system are 
composed of three components, i.e., polymer matrix, nanofillers 
and polymer-nanofiller interface. Because of the glass 
transition, the mechanical properties of polymer matrix are 
strongly dependent on the temperature. However, the 
nanofillers with much higher moduli (~500 GPa - 1 TPa) than 
the polymer matrix are usually treated as rigid bodies in 
studying filled rubbery, and could be assumed independent of 
temperature.37 Thus, these two opposite trend of tanδ values 
varied with nanofiller concentrations at Tl and Th indicate that 
the polymer-nanofiller interfacial strength also depends on 
temperature. 

The addition of nanofillers with high elastic modulus, on one 
hand improves the mechanical properties of pure PS, but on the 
other hand brings in the temperature dependent polymer-
nanofiller interface. As revealed from Fig. S5, at Tl, the 
polymer-nanofiller interfacial connection is strong, and the 
addition of nanofillers reduces the damping effect of 
composites. However at Th, the polymer-nanofiller interfacial 
connection is weak, and the addition of nanofillers further 
increases the damping effect of composites. 

Therefore, the enhancement effect of nanofillers is dependent 
on the synergistic influences of mechanical properties of 
nanofillers, nanofillers distributions, filler-filler interactions and 
the polymer-nanofiller interfacial strength. The variation of 
polymer-nanofiller interfacial strength with temperature and its 
influence on mechanical properties of polymer nanocomposites 
will be further discussed in Section 3.4. 

3.3 Results of nanoindentation tests 

 

Fig. 4 Thermal-mechanical properties of nanocomposites 
obtained from DMA tests. (a) E' of CNF/PS composites. (b) 

tanδ of CNF/PS composites. (c) E' of MWCNT/PS 
composites. (d) tanδ of MWCNT/PS composites. 
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Fig. 5 shows typical load-displacement curves for 
nanoindentation tests of the pure PS and PS based 
nanocomposites with 1 wt.% CNFs and MWCNTs, 
respectively. Considering the pyramid geometry size of the 
Berkovich tip on the μm scale, the smooth curves indicate that 
there is no significant porosity in testing samples.38 The load-
displacement curves for CNF/PS and MWCNT/PS samples 
show larger slopes of dP/dh in the unloading step and lower 
values of hmax compared with pure PS samples, reflecting the 
significant enhancement effect of nanofillers on micro-
mechanical properties of nanocomposites. Furthermore, the 
increase in penetration depth Δh during the load holding step is 
due to viscous effect.39 Compared with that for the pure PS, 
adding MWCNTs significantly reduces the chain mobility of 
polymer matrix, while CNFs slightly reduces the chain 
mobility. Similar to the results from the macroscale DMA tests, 
Fig. 5 reveals that MWCNTs have a better enhancing effect on 
the mechanical properties than CNFs on the μm scale, which 
could be attributed to several factors offered by MWCNTs, 
such as larger surface area, uniform dispersion, etc. As a result, 
stable and uniform load transferring points are created inside 
the MWCNT/PS composites leading to a dramatic enhancement 
in the modulus/hardness. 

The calculated values of hardness and elastic modulus as a 
function of the indentation load are plotted in Fig. 6. 
Indentation size effect (ISE) is clearly observed as both 
hardness and modulus values decrease with increasing 
indentation loads (or indentation depth), before reaching a 
plateau value. Fig. 6 also reflects that the ISE becomes more 
obvious with the increase of nanofiller concentrations. As 
reported in many articles, ISE could be attributed to the 
intrinsic structures such as indentation elastic recovery, 
secondary structure, etc.40-42 Here, considering no obvious ISE 
appearing in pure PS samples, the ISE could be mainly 
attributed to the secondary structure in the hybrid system. 

Fig. 6 statistically confirms that the mechanical properties 
of PS polymers are improved by nanofillers, and enhancement 
effects of MWCNTs are better than CNFs. Under the 3×10-3μN 
load for 3 wt.% MWCNT/PS composites, the measured values 
of elastic modulus is 3.2 GPa showing about a 500% increase 
compared with pure PS, and the measured values of hardness is 
230 MPa showing a 700% increase. Considering the working 
condition of nanoindentation and the secondary structures of 
this hybrid system, Berkovich tips would contact more 
nanofillers with the increase of filler concentrations, thus 
leading to an increase of measured modulus and hardness.22 In 
Fig. 6 a&b, the measured curve of composites filled by 3 wt.% 
CNFs is very close to those filled by 2 wt.% CNFs, which 
indicates that enhancement effects of CNFs is weakened with 
nanofiller concentrations. This downward trend could be 
mainly attributed to the random aggregation of CNFs as 
revealed from Fig.3. 

Fig. 7a shows the calculated values of the dissipation 
energy in nanoindentation tests, which generally decrease with 
the increase of nanofiller concentrations. The dissipation 
energy, as a quantitative reflection of viscous effect, is due to 
the internal friction or plastic deformation energy inside 
polymer/composites. Dissipation energy of the MWCNT/PS 
nanocomposites decreases continuously until the MWCNT 
concentration reaching 3 wt.%. Furthermore, there is an 
abnormal increasing phenomenon for the 3 wt.% CNF/PS 
nanocomposites, as shown in Fig. 4, which is attributed the 
obvious agglomeration of CNFs in nanocomposites. 

The varying trend of the dissipation energy with nanofiller 
concentrations in nanoindentation tests is coherent with that of 
loss modulus E'' in the DMA tests, both of which represent the 
ability of materials to resist the viscous deformation. The DMA 
tests were conducted under a strain control, but the 
nanoindentation tests were conducted under a stress control. 

 

Fig. 5 Load/unload-displacement curves of 
nanoindentation tests at room temperature (~20 °C) under 

a max load of 1000 μN on three different samples, 
respectively, 1 wt.% MWCNT/PS composite, 1 wt.% 

CNF/PS and pure PS. 

 

Fig. 6 Experimental data from nanoindentation tests at 
room temperature (~20 °C). (a) Elastic moduli of pure and 

CNF/PS composites. (b) Hardness of pure and CNF/PS 
composites. (c) Elastic moduli of MWCNT/PS 

composites. (d) Hardness of MWCNT/PS composites. 
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The restriction or enhancement effects of nanofillers on 
the motion of polymer molecules depends on the temperature, 
which causes the changes of filler-polymer interfacial strength. 
As shown in Fig.S5, the damping effect of nanocomposites 
decreases with nanofiller concentrations at Tl, but increases at 
Th. That phenomenon indicates that the energetic hole of chain 
localization on the filler surface is strongly dependent on 
temperature. 

The restriction or enhancement effect of nanofillers on the 
motion of polymer molecules also depends on the length scale, 
which is achieved by geometrical factors of nanofillers. As 
shown in Fig.3, inside the nanocomposites, CNFs/MWCNTs 
form a skeleton due to the strong filler-filler interactions. 
Therefore, there are two types of networks in the hybrid system, 
a polymer network and a filler network. The restriction effect of 
nanofillers works, only if the testing scale is much larger than 
the size of the filler network. However, for nanoindentation 
tests, the size of indents (4-6 μm) is very close to the size of 
nanofiller networks (about 1-5 μm), as shown in Fig.3 and 
Fig.8, respectively. Thus, the addition of nanofillers only 
hinders the long rang motion of polymer chains, but not 
affecting their local motions, which further lead to the 
appearance of the pile-up edge beside the indents when the 
measured modulus and hardness are both increased. 

4 Conclusions 

In this paper, the CNF/MWCNT PS based nanocomposites 
were fabricated and their micro-mechanics and enhancement 
mechanisms were experimentally investigated. 

SEM images reveal the skeleton formed by 
CNFs/MWCNTs in the SMP nanocomposites. Experimental 
results reflect a better enhancement effect of MWCNTs than 
CNFs. As reflected in DMA tests, the glass transition 
temperature of nanocomposites enhanced by CNFs/MWCNTs 
is significantly increased by nanofiller concentrations from 60 
oC to 75 oC, and this trend is totally different for those of the 
nanocomposites filled by spherical particles. The addition of 
nanofillers can lead to an increase in the mechanical properties 
of nanocomposites, except for the 3 wt.% CNF/PS composites. 
The storage modulus and loss modulus of nanocomposites both 
increase with nanofiller concentrations at Tl (25 oC) and Th 

(90oC). However, the loss tangent decreases with nanofiller 
concentrations at Tl, but increases at Th. As reflected in 
nanoindentation tests, the addition of nanofillers leads to an 
increase in hardness and modulus of the materials on the μm 
scale. In indentation tests by the Berkovich tips, the indentation 
size effect and the pile-up effect both obviously appear in 
nanocomposites, but not in those of pure PS.  

Theoretical analysis shows that mechanical properties and 
enhancement mechanisms of nanocomposites are both strongly 
dependent on their secondary structures, which could be further 
divided into the filler-polymer interfacial connection and 
geometrical factors of nanofillers. The filler-polymer interfacial 
connection, which is due to the localization of polymer chains 
on the surface of nanofillers, relies on the temperature. The 
high energetic hole at Tl and low energetic hole at Th of 
polymer chain localization lead to the opposite trends of loss 
tangent with nanofiller concentrations at Tl and at Th. The 
geometrical factors of CNFs/MWCNTs are due to the large 
ratio of length and diameter, and the enhancement effects of 
nanofillers on the motion of polymer molecules only work 
when the testing scale is larger than the size of filler network. 
Because in the nanoindentation tests, the size of indents (4-6μm) 
is very close to the size of the nanofiller networks (about 1-
5μm), the pile-up effects are obvious in the nanocomposites 
compared with those in the pure PS, further leading to the failed 
prediction from the O&P criterion for the polymer based 
nanocomposites. 
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This report proposed a study on the micro-mechanics of nanostructured carbon/shape 

memory polymer hybrid thin film.  
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