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The mechanical behaviour of ionically cross-linked alginate gels is here investigated in detail. To 

determine the range of linear response of the material, experiments of uniaxial unconfined compression 

and torsional deformation are performed, obtaining both the stress-strain and the viscoelastic behaviour of 

the gel. On-line measurements of the radius of the cylindrical gel sample in those experiments are also 

reported. The linearity range in the gel mechanical response is found to be rather limited, up to 6% strain, 10 

at most, contrary to more optimistic conclusions usually reported in the literature. We confirm the 

presence of a stress-diffusion coupling phenomenon in our alginates, i.e., the migration of water from/into 

the gel in response to the applied deformation. A phenomenon of inner (constitutive) relaxation of the 

network component of the gel is also clearly identified, and observed to occur, in parallel with solvent 

diffusion, upon compression. At sufficiently large times after a step deformation, syneresis is always 15 

found, with concomitant nonstandard viscoelastic effects such as the growth of a normal force in torsion, 

and a size dependent decay of the longitudinal force in compression. We applied a two-fluid model, 

recently developed by two of the present authors [Larobina, D., & Greco, F. (2012). The Journal of 

Chemical Physics, 136(13), 134904], to simulate the relaxation tests upon torsional and compressive 

deformations, and to fit our own experiments. The model is found to well describe the coupling between 20 

constitutive relaxation and diffusion, and to reproduce the available forces and radii data before the 

advent of syneresis. 

 

Introduction 

Gels are soft materials made by a three-dimensional network 25 

swollen by a liquid component. The swollen network confers the 

characteristic solid-like properties to the gel, while the liquid 

controls its density. The network can be formed by physical or 

chemical ‘junctions’. In the former case we talk of physical gels, 

and the junctions are characterized by a finite (although 30 

sometimes large) lifetime. In the latter case, instead, we have a 

chemical gel, and its junctions are permanent covalent bonds 

(cross-links). Consequently, physical gels can display viscoelastic 

response as results of inner relaxation,1,2 while covalent gels are 

often considered to be elastic materials.3,4 35 

Although the liquid phase occupies majority of gel volume, the 

gel does not display any flow at rest. When the gel, at equilibrium 

with its liquid, is compressed (elongated), the liquid will slowly 

diffuse out (in) of the gel, causing a relaxation of the applied 

force.5,6 It should however be mentioned that such stress-induced 40 

liquid diffusion is not the only mechanism of fluid motions inside 

the gel. Indeed, spontaneous expulsion of liquid after a certain 

time span is frequently encountered in physical gels. The 

phenomenon is known as syneresis, and takes place mainly as 

results of slow rearrangements of the network.7,8 45 

In this contribution, we decide to focus our attention on the 

mechanical behaviour of ionically cross-linked alginate gels. The 

reasons are manifold: first, alginates are of strong interest in food 

industry9, biology10, and tissue engineering11; moreover, they are 

easy to prepare; and, last, they can be taken as valid models of the 50 

whole class of ionic gels. 

Alginates are polysaccharides extracted from brown algae and 

bacteria.12 They are random block co-polymers containing β-(14)-

linked D-mannuronic acid (M) and α-(14)-linked L-guluronic 

acid (G) residues. In order to form a gel, alginates need to come 55 

into contact with divalent ions (such as Ca2+, Ba2+, Sr2+, just to 

mention a few). Actually, almost all divalent ions are able to form 

specific multiple complex junctions with G-blocks units; such 

junctions, sometime termed ‘egg-boxes’,13 are responsible for the 

distinctive mechanical response of alginate hydrogels, including 60 

their viscoelastic relaxation, and fracture toughness.14 

The prevailing literature has depicted alginate gels as elastic 

materials, with compression moduli ranging from a kPa to a 

hundred of kPa.12,15 The linear elastic behaviour is thought to be 

quite extended. Indeed, by examining the stress-strain behaviour 65 

of alginate hydrogels, Mooney and co workers1 claimed that 

linearity extends up to 15% of compression. At higher 
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compressions, other authors15 have observed an upward concavity 

in the stress-strain curve. 

Viscoelastic properties of alginate were also investigated by 

several authors using frequency sweep tests,16-18 and relaxation 

tests upon torsion or compression.1,19-24 Among them, Webber 5 

and Shull (2004) studied the dependency of the physical network 

response on the amplitude of the strain, by using an indentation 

apparatus. They showed that at small strains the alginate gels 

behave elastically, with little non-recoverable creep and with 

dynamic moduli that are only weakly frequency dependent; at 10 

higher strain magnitudes, instead, the gels have a viscoelastic 

behaviour. 

In this paper, in order to fully ascertain the range of mechanical 

linear response of the gel, we decided to perform three distinct 

sets of experiments. First, an uniaxial unconfined compression 15 

test is made, to obtain the stress-strain behaviour of the sample. 

Second, stress evolution of the uniaxially strained gel is followed 

in time, upon different imposed compressions, to investigate on 

the relaxation behaviour of the sample. Finally, the gel response 

for a different strain configuration, namely, under torsional 20 

deformations, is measured, both after a step torsion 

(‘instantaneous’ elasticity and ensuing relaxation) and under a 

small-amplitude oscillating strain, so as to possibly confirm the 

full linearity range identified in the two previous sets of 

experiments. Alongside with all those stress-strain experiments, a 25 

‘geometric’ characterization of the sample is always given, by on-

line measurements of the radius of the cylindrical specimens at 

hand. Moreover, most of the above-indicated experiments were 

performed for three different (initial) radii of the cylindrical 

sample, so as to detect possible size effects on the rheological 30 

response of our gel. Indeed, through these observations, we aim 

to quantify stress-diffusion coupling, if any, i.e., the possible 

migration of water from/into the gel in response to the applied 

deformation. 

Material and Methods 35 

Gel preparation 

Calcium alginate gel samples were prepared using a two-step 

procedure. The first step involves the manufacture of a gel with 

well-defined and stable shape by ‘inner gelation’ mechanism. In 

the second step, instead, we expose the pre-shaped gel to a 40 

calcium chloride solution of known concentration for a certain 

amount of time at constant temperature. Details of the ‘inner 

gelation’ mechanism can be found on reference.25 Briefly, a 

2%w/w alginate solution is mixed with an insoluble calcium 

complex form (calcium ethylene-diamine-tetraacetic, CaEDTA) 45 

to a final concentration of 5 mM CaEDTA. The stable solution is 

then additivated with an hydrolysable lactone (Glucono-d-

lactone, GDL) and immediately casted into a cylindrical preform. 

The addition of GDL slowly decreases the pH of the solution 

inducing the release of calcium ion from the insoluble CaEDTA 50 

salt, and producing a gel with stable cylindrical shape. All pre-

formed gels had a diameter of 35 mm and a thickness of 7 mm. In 

the second step, the cylindrical pre-formed gels were simply 

immersed into a 5 mM solution of CaCl2 for 24 hours at 25°C. 

Mechanical tests 55 

Mechanical testing of alginate samples were carried out with a 

HAAKE MARS III rheometer coupled with a CCD camera to 

quantify the lateral radius of the sample during tests. All 

experiments were performed at 25°C using a plate-plate 

geometry. Depending on the type of test, a compressive or a 60 

torsional force is applied on the sample. The performed 

compression tests were: i) stress-strain measurements on samples 

of 15 mm diameter at different strain-rate; ii) stress-relaxation 

measurements on samples of 15 mm diameter at different strains; 

iii) stress-relaxation measurements at 3% of strain on samples 65 

with different diameters, i.e. 15, 24 and 35 mm. To ensure a slip 

condition at wall during compression a vaseline layer was placed 

on both plates. 

The executed torsional tests, instead, were: i) oscillatory 

amplitude sweep on sample of 35 mm diameter at 1 Hz; ii) 70 

oscillatory frequency sweep with samples of 35 mm diameter at 

1% of amplitude strain; iii) stress-relaxation measurements at 3% 

of strain, again on samples with different diameters, i.e. 15, 24 

and 35 mm. Opposite to compressive test, a cyanoacrylate glue 

was placed between the plates and the gel surfaces, so to avoid 75 

slip of the specimen during torsion. 

To prevent solvent evaporation during test, a CaCl2 solution at 5 

mM was always surrounding the samples. Moreover, in the case 

of tests with samples of 15 and 24 mm diameter, the specimens 

were cut from the 24 hours conditioned samples of 35 mm right 80 

before testing. This procedure guarantees that all specimens had 

experienced the same conditions regardless of the size of the 

sample tested. 

It is worth to point out that the characteristic time of applied 

deformation is different for the different geometric test 85 

configurations. Specifically, for torsional experiments the time of 

application of the strain is about 10-2 min (0.6 s), while, for 

compressional tests it is only 10-1 min (6s). 

Results and Discussion 

‘Instantaneous’ elasticity 90 

Stress-strain compressive tests at different strain rates were 

performed, measuring compressive force f and radius r of the 

cylindrical sample as function of applied longitudinal stretch ratio 

	� ≡ ℎ(�) ℎ�⁄ , where ℎ(�) is the height of the specimens as 

function of time, and ℎ� its initial value. The rate of strain was 95 

varied in the range 0.06 to 2 min-1, and a cumulative strain down 

to � = 0.77 was reached, i.e., with ca. 25% compression of the 

sample. Within the experimental error, neither the force nor the 

radius showed any noticeable dependence on the imposed strain 

rate. Hence, both �(�) and �(�) can be unambiguously defined 100 

within the indicated ranges of strain and strain rates (and before 

any relaxation occur, see the next subsection); because of the 

absence of time effects, we refer to our results in this subsection 

as pertaining to an ‘instantaneous’ elasticity of the gel. 

Let us discuss the ‘geometric’ (lateral expansion) aspects of our 105 

compression tests first. We report, in Fig.1, the measured 

‘transverse ratio’ �� ≡ �(�) ��⁄  as a function of the longitudinal 

ratio �, along with the theoretical prediction ��,������ = ���.� 

(continuous line) calculated through the assumption of 

incompressibility. As it can be seen, the lateral dilation of the 110 

cylindrical specimen almost exactly follows the theoretical curve 

for small deformations (down to � ≈ 0.94, say), to progressively 
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depart from the theory at lower �-values. 

Figure 1. Transverse dilation ratio (��) as function of the compressive 

ratio (λ) for samples compressed at different strain rates (ranging from 

0.06 to 2 min-1). Symbols are data averaged over twenty runs, while 

continuous line is the prediction assuming incompressibility. 5 

As a numerical example, at a longitudinal ratio � = 0.816, we 

measure �� = 1.089, whereas it is ��,������ = 1.107: the radius 

of the sample turns out to be ca. 2% lower than its predicted value 

for a perfectly incompressible gel. The observed discrepancy 

between �� and ��,������ below � = 0.94 is confirmed, in trend, 10 

by an independent measurement of mass loss from the gel as a 

function of the compressive ratio. 

Figure 2. Relative weight loss at the end of compression as function of 

final compressive ratio. Full symbols are data, while open symbols are 

calculated (through eq. 1) from the measured transverse dilation ratio (see 15 

Fig.1), assuming that the two media (water and alginate) are 

incompressible and with equal densities (!"#$ = !��%&�'( = 1) *+,⁄ ). 

The line through the calculated points is just a guide for the eye. 

Specifically, the cylindrical specimen at the end of a compression 

ramp was extracted from the apparatus and weighted, for several 20 

values of the final compressive ratio: the measured relative 

weight loss ∆. .�⁄  as a function of the attained compression is 

reported in Fig.2 (filled symbols). On the other hand, from the 

knowledge of the actual lateral dilation as function of the 

compressive ratio, ��(�) (see Fig.1), it is possible to estimate the 25 

mass loss during compression. Indeed, by assuming an equal 

density of the two media (water and alginate) composing the gel, 

and a nil volume change on mixing (ideal mixing), the relative 

weight loss is easily calculated as: 

∆�
�/ = 1 − ��#� (1) 30 

The mass loss from Eq.1 is also reported in figure 2 (open 

symbols). 

Notwithstanding the scattering of data, the trend in Fig.2 is clear: 

unless very low compressions are considered, the higher is the 

final compression the higher is the mass loss. Such behaviour is 35 

seen to be coherent, at least, with that of the transverse ratio ��, 

which increases with the imposed compression less than the 

��,������ pertaining to an ideally incompressible material (Fig.1). 

We are inclined to attribute those compression-induced 

phenomena, i.e. the weight loss and the non-ideality in the change 40 

of the transverse ratio, to an escape of water from the alginate 

network by some kind of convective mechanism. This 

mechanism might be related to the often observed existence, 

inside a gel, of microscopic heterogeneities at short length scales 

(generally of the order of 100 nm).26,27 Upon compression, the 45 

‘voids’ in such heterogeneous textures would be expected to 

‘shrink’ and/or somehow collapse, possibly beyond some critical 

compression. A convective expulsion of solvent would then 

result, leading to a weight loss of the sample, in qualitative 

agreement with the data in Fig.2. In terms of the macroscopic 50 

lateral expansion of the sample, the just mentioned mechanism 

would imply that the actual radius end up to be smaller than the 

one that would be obtained if the whole gel were incompressible. 

Again, this agrees with our observations in Fig.1. Looking at our 

data, we can then state that some water expulsion occurs in a 55 

range of compressions going from � ≈ 0.94 downwards while, at 

small deformations, the overall gel behaviour is in practice 

undistinguishable from that of an incompressible solid. 

Let us now discuss force measurements in our compression 

experiments. 60 

Figure 3. Variation of the nominal stress as function of the longitudinal 

compressive ratio. Data are averaged over twenty runs. Continuous line is 

the best fitting with a neo-Hookean incompressible equation, while 

dashed line is linear elasticity. From best fitting, the elastic modulus G is 

calculated, and it is G = 21 kPa. 65 

In Fig.3 we report the nominal stress (1 ≡ � 2��#⁄ ) as a function 

of the compressive ratio. We remind the reader that the data 

shown in Fig.3 are in fact averages taken over twenty 

compression ramps, at various strain rates, and that, since such 

data come out independent from the strain history, they can be 70 

taken as representative of the ‘instantaneous’ constitutive 

equation of the gel. For this reason, two theoretical predictions 

for the stress are also reported in Fig.3, namely, for a linear 

elastic solid and for a neo-Hookean solid, both of them 

supposedly incompressible. The data definitely show a linear 75 
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response of the stress vs. � down to � ≈ 0.9 (say), and are quite 

well described by the neo-Hookean constitutive equation down to 

� ≈ 0.8, at least. In fact, the behaviour observed in Fig.3 is quite 

similar to what expected for an incompressible rubber. All of this 

agrees with rather common findings in the literature on physical 5 

gels, which perhaps justified the common credence that the linear 

regime in unconfined compression of gels holds up to 10-15% of 

strain.1 On the other hand, our previous results here (in Figs.1, 2) 

do clearly indicate that incompressibility of the gel might not be a 

tenable assumption already for moderate strains. For our alginate 10 

gels, at least, we must be very cautious in gauging the linearity 

range from the data in Fig.3; even more suspicious is the seeming 

agreement between our data and the incompressible neo-Hookean 

constitutive equation. Actually, taken altogether, our results of 

Figs.1-3 make us deduce that the ‘instantaneous’ elasticity of our 15 

gel keeps linearity (and incompressibility) only down to � ≈
0.94, i.e., up to 6% of compression. It is perfectly plausible that a 

similar warning is also valid for other physical gels. 

A direct measurement of the shear stress 34& of the gel in a stress 

sweep (torsional) oscillatory experiment verified that the gel 20 

behaves as a linear elastic material, up to a shearing strain of 

5 ≈ 0.2 at least, and hence well beyond 6%, as illustrated in 

Fig.4. Moreover, the value of the shear modulus obtained from 

the data in Fig.4 (7 = 22	89:) quantitatively agrees with the 

ones (21 kPa) obtained from the fitting of the compression data in 25 

Fig.3 by either a neo-Hookean equation or a linear elasticity 

equation (at lower compressions). 

Figure 4. Stress sweep test at 1 Hz. Data are averaged over three runs. 

Slope of the 34& vs 5 in the double logarithmic scale is equal to 1, 

indicating a linear relationship between 34& and 5. Extrapolated intercept 30 

with 5 = 10� gives a value of the modulus 7 of about 22 kPa, in nice 

agreement with the one estimated from compression tests (see Fig 3). 

To summarize, the whole set of experiments reported here 

credibly testifies that, even in our case of a charged network 

(alginate chains plus water plus divalent cations), the dominant 35 

rheological contribution comes from the conformational entropy 

of the polymer chains, as in rubber elasticity. The conditions of 

incompressibility and linearity in the elastic behaviour are both 

found to hold for relatively small deformations only, i.e., up to 

6% of compression. 40 

Relaxation after compression 

The previous analysis and conclusions have been further 

corroborated (and of course enriched) by stress-relaxation tests 

performed at various compression strains, on cylindrical samples 

with identical diameters. The results, reported in terms of 45 

normalized force with respect to its initial value (�(�) �(0;)⁄ ), 

are shown in Fig.5. 

Figure 5. Normalized force relaxation curves upon compression, for 

different compressive strains ranging from 3 to 18%. Each set of data is 

averaged over three runs. Notice that, to avoid crowding of symbols, only 50 

some logarithmically equispaced data are shown. Above 6 % of strain, a 

qualitative difference is observed between the two panels of data. The 

dashed line in panel b is the common early times slope of the relaxation 

curves in panel a. 

The stress-relaxation curves up to 6% of compression (panel a) 55 

display a similar behaviour, while for higher values of strain 

(panel b) the curves increasingly deviate from each other, and are 

also qualitatively different from the relaxation curves at low 

strains. Here again, as from the experiments reported in the 

previous subsection, we envisage that the ≈ 6% of compression is 60 

by some means a critical value, beyond which the gel behaviour 

changes, e.g., by the lack of incompressibility. 

The low compression relaxation profiles are all found to exhibit 

the same trend in time, with distinct behaviours (on a semi-

logarithmic scale) at short and long times. The early time decay is 65 

found to be the same for the three low compressions examined 

here, which is in fact the expected behaviour for a material within 

its linear viscoelasticity regime. (We remind the reader that the 

force measurements reported in Figs.5 are normalized with 

respect to the 0;	force, i.e., the ‘instantaneous’ force upon 70 

compression.) On the other hand, the late time decays are 

different at different (but still low) compressions, indicating that, 

at ‘large’ times, some compositional and/or structural change is 

possibly taking place in the alginate gel. Thus, even when 

confining our experiments to compressions that have been judged 75 
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in the linear range of the ‘instantaneous’ elastic response of the 

incompressible gel (<6%, see previous subsection), a nonstandard 

relaxation sets in after a while, and, strictly speaking, a linear 

viscoelasticity range is no more identifiable. 

As discussed to some extent in previous contributions by two of 5 

the present authors,28,21 the decay of force after application of a 

‘small’ compression step to alginate gels can be ascribed to three 

diverse mechanisms: (i) constitutive (‘inner’) relaxation, most 

probably due to network rearrangements driven by combination 

and separation of ionic bonds among alginate chains; (ii) stress-10 

diffusion coupling, related to the diffusion of water driven by a 

gradient the in network stress, generated by the instantaneous 

compression; (iii) spontaneous (and usually slow) syneresis of the 

gel, maybe a consequence of some inherent meta-stability, 

unavoidably induced at the time of gel formation, and perhaps 15 

differently ‘activated’ at different compressions. 

To investigate on the just mentioned different contributions to 

force relaxation, and to attempt to assess their timing for our 

alginate gels, we proceeded to perform unconfined compression 

experiments on cylindrical samples with different diameters, 20 

simultaneously monitoring the lateral surface of the gels, i.e., the 

sample radii, as a function of time. In Fig. 6, relaxation data of 

normalized force are reported, after a step compression with 

� = 0.97, for three sample diameters 2�� = 15, 24, 35	++. 

Figure 6 Normalized force relaxation behaviour vs. time for 3% 25 

compression at three sample radii (actual diameters are reported on the 

legend). Each data set is averaged over three runs. An effect of the sample 

radius is apparent at large times. 

All data clearly show the two-decay relaxation already discussed 

above, when commenting Fig.5. Relaxations of samples with 30 

different radii are fairly similar up to around 1 min after the 

compression step, to depart from each other afterwards. It is 

apparent that, in the second decays, the force relaxes ‘faster’ as 

the initial radius is smaller. A ‘transition time’ around 1 min (say) 

from the compression step seems then to show in these data. 35 

Let us now examine how the sample radii evolve in time. In 

Fig.7, the radial displacement >((�) = �(�) − ��, normalized 

with its initial value >((0;) = �(0;) − �� right after the 

compression step, is reported as a function of time, again for 

three sample radii; in fact, the radii data in Fig.7 are obtained in 40 

the same experiments of the relaxation data in Fig.6. 

Although less clearly than for the relaxation data, also the trend in 

time of the radius relaxation shows (on a semi-logarithmic scale) 

a ‘slow’ initial decay and a ‘faster’ subsequent one, and, again, a 

time around 1-2 min after the compression step can be taken as a 45 

‘transition time’. Also in the radii data, as for the force relaxation 

data, it can be seen that the smaller the initial radius, the steeper 

the relaxation. 

Figure 7 Normalized radial displacement as function of time for the three 

investigated radii. Radius measurements are obtained in the same 50 

experiments of fig. 6. For clarity, error bars are reported for some points 

only. 

We are now in a position to discuss how the collected data can be 

interpreted in terms of the diverse mechanisms supposedly at 

work in the relaxing gel. The key observation to be made 55 

concerns the ‘early times’ reduction of the gel radius, up to 

around 2 min. Within such a time span, the radial displacement 

>((�) is found to decrease by ca. 20%-30% with respect to its 

initial value. Since a radius decrease must always go together 

with water transport outwards the gel, and since syneresis does 60 

not typically affects materials’ behaviour at early times, we must 

conclude that, already within a time span soon after the 

deformation, a stress-diffusion coupling mechanism is active. The 

question is: is stress-diffusion coupling the only active 

mechanism during early relaxation? In other words, is there any 65 

indication of a co-occurrence of diverse relaxation mechanisms? 

Our answer to the latter question will be given on a twofold basis. 

First, we re-plot the force relaxation data of Fig.6 in terms of a re-

scaled time, namely, the ratio of actual time to the sample radius 

�� before compression (radius after conditioning). 70 

Figure 8 Same force relaxation data of Fig. 6 vs. the re-scaled time (�/
��#). Rescaled data do not collapse on a single curve or portion of curve, 

indicating that solvent diffusion is not the only active relaxation 

mechanism after the compression step. 

With such a rescaling, usual for a diffusion-driven process, one 75 
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should find data from samples at different radii collapsing on a 

single curve, if diffusion were the only driving force. This is 

clearly not the case for our data, as seen in Fig.8: data pertaining 

to different sample radii stay well distinct. Curiously enough, a 

tendency to a common trend can instead be found at large times. 5 

As a second step in our analysis, we make use of the Doi’s theory 

of linear stress-diffusion coupling to calculate the drop in force 

due to diffusive mechanism from the knowledge of the gel radius 

during relaxation, see Fig.7. Indeed, the normalized force decay 

is calculated from Doi’s theory as: 5 10 

@(A)
@/ = #

, B1 −
CD(A)
E/

F
(F�G)H (2) 

where (1 − �) is the applied strain (3% in all our compressive 

tests). Thus, from the available experimental data of the radii vs. 

time of Fig.7, we can obtain the corresponding forces as predicted 

through Eq.2, to be compared with the measured ones. Fig.9 15 

shows both Doi’s calculation and the experiments. It is apparent 

that the calculated force relaxations stay well higher than the 

measured ones. Again considering the situation at � = 2	+IJ (i.e., 

at the ‘transition time’), we find that Doi’s normalized force is 

around 0.9, whereas measured values are in between 0.7-0.75: 20 

such discrepancy is well outside experimental uncertainties. 

 

Figure 9 Normalized force vs. time upon 3% compression for the three different diameters investigated, 15, 24, and 35 mm from left to right. Filled 

symbols are normalized force predictions based on Doi equation (eq. 2), where the only active mechanism of relaxation is water diffusion. The measured 

relaxation is undoubtedly faster than predicted. 25 

 

From the above results, we can definitely conclude that the 

observed force relaxation and water expulsion up to the 

‘transition time’ cannot be ascribed to stress-diffusion coupling 

only. In the next subsection, therefore, the existence and possible 30 

relevance of an intrinsic relaxation mechanism will be discussed 

in some detail. 

Relaxation after torsion, and storage and loss moduli 

In figures 10 and 11, the relaxation behaviour of the gel after a 

step torsional deformation is shown, in terms of measured torque 35 

M and normal force fN, respectively. In both figures, data are 

reported on cylindrical samples with three different diameters. As 

mentioned in the Materials & Methods section, the plates of the 

rheometer are now treated so that a no-slip condition between the 

gel and the wall hold. We signal to the reader that torque 40 

relaxation experiments at different ‘low’ strains (i.e. 5 =
0.01, 0.03, and	0.06) gave exactly superimposable normalized 

results (data not shown), as expected in the linear viscoelasticity 

range; as a consequence, no variation of the gel radius should 

show in these deformations, as we indeed confirmed in our 45 

experiments (for not too large times, at least). 

For around two decades in time, hence again up to around 2 min 

after the step deformation, torque in Fig.10 essentially displays 

the same behaviour for the three investigated radii, namely, a 

logarithmic decay, whereas slight (but reproducible) differences 50 

become visible afterwards. (The line in Fig.10 is the result of a 

model to be discussed below.) The appearance once more here of 

a ‘transition time’, comparable to the one found in compression 

experiments, is further (and strongly) confirmed by the normal 

force data reported in Fig.11. 55 

Figure 10 Normalized torque relaxation curves after a step torsion of 3% 

at different sample radii. Each data set is averaged over three runs. 

Collapse is observed up to a characteristic time of 2 min (the ‘transition 

time’ discussed in the text), indicated here with a vertical bar. The 

continuous curve in the plot is a best fitting from the model described in 60 

the appendix of the paper, accounting for network relaxation. The model 

is so conceived as to work properly only up the transition time. 

In principle, for torsional linear deformations, no normal force 

should arise at all and, indeed, this expectation is fulfilled by our 

data up to 2 min after the torsion. At larger times, conversely, a 65 

normal force grows, the more so the smaller the sample radius. 

This unexpected behaviour might perhaps be linked to a 

structural ‘slow’ change in the gel (the above mentioned 

mechanism (iii)), the discussion of which, however, is far beyond 

the purpose of the present paper. We simply signal here how the 70 
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late appearance of a normal force in the relaxation after a torsion 

connotes a nonstandard viscoelasticity for our gels. 

Figure 11 Normal force as function of time measured in the torsional 

experiments of Fig.10. Here, as in the previous figure, the vertical bar 

marks a ‘transition time’. Notice the growth of normal force beyond the 5 

transition time, for all the investigated radii. 

On the other hand, the experimental results in Figs 10, 11 in the 

first two time decades, i.e., up to 2 min after a torsion, can be 

seen as representative of a standard linear viscoelasticity of the 

gel. To further emphasize this feature, we performed a frequency 10 

sweep test on the gel, to obtain its storage and loss modulus as 

function of frequency, in the range of frequencies corresponding 

to the just mentioned two decades in time. The obtained data, 

shown in Fig.12, are indeed as expected for a gel, with a (weakly 

increasing) elastic modulus much higher than the loss modulus 15 

throughout two frequency decades. 

Fig 12. Symbols: averaged results over three frequency sweep tests at 1% 

torsional strain, for a cylindrical sample of 35 mm diameter. Lines: 

calculated 7’(O) and 7’’(O) from the model reported in the appendix of 

the paper, with the same parameters used to obtain the 7(�) curve of 20 

Fig.10. Notice that the range of frequency reported in the figure 

corresponds to the range of time up to the transition time � = 2	+IJ (see 

text). 

To complete the picture, we also report in Fig.12 the calculated 

storage and loss moduli as function of frequency, as predicted 25 

from the model described in the appendix of the paper. For the 

sake of clarity, we proceeded by first fitting the relaxation data of 

Fig.10 with such a model, thus obtaining the relaxation spectrum, 

to eventually compute the moduli. All the details of this 

procedure and the numerical values of the parameters are reported 30 

in the Appendix. 

The nice agreement between the observed and calculated moduli 

shown in Fig.12 confirms that   torsional relaxation experiments 

are well understood in the frame of standard linear viscoelasticity 

up to the ‘transition time’, � = 2	+IJ. The torque relaxation data 35 

in Fig.10, up to 2 min after the torsion step, are the clear signature 

of a constitutive (‘inner’) relaxation of the network component of 

the gel, which we mentioned previously (mechanism (i)). 

An interpretation of the gel relaxation behaviour 

Putting together all the information from the previous two 40 

subsections, we envisage that the above mentioned mechanisms 

of constitutive relaxation and stress-diffusion coupling are most 

probably co-occurring in the alginate gel, after a compression 

step, for a certain time span, i.e., up to the transition time. In the 

long-time response of the material, on the other hand, a complex 45 

additional gel rearrangement takes place, with peculiar features. 

Figure 13 Same data of Figs 7 and 8 along with model simulation. The 

model, described in the appendix, is expected to work properly only up to 

the transition time t = 2 min (see text). Notice that, in the bottom panel, 

the rescaled transition times are indicated by vertical bars corresponding 50 

to different radii. 

Limiting ourselves to the short-time gel response, we have 

already shown (see Fig.9) how Doi’s theory of stress-diffusion 

coupling, in its original version, is not capable of predicting the 

results of our relaxation experiments. In this section, we will 55 

illustrate how instead a simple extension of Doi’s theory, recently 

proposed by two of the present authors,28 comes out in reasonable 

agreement with the relaxation data. 

In our novel model, the gel is regarded as a homogeneous mixture 

of a solvent and a viscoelastic solid. In the present case, such 60 

viscoelastic solid is the physical network of the alginate. The 
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mechanical relaxation of the gel is then due to both solvent 

transport in/out of the gel and constitutive relaxation of the 

network. The model is sketchily described in the Appendix, 

where the adopted equations and the evaluation of the model 

parameters are also reported. In Fig. 13, we report the model 5 

predictions together with the experimental data of Figs 7 and 8: it 

can be seen that agreement is pretty good. In this respect, we 

would like to emphasize that such agreement with six data sets is 

obtained through only two adjustable parameters (namely, a 

Darcy constant P, and a Lamè constant �Q, see appendix). As 10 

expected, the fitting quality degrades as we approach the 

transition time, where syneresis starts to prevail. From the 

agreement among data and predictions up to the transition time, 

however, we can conclude that both mechanisms of inner 

relaxation and stress-diffusion coupling are at play, and that the 15 

proposed model correctly describes such interplay. 

Conclusions 

In the present work, we performed an analysis of the different 

relaxation mechanisms active in an alginate-based ionic gel. 

Several mechanical tests were carried out: compressive stress-20 

strain measurements at different strain rates, to evaluate the range 

of ‘instantaneous’ linear elasticity; stress relaxation at different 

compressions, to evaluate the range of linear visco-elasticity; 

stress-relaxation upon compression on samples with different 

diameters, to assess the different relaxation mechanisms of the 25 

gel; stress relaxation upon torsional deformations, to study 

relaxation behaviour without solvent transport. In most cases we 

measured, with the aid of a CCD camera, the changes in the 

radius of the sample during test. 

The obtained results can be summarized in the following points. 30 

i) By ‘instantaneous’ deformations, the gel, as a whole, responds 

as a linear incompressible elastic material only up to 6% of strain. 

Compressive and torsional data agree (within experimental error) 

to identify such upper limit. Beyond 6% in strain, the gel is 

compressible, as it is clearly evidentiated from the comparison of 35 

the actual radius vs. the theoretical one (i.e., for an 

incompressible material), and from the variations of weight loss 

after compressions. The measurements show that the 

compressibility of the gels results in water expulsion. Such 

expulsion, maybe through some convective mechanism, 40 

conceivably is a direct consequence of the heterogeneity of the 

gel on a mesoscopic length scale. The whole range of results of 

the stress-strain test in compression closely follows a neo-

Hookean behaviour. 

ii) The stress relaxation tests also show a linear range up to about 45 

6%, consistent with the data of ‘instantaneous’ stress. Both 

torsion and compression display a double relaxation regime, with 

a ‘transition’ at about 2 minutes from the imposed deformation 

step. Measurement of the normal force after a torsion step clearly 

shows that syneresis effects dominate the relaxation at times 50 

larger than 2 min. 

iii) For times less than 2 minutes, it is necessary to distinguish 

between torsional and compressive tests. From the measurements 

of relaxation in torsion, where the effect of stress-diffusion 

coupling is confirmed to be nil, it is possible to evaluate the 55 

contribution of the relaxation caused by inner rearrangements of 

the network. The inner relaxation mechanism follows a 

logarithmic decay in time; relaxation can then be described 

through a distribution of characteristic times. On the other hand, 

compression tests at different radii show that the force decay is 60 

not attributable solely to water diffusion. In this case, both 

mechanisms of inner relaxation and diffusion are active. 

Finally, we applied a generalized two-fluid model, recently 

developed by two of the present authors, to simulate the 

relaxation tests in compressions with different sample radii. To 65 

describe the network relaxation, we used a generalized Maxwell 

model, with 4 viscoelastic characteristic times and a steady-state 

linear elastic response (see appendix). Most model parameters 

were evaluated through a best fitting procedure of the relaxational 

data in torsion. Thereafter, fitting of the data in compression was 70 

worked out with a reduced number (2) of adjustable parameters. 

The model is capable to quite reasonably describe the coupling 

between the internal relaxation and diffusion, and the available 

data, up to the advent of syneresis. 

Appendix 75 

The fluid–viscoelastic solid model recently proposed by two of 

the present authors is here briefly summarized. The restricted 

version of such model that is adopted to describe our alginate-

based gel is also described here, and the values of the model 

parameters needed for data fitting are given.  80 

The model belongs to a general category of models termed as 

‘non-classical mixture theory’,5 where the overall response of a 

mixture is described in terms of fields somehow peculiarly 

attributed to one or the other of the ‘components’ of the mixture. 

In our case of a gel, the two components are the solvent fluid and 85 

the polymer network solid. Under various simplifying 

assumptions, discussed in detail elsewhere28, the model equations 

are: 

R ∙ TU(V)

TA = PW#.(X) (A1) 

R ∙ YZ([) − .(X)\] = ^ (A2) 90 

where, as mentioned above, a pressure .(X) is attributed to the 

solvent, a velocity _U([) _�⁄  is attibuted to the network (the field 

U([)(`, �) is the displacement at time t of a network point that 

was at ` in a reference state), and Z([) is the network stress 

tensor. Equation (A1) is a Darcy-like equation, describing solvent 95 

permeation through the network ‘matrix’, with P the 

solvent/network permeability constant. Equation (A2) is the 

momentum balance equation for the overall gel, made up of 

solvent and network. Notice that inertia was neglected in eq. 

(A2). 100 

To solve for solvent pressure and network velocity (hence, for 

network displacement), Equations (A1) and (A2) must be closed 

by a constitutive equation for the network stress Z([). In ref. 28, 

the case was discussed where the network stress is that of a linear 

viscoelastic solid, with a single relaxation time 3. The 105 

generalization to multiple relaxation times is straightforward: the 

linear viscoelastic solid is described through a multimode 

scheme, and the network stress is the sum of the stresses {b�} 
from each of the modes: 
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3�
_b�
_� + b� = 27e,�f([) + 27�,�3�g([)

+ 2h�e,� 	��Yf([)] + ��,� 	3� 	��Yg([)]i\ 
 (A3) 

Z([) = ∑ b��  (A4) 

In such constitutive equations, f([) = 1 2⁄ klU([) + YlU([)]mn 

is the symmetrized deformation tensor from the network 

displacement U([)(`, �), g([) = _f([) _�⁄  is the rate-of-5 

deformation tensor, and ��(∙) is the trace operator. The constants 

7e,�, 7�,� 	are shear moduli, �e,�, ��,� are Lamè constants, and 3� 
is the characteristic time of the i-th mode of the network. 

Equation (A3) above give the most general form for the i-th 

(‘partial’) stress for a linear viscoelastic solid. In dealing with our 10 

alginate-based ionic gel, we decided to adopt a minimal version 

of such equations, so as to minimize the number of parameters, 

and found that the following set of equations is, in fact, fully 

appropriate: 

3�
_b�
_� + b� = 27Q 3�g([) + 2�Q	3� 	��Yg([)]\	,			I = 1, … 4 

 (A3’) 15 

b� = 27ef([) 

Indeed, the measured gel relaxation after a torsion step (and up to 

the ‘transition time’) can be well described by the above Eqs. 

A3’, A4, as illustrated in Fig.10 in the main text. The needed 

parameter values, obtained through a fitting procedure of the 

torsion step relaxation data, are reported in Table 1. We recall 20 

that the analysis was restricted to the first 2 min of relaxation. 

Beyond such time, we assumed that no further inner relaxation 

occur: the network response at long times is that of an ideal 

elastic solid, with modulus equal to 7e . 

Table 1 Model parameters from best fitting of data of relaxation in torsion 25 

(fig. 10). The reported moduli are normalized with respect to the shear 

modulus 7 = 21	89: 

 

With those same parameters, the frequency response is readily 

calculated through the following analytic expressions: 30 

7p (O) = 7e + 7Q q 3�#O#

1 + 3�#O#

r

�sF
 

 (A5) 

7pp(O) = 7Q q 3�O
1 + 3�#O#

r

�sF
 

and the agreement with the corresponding data is shown in Fig.12 

in the main text. 

The possible co-occurrence of constitutive relaxation with solvent 

diffusion is also covered by the complete model, i.e., with all Eqs. 35 

A1, A2, A3’, and A4. Indeed, the complete mathematics of the 

relaxation after a step uniaxial compression of a laterally 

unconfined cylindrical sample gives the predictions shown in 

Fig.13 of the main text. Having already fixed six of the 

parameters on the basis of the torsional response of the gel (see 40 

Table 1), the remaining two parameters are the Lamè constant 

(�Q) and the Darcy constant (P). These two parameters were 

indeed determined through a best fitting procedure involving all 

compression data for the three examined radii, i.e., the three 

normalized relaxation forces, and the corresponding three 45 

changes in the normalized radius. The parameter values of the 

best-fitting procedure are: �Q = 1526	9: and P = 0.9 ∙
10�r++# 9:	+IJ⁄ . 
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We investigated the presence of different contributions to force relaxation in ionically cross-linked 

alginate gels, and attempted to assess their timing. 
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