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Optical tweezers have been successfully adopted as excep-

tionally sensitive transducers for microrheology studies of

complex fluids. Despite the general trend, in this article

I explain why a similar approach should not be adopted

for microrheology studies of living cells. This conclusion

is reached on the basis of statistical mechanics principles

that indicate the unsuitability of optical tweezers for such

purpose.

Introduction

It is thanks to the pioneering works of Ashkin and co-

workers1–3 that optical tweezers (OT) have become an invalu-

able tool for a myriad of applications throughout the natural

sciences4–9, revolutionising the field of micro-sensing10–12.

Their success relies on the inherent property that a highly fo-

cused laser beam has to trap (in three dimensions) micron-

sized dielectric objects suspended in a fluid. In particular, OT

have been adopted as exceptionally sensitive transducers (i.e.,

able to resolve pN forces and nm displacements, with temporal

resolution down to few µsec) to study a multitude of biologi-

cal processes, such as measuring the compliance of bacterial

tails13, the forces exerted by a single motor protein14, the me-

chanical properties of human red blood cells15 and those of in-

dividual biological molecules16–18; normally inaccessible by

conventional methods.

Accessing the time-dependent trajectory of a micron-sized

sphere, to high spatial and temporal resolution, is one of the

basic principles underpinning microrheology techniques19,20.

Microrheology is a branch of rheology (the study of flow of

matter), but it works at micron length scales and with micro-

litre sample volumes. Therefore, microrheology techniques

are revealed to be very useful tools for all those rheological

studies where rare or precious materials are employed, e.g. in

biophysical studies21–25. Moreover, microrheology measure-

ments can be performed in situ in an environment that can-

not be reached by a conventional rheology experiment, for in-
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stance inside a living cell26,27. The most popular microrheol-

ogy techniques are: video particle tracking microrheology28,

diffusing wave spectroscopy29,30, atomic force microscopy31,

magnetic tweezers21,32 and optical tweezers33–39. These are

classified as either ‘active’ or ‘passive’ techniques, depending

on whether the particle displacement is induced by an exter-

nal force field or generated by the thermal fluctuations of the

fluid molecules surrounding the probe particle, respectively.

For a good overview and understanding of the historical roots

of the most common microrheology techniques, the reader is

referred to Refs.20,40–42.

In general, microrheology techniques are aimed at relat-

ing the time-dependent tracers’ trajectories to the linear vis-

coelastic (LVE) properties of the fluid in which they are dis-

persed. In the particular case of OT, methods for perform-

ing microrheology measurements of complex fluids have been

presented36,37,43 and validated43–45 against conventional bulk

rheology methods. However, when similar approaches are

considered for rheological studies of living cells, there ex-

ist some issues related to the ‘time-scales’ involved during

the measurements, that preclude the determination of the vis-

coelastic properties of such systems. This conclusion is ex-

plained in this article on the basis of simple statistical me-

chanics principles.

Theoretical background

Linear rheology

The linear viscoelastic properties of a generic material can be

expressed in terms of its shear complex modulus G∗(ω) =
G′(ω)+ iG′′(ω), which is a complex number whose real and

imaginary parts provide information on the elastic and the

viscous nature of the material under investigation46. These

are commonly indicated as the storage (G′(ω)) and the loss

(G′′(ω)) moduli, respectively. The conventional method of

measuring the LVE properties of a material is based on the

imposition of an oscillatory shear stress σ(ω, t) = σ0 sin(ωt)
(where σ0 is the amplitude of the stress function) and the

measurement of the resulting oscillatory shear strain, which

would have a form like γ(ω, t) = γ0(ω)sin(ωt −ϕ(ω)), where
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Fig. 1 Schematic representations of the frequency dependent moduli for a generic viscoelastic fluid (left) and a generic complex solid (right).

Both the graphs have double logarithmic scales.

γ0(ω) and ϕ(ω) are the frequency-dependent strain amplitude

and phase shift between the stress and the strain, respectively.

The relationship between the shear complex modulus and the

two experimental functions describing the stress and the strain

is46:

G∗(ω) =
σ̂(ω)

γ̂(ω)
, (1)

where σ̂(ω) and γ̂(ω) are the Fourier transforms of σ(ω, t) and

γ(ω, t), respectively. Notice that, Equation 1 is of general va-

lidity; i.e., it applies to any temporal forms of the stress and

the strain. In the particular case of sinusoidal functions Equa-

tion 1 returns:

G∗(ω) =
σ0

γ0(ω)
cos(ϕ(ω))+

+i
σ0

γ0(ω)
sin(ϕ(ω))≡ G′(ω)+ iG′′(ω), (2)

which provides the expressions of the moduli as function of

both the frequency-dependent functions γ0(ω) and ϕ(ω). No-

tice that, G∗(ω) is time invariant46.

Figure 1 shows the typical behaviour of the moduli as func-

tion of the frequency for both (left) a generic viscoelastic fluid

and (right) a generic complex solid. Over the past century, the

frequency behaviour of the viscoelastic moduli has been corre-

lated, both theoretically and experimentally46–49, to the mate-

rial’s topological structure at different length scales; i.e., from

the bulk sample at relatively low frequencies, down to atomic

length scales for frequencies of the order of T Hz. Hence the

importance of their knowledge.

Passive microrheology with OT

As described in Ref.43 for the case of a stationary trap, the

statistical mechanics analysis of the thermal fluctuations of

an optically trapped micron-sized spherical particle (see Fig-

ure 2), suspended in a generic fluid at thermal equilibrium,

has the potential of revealing both (i) the trap stiffness κ and

(ii) the frequency-dependent viscoelastic properties of the sus-

pending fluid. The analytical procedure for evaluating G∗(ω)
from the trajectory ~r(t) of an optically trapped micro-sphere

involves the solution of a generalised Langevin equation hav-

ing the form of:

m~a(t) = ~fR(t)−
∫ t

0
ζ(t − τ)~v(τ)dτ−κ~r(t), (3)

where m is the mass of the particle, ~a(t) is its acceleration,

~v(t) its velocity and ~fR(t) is the usual Gaussian white noise

term, modelling stochastic thermal forces acting on the parti-

cle. The integral term, which incorporates a generalised time-

dependent memory function ζ(t), represents viscous damping

by the fluid. The last term on the right side of Equation 3 is

the restoring force exerted by the OT (~FOT = −κ~r(t)) on the

particle, when the confining field E(~r) generated by the OT

is assumed to be harmonic: E(~r) = 1
2
κr2. Following the as-

sumption made by Mason and Weitz in their seminal work that

established the field of microrheology19 (i.e., that the Laplace-

transformed bulk viscosity of the fluid η̃(s) is proportional to

the microscopic memory function ζ̃(s) = 6πaη̃(s), where a is

the bead radius), Equation 3 can be solved for G∗(ω) in terms

of either of the following two time-averaged functions of the

particle trajectory, i.e. the Normalised Mean-Square Displace-

ment (NMSD)36:

Π(τ) =
〈∆r2(τ)〉t0

2〈r2〉t0

≡
〈
[
(r(t0 + τ)− r(t0)

]2
〉t0

2〈r2〉t0

, (4)

or the Normalised Position Autocorrelation Function

(NPAF)37:

A(τ) =
〈~r(t0)~r(τ)〉t0

〈r2〉t0

. (5)

Equations 4 and 5 are, by time-translation invariance, func-

tions only of the time interval (lag-time) τ = (t − t0). More-

over, the brackets 〈· · · 〉t0 denote an average over all initial
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Fig. 2 The 2D trajectory of an optically trapped bead of 2.5 µm

radius suspended in water over a period of 22 min.

times t0. The term
〈
r2
〉

t0
is the time-independent variance

of the vector describing the particle’s displacement from the

trap center, the origin of ~r(t). Figure 3 shows the temporal

behaviour of both the above functions for the case of an op-

tically trapped microsphere suspended in a Newtonian fluid

(i.e., water).

From Equation 3, the fluid’s shear complex modulus can be

expressed as:

G∗(ω)
6πa

κ
=

Â(ω)

Π̂(ω)
(6)

where Π̂(ω) and Â(ω) are the Fourier transforms of Π(τ) and

A(τ), respectively. Notably, these two function are simply re-

lated to each other both in the time- and in the frequency-

domain: Π(τ)+A(τ) = 1 and iωΠ̂(ω)+ iωÂ(ω) = 1, respec-

tively. Notice that, Equation 6 is valid as long as the particle

inertia (i.e., mω2) is negligible; which, in the case of micron

sized particles (with m ≈ 10−15), is a reasonable assumption

for frequencies values ω . MHz.

Active microrheology with OT

Active microrheology with OT is commonly performed via

oscillatory measurements like the conventional bulk rheology

method described by Equations 1 and 2. However, in the case

of microrheology with OT of complex fluids, the expression

of G∗(ω) must be obtained via the solution of a generalised

Langevin equation similar to Equation 3, but now with an ex-

tra term accounting for a non stationary trap:

m~a(t) = ~fR(t)−
∫ t

0
ζ(t − τ)~v(τ)dτ+κ(~rc(t)−~r(t)) , (7)

where all the terms are the same as in Equation 3 plus ~rc(t)
that is the position vector describing the driven motion of the

optical trap center. Equation 7 can be solved for G∗(ω) in
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Fig. 3 The NMSD (left axis) and the NPAF (right axis) vs. lag-time

τ evaluated from the particle trajectory shown in Figure 2. The red

line is the theoretical prediction described by Equation (13).

terms of the particle position~r(t) and the resulting expression

is:

G∗(ω)
6πa

κ
=

(
〈r̂c(ω)〉

〈r̂(ω)〉
−1+

mω2

κ

)
∼=

r̂c(ω)

〈̂r〉(ω)
−1 (8)

where r̂c(ω) and r̂(ω) are the Fourier transforms of~rc(t) and

~r(t), respectively. The brackets 〈...〉 denote the average over

several independent measurements. For the last equality it has

been considered that: (i) 〈r̂c(ω)〉 ≡ r̂c(ω), being the latter the

driving component, thus reproducible over several indepen-

dent measurements, (ii) 〈r̂(ω)〉 ≡ 〈̂r〉(ω) because of linearity

of the involved operators, (iii) the particle inertia is negligible.

Notice that, Equation 8 is of general validity, whatever is the

temporal form of~rc(t).
In the simplest case when the optical trap is periodically os-

cillating with a driving frequency β, i.e. ~rc(t) = ‖rc‖sin(βt),
the particle displacement will assume a temporal form like

~r(t) = ‖r‖sin(βt −ϕ(β)); where ‖rc‖ and ‖r‖ are the ampli-

tudes of the sinusoidal functions ~rc(t) and ~r(t), respectively.

In this case, Equation 8 simplifies:

G∗(β)
6πa

κ
=

‖rc‖

‖〈r〉‖
eiϕ(β)β −1, (9)

from which the viscoelastic moduli assume the following ex-

pressions:

G′(β)
6πa

κ
=

‖rc‖

‖〈r〉‖
cos(ϕ(β))−1 (10)

G′′(β)
6πa

κ
=

‖rc‖

‖〈r〉‖
sin(ϕ(β)). (11)

The above equations are similar to those obtained previ-

ously38, but here they have been derived rigorously from
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Fig. 6 (Left axis) The MSD vs. lag-time of 104 simulated

trajectories of freely diffusing particles; each trajectory is made up

by 106 data points (i.e. steps). (Right axis) The averaged percentage

deviation of the MSD from its expected value. Image taken from

Ref.43

In the case of passive microrheology, the execution of long

measurements is an imperative requisite to obtain an accurate

estimation of the aimed time-averaged functions, such as Π(τ)
or A(τ). In order to quantify the uncertainty in the valuation

of such functions (measured over a finite set of data) with re-

spect to their expected values, in Figure 643 are shown the

simulation results of the MSD versus lag-time for a freely dif-

fusing particles evaluated over 104 simulated trajectories, each

of them comprising 106 random steps, drawn from a uniform

distribution of unit width. The resulting MSD satisfies the

expected scaling law; i.e. MSD ∝ τ. Moreover, it has been

shown that, for each trajectory, the percentage deviation of

the MSD(τ) from its expected value grows with lag-time as a

power law close to τ1/2.

From Figure 6, it is possible to infer that, within a single tra-

jectory of 106 steps the error in the measured MSD, for a lag-

time of τ= 106 time units is typically as large as 100%. Unfor-

tunately, this is particularly true for measurements performed

with OT setups equipped with a quadrant photodiode (QPD),

which allows high speed (∼ MHz) detection of the probe par-

ticle position, but fills very quickly the personal computer’s

memory buffer register allowing only few seconds of measure-

ment duration (Tm ∼ 1 sec). Whereas, in the case of OT setups

equipped with a charge-coupled device (CCD) camera for the

particle’s position detection, the acquisition rates (AR) are of

the order of kHz. Therefore, for a measurement duration of

Tm ≃ 22 min (i.e., 106 data points acquired at AR ≃ 800 Hz),

the error in estimating MSD at τ = 1 sec is typically of the or-

der of a few percents. This is confirmed by the results shown

in the inset of Figure 7, where the normalised mean square

displacement of an optically trapped bead suspended in water

is compared with the theoretical prediction43 derived for the
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Fig. 7 Comparison between the Π(τ) (circles) and its prediction

(continuous line), via Equation (13), for an optically trapped

4.74 µm diameter silica bead suspended in water, with

κ = 0.93 µN/m and η = 0.896 mPa · s. The NMSD has been

obtained from the analysis of 106 data points representing the

particle trajectory, acquired at AR ≃ 800 Hz. The inset highlights

the behaviour of Π(τ) within a small time-window taken at lag-time

τ ≃ 1 sec.

case when the suspending fluid is Newtonian:

Π(τ) = 1− e−λt , (13)

where λ = κ/6πaη and η is the fluid viscosity.

A possible solution to the experimental issue of performing

passive microrheology measurements with QPD equipped OT

would imply a non-constant acquisition rate. For example,

this could be achieved by performing a two speed measure-

ment: i.e., during the first second, data could be acquired at

1 MHz with lag-times evaluated up to τ = 10−3 sec and then

the AR could be dropped to a kHz for the remaining ≃ 17 min.

So that, the average error of the measured NMSD would re-

main below a few percents up to τ= 1 sec and the total number

of acquired data points would be 2×106.

In the case of active microrheology, long measurements are

also essential to achieve a high signal to noise ratio; where the

‘noise’ are the thermally driven particle fluctuations, which in

this case are an undesired presence that debase the (active) sig-

nal. Therefore, whether the fluids’ LVE properties are evalu-

ated by means of a frequency sweep oscillatory measurement

(via Equation (9)) or by a more efficient hybrid method37 (via

Equations (6) and (12)), measurements need to be averaged

over several repetitions (or cycles). This brings the total mea-

surement duration Tm to be at least of the order of a few tens

of minutes.
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Microrheology with OT of gels

One of the key challenges in the field of microrheology is the

choice of the probe size. This is because, in order to retrieve

the material’s bulk rheology properties the particle diameter

(d = 2a) must be bigger than the characteristic length scale

of the system under investigation. For example, in the case

of a polymer gel, the particle diameter must be bigger than

the average mesh size (ξ) of the polymer network; so that, for

d > ξ, the particle would not be able to diffuse through the

polymer network and its fluctuations would have the potential

of revealing the gel’s LVE properties (in a similar way to con-

ventional bulk rheology measurements, where the used tools

are much bigger than ξ). Whereas, for d < ξ, the particle is

not trapped by the polymer network and the analysis of its

trajectory (whether it is optically trapped or not) would pro-

vide information on the hydrodynamic coupling between the

gel network and the probe particle, but not on the gel’s LVE

properties.

Moreover, if the first condition is fulfilled (i.e., d > ξ), then

one could argue that there is no need of OT for constraining

the particle diffusion, as the gel would work as a trap itself.

Nevertheless, it is important to highlight that, even when the

particle is trapped by the gel, OT setups equipped with a quad-

rant photodiode could turn to be very useful for high frequency

detection of the particle position, as long as the OT laser is not

constraining the particle displacement. This condition can be

simply achieved by tuning the laser power so that the trap stiff-

ness is lower than the gel’s low-frequency elastic modulus G′
0:

G′
0

6πa

κ
> 1 (14)

In this case, Equations 6 and 12 are no longer applicable and

the well known generalised Stokes-Einstein equation must be

used:

G∗(ω) =
kBT

πaiω〈∆̂r2(ω)〉
, (15)

where 〈∆̂r2(ω)〉 is the Fourier transform of the particle mean

square displacement 〈∆r2(τ)〉t0 .

Therefore, although optical tweezing is not necessary for

linear microrheology measurements of gels, the use of a laser

combined with a QPD as a high frequency particle position

detector could turn to be advantageous if the right choice of

the acquisition rate is made.

Microrheology with OT of living cells

In the case of microrheology measurements performed in liv-

ing cells or more in general in living organisms (e.g., para-

sites), things get more complicated, because their mechanical

properties are not time-invariant; at least not at all the time-

scales. In particular, it has been shown27,51,52 that the presence

of “athermal” fluctuations within a living cell, due to the ex-

istence of active processes (e.g., actin-myosin interactions53)

that dissipate energy not just by simple friction, drives the

system out of thermodynamic equilibrium. Indeed, their ex-

istence should not be neglected as they may substantially alter

the viscoelastic response of the system (mostly at low frequen-

cies), with the risk of gathering deceptive information. Unfor-

tunately, the evaluation of the error carried by such negligence

is not trivial as different organisms may present different ways

of dissipating energy at different time scales; hence the non-

uniqueness of the error estimation. Moreover, athermal fluc-

tuations can occur anywhere within a cell and their effects can

be felt throughout the cytoplasm, from the plasma membrane

to the nucleus. They usually occur at rates that may vary not

only from different kinds of cells, but also within the same

cell line, and are expected27,51–53 to occur within a range of

frequencies spanning from 10−2 Hz to 102 Hz.

From a microrheology point of view, one could consider the

fastest rate (Γorg) of all the biological process occurring within

the cell as the lower frequency limit for the applicability of the

fluctuation–dissipation theorem54, which is the underpinning

principle of the field of microrheology19, linking the particle

motion to the viscoelastic nature of the suspending medium.

It follows that, microrheology of living cells can still be per-

formed if the right assumptions on the time-scales involved

during the measurement are made; i.e., on the Deborah num-

ber55. This is defined as the ratio between the characteristic

relaxation time of the system under study and the time taken

to observe such system:

De =
time o f relaxation

time o f observation
. (16)

Therefore, for each living organism, one could assume the ex-

istence of a characteristic time (τorg =Γ−1
org) such that, for mea-

surements having duration Tm shorter than τorg (i.e., De & 1),

the living system can be seen as a complex material (ei-

ther fluid or solid) with ‘time-invariant’ viscoelastic proper-

ties; whereas, for observations lasting longer than τorg (i.e.,

De . 1), the living organism has time to self-reorganise and to

move out of thermodynamic equilibrium. However, notwith-

standing that for De & 1 microrheology measurements of a

living system are possible, in the case of OT the following

consideration excludes them from being considered for such

purpose. Specifically, whether the living organism is assumed

to behave as a viscoelastic fluid or a complex solid, microrhe-

ology with OT requires sufficiently long measurements, of the

order of tens of minutes, for an accurate evaluation of the rel-

evant time-averaged functions (e.g., Π(τ), A(τ), D(t) or the

MSD). This would very likely result in De . 1 for the major-

ity of the living organisms, with the consequent lost of the

pseudo-equilibrium assumption because of the initiation of

athermal fluctuations within the system. Thus the inappropri-
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ateness of OT for measuring the linear viscoelastic properties

of living cells.

Conclusions

Optical tweezers have been successfully adopted as excep-

tionally sensitive transducers for microrheology studies of vis-

coelastic fluids at thermodynamic equilibrium. However, de-

spite the general trend, a similar approach cannot be adopted

for microrheology studies of living cells. This is because the

time-scales required by the optical tweezers to perform mi-

crorheology measurements are much longer than the char-

acteristic time-scales of the biological processes occurring

within cells. This results in a violation of the fluctuation–

dissipation theorem, which links the particle motion to the lin-

ear viscoelastic properties of the suspending medium. There-

fore, based on simple rheological concepts, it has been shown

that microrheology with optical tweezers of living cells ‘is not

an option’!
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