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Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by
experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific ‘defect’ patterns
in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets.
Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal
and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we
investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings
demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined
systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic
crystals which is a promising approach for the production of dynamically programmable metamaterials.

1 Introduction

Microfluidic devices have become an important tool in chem-
istry and biology, where they are increasingly used, for ex-
ample, in analytic essays,1,2 micro-reactions3 or flow cytom-
etry.4 These applications typically involve manipulation and
control of immersed objects, such as droplets, vesicles or
cells,5 that interact hydrodynamically through the flow per-
turbations of the surrounding fluid. A detailed understand-
ing of the correlated motion induced by long-ranged hydro-
dynamic interactions in microfluidic devices is therefore es-
sential for efficient control of the flow of micro-particles. In
recent years, a number of studies brought out that microflu-
idic droplet systems are especially well suited to steer their
dynamics by modifying particle properties and/or device ge-
ometry.6–9 Consequently, microfluidic droplets have become
both a test-bed and a model system to study collective be-
haviour and self-organisation in non-equilibrium many-body
systems.10 Typically, a pressure-driven flow is imposed such
that the system is out of equilibrium, and at low Reynolds
number viscous dissipation dominates over inertia. A theo-
retical description of such driven dissipative systems remains
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challenging, and thus experiments and computer simulations
are basic tools to study the dynamics of microfluidic droplet
ensembles.

When microfluidic droplets are confined between two par-
allel plates, the geometry is effectively two-dimensional (2D)
and the scattered flow has a characteristic dipolar form.11 In
this case, the hydrodynamic interactions are marginally long-
ranged, i.e., the decay exponent is equal to the dimensionality
of the system.12 In contrast to quasi-1D geometries, where the
hydrodynamic interactions are strongly screened, the dipolar
interactions in quasi-2D geometries lead to complex collec-
tive phenomena.10 Dipolar flow fields are also characteristic
for some types of self-propelled particles, such as droplets
driven by Marangoni flows or by chemical reactions on their
surface.13 Some progress has been made in understanding the
dynamics of rigid and deformable particles and their hydro-
dynamic coupling in 2D pressure-driven flow. Pairs of rigid
particles in Poiseuille flow were shown to follow either bound
or unbound trajectories, depending on the relative position
of the particles, their absolute position in a channel, and the
strength of confinement.14 Linear arrays of rigid spheres and
deformable drops aligned in the flow direction undergo a pair-
ing instability.15 While arrays of spherical particles are also
unstable to lateral perturbations, droplet arrays are stabilised
by quadrupolar interactions due to deformation.15,16 Asym-
metric particles align with the flow due to self-interactions,
and migrate to the centreline of the confining channel.17–19

For highly asymmetric particles, the time-scales for alignment
and focusing separate due to the distinct hydrodynamic mech-
anisms involved. The focusing of asymmetric particles resem-
bles a damped harmonic oscillator, whereas symmetric par-
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ticles oscillate between side-walls.17 Dipolar hydrodynamic
interactions can also give rise to sound and shock waves that
are superposed on droplet diffusion. The waves are due to a
density-velocity coupling and can be described by a 1D Burg-
ers equation.10,20,21

A particular feature arises in regular arrays of droplets, so
called microfluidic crystals, where the flowing droplets have
a spatial order with a well-defined spacing. These crystals
can exhibit collective oscillations with a dispersion relation
akin to solid state phonons.22,23 These microfluidic phonon
modes are neither growing nor decaying, and are thus a re-
alisation of marginally stable oscillatory modes in a dissipa-
tive system made possible by the imposed symmetry-breaking
flow. Practically, however, the possibility to observe these
modes is limited by non-linear instabilities10,24 and the strong
dependence on initial conditions. Only recently, an experi-
mental technique was proposed to systematically excite mi-
crofluidic phonons, and the observed modes revealed a cou-
pling mechanism, induced by lateral confinement, between
longitudinal and transverse modes that was confirmed by com-
puter simulations.25 The ability to control the dynamic prop-
erties by tuning the flow characteristics opens interesting per-
spectives regarding dynamically programmable metamaterials
which could be produced by modulating the refractive index
of droplet crystals.26–28

Here we investigate collective modes in dense microfluidic
crystals under confinement both experimentally and by com-
puter simulations. We show that distinct oscillatory behaviour
can be systematically excited by varying the initial conditions
through the introduction of specific ‘defect’ patterns. The ob-
served modes are analysed and characterised, and reveal sev-
eral interesting dynamic features, such as cascades of later-
ally offset pairs and mode coupling. The results from exper-
iments and computer simulations agree quantitatively. The
long-time behaviour is investigated in computer simulations
and used to identify possible instabilities and their underlying
mechanisms. Our approach demonstrates the rich dynamics
that emerges from hydrodynamic interactions in confined mi-
crofluidic droplet ensembles. The results show good agree-
ment with a linearised far-field theory10 even in the dense
droplet regime. This makes it very promising to apply the
techniques to other crowded microfluidic systems, such as
self-propelled particles.13

The remainder of the article is organised as follows: In sec-
tion 2, we review the hydrodynamics of quasi-2D systems and
the linearised far-field theory for microfluidic phonons. Sec-
tion 3 describes the experimental techniques and the simula-
tion approach we used to study microfluidic droplet systems.
In section 4, we present excitation mechanisms for collective
waves and analyse the observed oscillations and instabilities.
A concluding discussion is given in section 5.

y

x

drag
friction

flow

Fig. 1 Schematic illustration of the quasi-2D flow geometry.
Flattened droplets experience a friction at the top and bottom plates
which counteracts the hydrodynamic drag. When the droplets move
relative to the imposed flow, they act as a mass dipole with a sink at
their leading edge and a source at their trailing edge.

2 Microdroplet trains in quasi-2D flow

We consider droplets that are confined between two parallel
plates and thus move in a quasi-2D geometry, cf. figure 1.
The flow and the hydrodynamic interactions in this geometry
differ qualitatively from the bulk case due to momentum ab-
sorption at the confining plates which leads to screening of the
far-field. The fluid flow satisfies no-slip boundary conditions
on the channel walls, and since the height H of the channel is
small compared to the lateral width W , the velocity gradient
in the z-direction is much larger than in the planar directions.
In the Darcy approximation ∂ 2

z � ∂ 2
x , ∂ 2

z � ∂ 2
y , the solution

of the Stokes equation has a quasi-2D Hele-Shaw form29

u(x,y) =
1
H

∫ H/2

−H/2
dh

h2−H2/4
2η

∇p(x,y)

=− H2

12η
∇p(x,y).

(1)

At low Reynolds number, the flow is incompressible and
Eq. (1) can be written as a Laplace equation

∇
2
φ(x,y) = 0 (2)
u(x,y) = ∇φ(x,y) (3)

where the effective potential is defined through the pressure
φ =−H2 p/12η with η the dynamic viscosity of the fluid.

We briefly review here the theoretical description presented
in Refs.10,23 When a droplet is moving through the fluid with a
velocity δu = u∞−ud relative to the externally imposed flow
u∞ = u∞x̂, it acts as a momentum monopole whose flux scales
as δu2. However, due to the absorption of momentum at the
top and bottom plates the flux is not conserved. The absorbed
flux scales as δu/h, therefore the flow field of the momen-
tum monopole ∂rδu ∝ −δu/h decays exponentially.11 Thus,
unlike in the bulk case, the leading contribution is the mass
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dipole created by the droplet. The moving droplet pushes fluid
out at the upstream edge and draws fluid in at the downstream
edge, giving rise to a characteristic dipolar flow field. For-
mally, the flow perturbation at a distance r from a droplet is
obtained by solving the Laplace equation with boundary con-
ditions of zero mass flux (zero perpendicular velocity) through
the droplet interface.30 This gives the dipolar potential and
scattered velocity field around a droplet of radius R

φd(r) = R2
δu · r̂

r
(4)

u(r) = R2
δu · I−2r̂r̂

r2 . (5)

The 2D potential flow can also be described by a complex po-
tential w(x+ iy) = φ(x,y)+ iψ(x,y) where the imaginary part
is the stream function ψ(x,y). The flow velocity is then given
by ux− iuy = dw/dz with z = x+ iy. For an imposed flow in
the x-direction the complex dipolar potential is then

wd(z) = R2
δu

1
z
. (6)

A droplet moving in the imposed flow experiences a hydro-
dynamic drag that can be written as

Fh =
1
2

ξ ud +
ξ

R2 ∑Res[w] =
1
2

ξ ud +ξ δu, (7)

where the drag coefficient ξ = 24πηR2/H is introduced. The
second term arises from the self-interaction of the droplet with
its dipole.10

If the size R of the droplets exceeds the channel height H,
they are flattened and experience a friction with the top and
bottom plates which can be modelled as

Ff =−ζ ud . (8)

Since inertial effects can be neglected at low Reynolds num-
ber, we can use force balance Fh+Ff = 0 to obtain the equation
of motion for the droplet

ud = µu∞ =

(
1
2
+

ζ

ξ

)−1

u∞, (9)

where µ = ud/u∞ is the mobility of the droplet in the imposed
flow.

In the presence of lateral side-walls, i.e., in a microfluidic
channel, additional boundary conditions have to be satisfied.
The simple dipole potential (6) has a non-vanishing flux at the
side-walls which can be eliminated by placing image dipoles
inside the wall.31,32 These dipoles form an infinite array per-
pendicular to the flow direction. The flow potential of a single
droplet is obtained by summing over the infinite dipole array,

and then rescaling by a compressibility factor C to account for
the finite size R of the droplets.10,31 The result is23

wd(z) =C · πR2δu
2W

{
coth

[
π

2W
(z− iyd)

]
+coth

[
π

2W
(z− i(W − yd))

]}
,

(10)

where

C =
2W
πR

cot
(

πR
2W

)
−

sin
(

πR
W

)
cos
(

πR
W

)
+ cos

(
2πyd

W

)
−1

. (11)

The equation of motion for a confined droplet can be obtained
as above and keeps the form ud = µu∞ if the mobility is re-
placed by

µ =C ·
(

C− 1
2
+

ζ

ξ

)−1

. (12)

In an ensemble of droplets, the solution of the Laplace equa-
tion is considerably more complicated because the boundary
conditions have to be satisfied additionally on all droplet sur-
faces. Although this is in principle possible using the method
of images, the large number of reflections that arise makes it
unreasonably intricate in practice. One therefore resorts to the
leading-order approximation where the drag force is given by
a superposition of the flow fields created by the other droplets.
For the n-th droplet in an ensemble, the equation of motion
thus is10

un,x− iun,y = µ

(
u∞ +∑

j 6=i

dwd

dz

∣∣∣∣
z j−zn

)
. (13)

This approximation is valid if the inter-droplet distance is
larger than the droplet size r j − rn � R, and we will see be-
low that the predictions based on Eq. (13) work well even for
dense droplet trains.

For a regular train of droplets flowing with an ‘equilib-
rium’ spacing a in the centre of the channel, the displacements
δ zn = zn−na are assumed to be small and the derivative of the
potential (10) can be expanded. To first order, the equations of
motion are then given by10,25

˙δxn = 2B
∞

∑
j=1

coth
(

a jπ
W

)
× csch2

(
a jπ
W

)
(δxn+ j−δxn− j)

˙δyn = −B
∞

∑
j=1

[
1+ cosh

(
a jπ
W

)]2

× csch3
(

a jπ
W

)
(δyn+ j−δyn− j) ,

(14)
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with prefactor B = µ(u∞− ud)(π
2R/W 2) tan(πR/W ). These

equations describe waves, and by plugging in a plane-wave
solution, we arrive at the dispersion relations

ω‖(k) =−4B
∞

∑
j=1

coth
(

a jπ
W

)
csch2

(
a jπ
W

)
sin( jka)

ω⊥(k) = 2B
∞

∑
j=1

[
1+ cosh

(
a jπ
W

)]2

× csch3
(

a jπ
W

)
sin( jka).

(15)

3 Experimental and computational droplet mi-
crofluidics

Having discussed the flow fields and the forces acting on a
single droplet, we discuss the experimental realisation as well
as computer simulations of flowing droplets in a straight mi-
crofluidic channel.

3.1 Microchip fabrication and droplet production

Microfluidic devices were fabricated in Sylgard 184 (Dow
Corning) using standard soft lithographic protocols,33,34 and
the flow rates were volume-controlled by syringe pumps.
Mono-disperse water droplets were generated in n-hexadecane
(ρ = 773kg/m3, η = 3mPa s) with 2 wt% of the surfactant
Span 80 using a step geometry,34,35. The microchannel has
uniform height and width of H×W ≈ 120 µm×210 µm. Typ-
ical flow velocities are ud ≈ 250 µm/s for the droplet, and
uoil ≈ 500 µm/s for the continuous oil phase. The correspond-
ing Reynolds and Peclet number are Re = ρuoilR/η ≈ 10−2

and Pe = uoilR/D≈ 108, respectively.

3.2 Simulation approach: Multi-particle collision dy-
namics

In order to investigate the origin of our experimental obser-
vations and the validity of the approximations in the theoreti-
cal description, we conduct computer simulations using multi-
particle collision dynamics (MPC). MPC is a mesoscopic sim-
ulation method that is capable of reproducing the full hydro-
dynamics of a fluid.36–38 Since it does not rely on the assump-
tion of a specific flow perturbation, it is well suited to test the
accuracy of the semi-analytical theory based on dipolar flow
fields to describe the droplet interactions in a dense and con-
fined system. The fluid is modelled explicitly by idealised
point-like particles of mass m. The fluid dynamics emerges
from local mass, momentum and energy conservation in the
particle ensemble, whose equation of state is that of an ideal
gas. The update of particle positions and momenta mimics the
underlying kinetics and is split into successive streaming and

collision steps. During the streaming step the particle moves
ballistically,

ri = ri +hvi, (16)

where h is the time interval between collisions. In the colli-
sion step, the particles are sorted into cubic collision cells of
size ∆x. In each cell, the particles then exchange momentum
while the momentum of the collision cell is conserved. Vari-
ous collision rules have been proposed in the literature and in
this work, we employ a collision rule that also conserves an-
gular momentum of the cell.39 The collisions are augmented
with an Anderson-like thermostat to control the temperature.
The overall update of particle velocities is

v∗i = vC +vran
i −∑

j∈C

vran
j

NC

+mΠ−1
∑
j∈C

[
r j,C×

(
v j−vran

j
)]
× ri,C,

(17)

where vC is the centre of mass velocity of the collision cell
containing NC particles, Π is the moment of inertia tensor of
the particles, ri,C = ri−rC is the relative particle position, and
vran

i is a random velocity drawn from a Maxwell-Boltzmann
distribution. This collision operator is denoted as MPC-AT+a
in the nomenclature of Ref.40. In addition, the cell grid is
shifted randomly before each collision step to restore Galilean
invariance of the system.41 The dynamic viscosity η of the
MPC-AT+a fluid for large number density n (particles per cell)
is then given by

η =
nkBT h

∆xd

(
n

n− (d +2)/4
− 1

2

)
+

m(n−7/5)
24∆xd−2h

, (18)

where kBT is the imposed temperature and d = 2 is the dimen-
sionality of the system.

Since the droplets hardly deform in the experiment, we
model them as rigid discs of radius R that are coupled to
the fluid by a no-slip boundary condition, i.e., v′ = −v+ 2vb
where vb is the boundary velocity. It is to be noted that this is
effectively a different boundary condition than the one used in
deriving Eq. (4), however, we have found in practice that this
can be accounted for by the calibration procedure described
below and does not lead to a relevant difference in the mea-
surements. To apply the collision rule in the cells that are
partly or fully occupied by the rigid discs, the correspond-
ing volume is filled with virtual particles that are distributed
randomly within a layer of width

√
2a and whose velocities

are distributed according to a Maxwell-Boltzmann distribution
around the boundary velocity vb.39 The momentum change
of the fluid particles during streaming and collisions is accu-
mulated and leads to the boundary force Fb that moves the
discs.42 Due to the fluctuations in the MPC fluid, the boundary
force fluctuates as well such that the discs undergo Brownian
motion.43
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On very short distances, hydrodynamics are not resolved
and hence we add steric droplet-droplet and droplet-wall in-
teractions by means of Weeks-Chandler-Anderson (WCA) po-
tentials

VWCA(r) = 4ε

[( r0

r

)12
−
( r0

r

)6
]
+ ε 0 < r < 2

1
6 r0,

(19)
where r = ri j − 2R for droplet-droplet interactions, and r =
ri j−R for droplet-wall interactions. ri j is the distance of the
droplet centres, or the distance of the droplet centre from the
wall surface, respectively. To account for the friction at the top
and bottom of the Hele-Shaw cell, cf. Eq. (8), we apply a fric-
tion force Ffriction =−γ ud to the discs where ud is the velocity
of the droplet relative to the microchannel. The overall flow
is driven by an external force g corresponding to a constant
pressure gradient across the channel.

The parameters of the MPC simulations are as follows.
The size of a collision cell is ∆x = R/5 and the time step is
h = 0.005τ , where the time scale is τ = (kBT/m)−1/2∆x, and
m is the mass of one MPC particle. The fluid density, the driv-
ing force and the friction are ρ = 40m/∆x2, g = 0.1m∆x/τ ,
and γ = 2 · 104 m/τ . These parameters correspond to a fluid
viscosity η = 321.77m/τ . The mass of the droplets is given
by M = ρπR2 ≈ 3140m. The parameters for the WCA poten-
tial are ε = kBT and r0 = ∆x. We varied the channel width
W , the droplet spacing a, and the initial configuration includ-
ing the initial wavelength λ for simulating droplet trains in a
channel.

In order to compare the simulation results to the exper-
iments quantitatively, we determined the value K = ud/uoil
from independent simulation runs with a single droplet un-
der the same confinement. For a channel width of W = 3R
we obtained a value of K ≈ 0.62 which is on the order of
the experimental parameters. The oil velocity is in the range
uoil ≈ 10−2∆x/τ , such that the typical Reynolds and Peclet
number of the simulations are Re ≈ 10−3 and Pe ≈ 102, re-
spectively. Note that the Peclet number is significantly lower
than in the experiments. On the one hand, this leads to more
pronounced fluctuations, but on the other hand, it allows us to
observe in the simulations the onset of instabilities on acces-
sible time scales, cf. section 4.4.

4 Controlled excitation and analysis of collec-
tive oscillations

Arrays of droplets flowing in a straight microchannel self-
organise into two parallel trains of droplets with alternating
lateral positions.44 For all neighbours j of a droplet i in this
zigzag order, there exists a droplet j′ such that the positions
relative to i satisfy ri j · x̂ =−ri j′ · x̂ and ri j · ŷ = ri j′ · ŷ. There-
fore, the flow fields of droplets j and j′ cancel at the position

Fig. 2 Illustration of the introduction of gaps of alternating width in
the zigzag arrangement in computer simulations. The distance
between neighbouring droplets is alternatingly larger and smaller
than the average droplet spacing a which leads to longitudinal
pairing cascades along the train of droplets.† The average droplet
spacing a in the configurations shown from top to bottom is 2.2R,
2.4R, and 2.6R.

Fig. 3 Trajectories of 4 droplets in a train of 40 droplets obtained
from simulations where the initial arrangement contains gaps. For
the smaller spacing a = 2.2R the longitudinal and transverse
oscillations remain stable for some time until the longitudinal
oscillations start growing. The transverse oscillations do not cross
the channel centreline, and the trajectories in configuration space
revolves on either side of the channel. For the larger spacing
a = 2.4R the oscillations start to grow sooner and the droplets move
transversely across the channel, thus breaking the initial pattern.

of droplet i and no force is exerted due to the symmetry of the
arrangement. The zigzag order is thus stable, and for a collec-
tive oscillation to emerge the symmetry of the droplet arrange-
ment has to be broken. In the following, we describe ways to
excite oscillations in an array of droplets and analyse quan-
titatively the collective modes observed in experiments and
reproduced by computer simulations using MPC as described
in section 3.2. The results demonstrate the rich dynamics that
emerge from hydrodynamic interactions in confined microflu-
idic droplet ensembles.

4.1 Longitudinal oscillations

In simulations, one way to perturb the symmetry of a droplet
train is to vary the spacing by introducing ‘gaps’ of alternat-
ing width between the incoming droplets. The resulting ar-
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Fig. 4 Power spectra obtained from simulations of the oscillations
triggered by the introduction of gaps.

rangement for the case of an alternating sequence of two dif-
ferent distances between subsequent droplets is illustrated in
figure 2. The droplet crystal now consists of pairs of later-
ally displaced droplets where the spacing between the pairs is
larger (or smaller) than the distance of the droplets within the
pair. For an isolated pair of spherical droplets, the hydrody-
namic forces do not lead to relative particle motion.15 In an
ensemble, however, the pairs are also affected by the neigh-
bouring pairs. In the perturbed zigzag arrangement, the pairs
are separated by a larger distance than the droplets in the pair,
and due to these gaps the configuration of the ensemble to
the right of any droplet is different from the configuration on
its left. Consequently, the flowing droplets can experience a
net hydrodynamic force and undergo relative motion. We ob-
serve that the leading droplet of the pair moves faster than the
trailing droplet. It separates and catches up with the trailing
droplet of the pair ahead of the original one, thus forming a
new pair. This process repeats with the new pairs and creates
a longitudinal oscillation of the droplet distances in the train,
where adjacent droplets are in anti-phase.† Figure 3 shows the
motion pattern for this droplet arrangement in the co-moving
frame of reference. The behaviour shows some similarity to
the pairing cascades observed in finite droplet trains15, how-
ever, in an infinite crystal the pairs cannot separate and keep
interacting such that the oscillatory motion ensues. This is also
reminiscent of the behaviour of colloidal particles driven by a
constant external pulling force to move on a ring.45 The mo-

Fig. 5 Space-time plots of simulation runs of a train of 40 droplets
perturbed by gaps. The initial horizontal pattern indicates that the
oscillations start out as a standing wave. After some time the initial
pattern breaks, and waves begin to propagate along the droplet train.

tion patterns further reveal that in the initial stage, the trans-
verse amplitude is small and the droplets stay on one or the
other side of the channel. In this phase, the configuration space
trajectory of the droplets has a revolving pattern. Over time,
however, the transverse amplitude is growing and the droplets
eventually cross the centre-line of the channel, as can be seen
in figure 3 for a/R = 2.4.

The longitudinal and transverse power spectra of the droplet
oscillations observed in simulations are shown in figure 4. For
the smaller spacing a = 2.2R, a clear signature of longitu-
dinal oscillations is observed. The accompanying transverse
oscillations are from droplets moving towards the centre of
the channel and back without crossing the channel. For larger
spacing a = 2.4R the power spectra show more scattered fea-
tures without a clear signature indicating the limited stability
the gap modes. The longitudinal spectrum has a strong sig-
nature ω ∝ k which is due to fluctuations, but there are also
distinct signals at k ·a = π indicating a zigzag wave.

The space-time plot of the droplet distance in figure 5 shows
for small times a pattern of horizontal stripes in the both the
longitudinal δx and transverse δy displacements, which indi-
cates that in the co-moving frame, the excited mode is initially
a standing wave. For longer times, the pattern changes as a
travelling wave seems to develop. These results suggest that
the stability of the longitudinal pairing wave is limited, as we
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Fig. 6 a) Microscopy time series showing the droplet reorganisation
at a 90◦ bend. b) Sketch indicating the relevant hydrodynamic
interactions between the droplets in the co-moving frame. The
transverse forces resulting from leading and trailing droplets in a
zigzag configuration with one ‘mismatch’ are shown as grey and
black arrows, respectively. c) Time series of a transverse droplet
motion for a single ‘mismatch’ as described in b); three drops are
marked and the net transverse forces, i.e., the sum of the grey and
black arrows in b), are shown as black arrows.

discuss in more detail below.

4.2 Transverse oscillations

Another protocol to excite waves in the microfluidic crystal
is to exchange the positions of a pair of droplets. Such ‘de-
fects’ can be created experimentally by guiding the zigzag ar-
rangement of droplets around a rectangular microfluidic bend,
see figure 6 a). At the bend, the two droplets of a pair ex-
change their longitudinal position as depicted. During this
process, the passing droplet creates an accelerated flow at its
trailing edge which prevents the following pair from exchang-
ing positions. Under suitable conditions, every second pair
undergoes a positional reordering such that the translational
symmetry of the droplet train is broken. Hence, in the re-
sulting droplet arrangement after the bend the droplets expe-
rience a net hydrodynamic force. For certain droplet respec-
tively channel dimensions, the bend allows to systematically
create such defects in the translational symmetry of the crys-
tal, and if defects are created periodically a global oscillation
patterns emerge. The collective oscillations are very stable
and could be observed for channel lengths up to 10 cm, i.e. af-
ter travel distances which are four orders of magnitude larger
than a typical droplet radius. The wavelength λ in longitudi-
nal direction depends on both the droplet size and the droplet

Fig. 7 Experimentally observed travelling sine waves as generated
by periodic ‘mismatches’ using the setup shown in figure 6 having
different droplet size (R≈ 64 µm, R≈ 67 µm, and R≈ 70 µm from
top to bottom) and different wavelength (λ = 8a, λ = 6a, and
λ = 4a from top to bottom).

spacing. By a variation of these parameters, various initial
wavelengths can be excited. Within a certain parameter
range, we can achieve accurate control of the amplitude of the
transverse oscillations by tuning the droplet radius R, since the
amplitude of the transverse oscillations is equal to W/2−R,
where W is the channel width. Figure 7 shows three examples
of structures with variable wavelength and amplitude. They
were obtained from zigzag structures with equal droplet spac-
ing but with different droplet radii R ≈ 64 µm, R ≈ 67 µm,
and R ≈ 70 µm which represent the case of the largest, inter-
mediate, and smallest wavelength producible. The first struc-
ture presents 8 droplets, the second 6 droplets, and the last
structure 4 droplets per wavelength. From the microscopy
time series we extract the trajectories and from the trajecto-
ries we could extract the transverse phonon spectra, see figure
8, which reveal the presence of two peaks for the transverse
oscillations. These peaks indicate that the excitations have
distinctive wavelengths for both longitudinal and transverse
modes.

The same type of droplet wave also emerges in computer
simulations when a triangle wave is used as initial condition,
see figure 9. Various wavelengths can be excited which are
found to behave qualitatively the same. In the following, we
analyse results obtained for wavelengths λ = 5a and λ = 6a,
corresponding to five and six droplets within one wavelength,
respectively. Figure 10 shows the trajectories of the droplets in
the co-moving frame of reference. We find that both the lon-
gitudinal and transverse coordinates oscillate around the equi-
librium position. The configuration-space trajectory of each
droplet describes a figure-eight pattern. While for λ = 6a
the figure-eight pattern is almost symmetric, it is clearly an-
tisymmetric for λ = 5a. This is a consequence of an antisym-
metric initial arrangement of droplets at the top and bottom
walls where two neighbouring droplets are close to the top
walls, while a single droplet is close to the bottom wall. The
trajectories in figure 10 suggest that this asymmetry is main-
tained in the oscillatory motion.† The trajectories are remi-
niscent of the bound-state motion pattern of an isolated pair
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Fig. 8 Longitudinal and transverse power spectra of the droplet
oscillations as calculated from experimental trajectories extracted
from microscopy time series corresponding to the waves shown in
Fig. 7.

of rigid discs in two-dimensional Poiseuille flow.14 Quantita-
tively, however, the state diagrams in Ref.14 seem to predict
cross-swapping trajectories for the relatively large displace-
ments (|y1− y2|/W ≈ 0.2 and 2a/W ≈ 1.5) in the wave con-
figurations considered here. We conclude that here the ensem-
ble arrangement stabilises the oscillatory states, as already ob-
served for the pairing waves as discussed in section 4.1 for the
cascade of droplet pairing.

Figure 11 shows the longitudinal and transverse power
spectra of the waves depicted in figure 9. The transverse
power spectrum from simulations shows a continuous sig-
nature where the dependence of the frequency on the wave-
vector has a sine-like shape. Such a dispersion relation is
reminiscent of microfluidic phonons.10,23 The dispersion re-
lation predicted by the linearised far-field theory for confined

Fig. 9 Snapshots of sine-like transverse waves observed in
computer simulations starting from an initial triangle wave.† The
variable wavelength λ in the configurations shown from top to
bottom are 6a, 5a, and 4a.

Fig. 10 Trajectories of 4 droplets in a train of 90 droplets forming a
sine-like wave as obtained from simulations for wavelengths λ = 6a
and λ = 5a. The trajectories follow a figure eight-like pattern,
which is symmetric for λ = 6a and asymmetric for λ = 5a.

microfluidic phonons,10,20 cf. section 2, is plotted on top of
the spectra and shows excellent quantitative agreement. It is
worthwhile to note that the calibration procedure described in
section 3.2 fixes all parameters such that no fitting is needed.
The space-time plot of the droplet distance in figure 12 con-
firms that the wave is travelling in the flow direction along the
droplet crystal, and is considerably more stable than the longi-
tudinal waves discussed above. At long times, gaps start form-
ing and the crystal breaks up into smaller sub-units. These
results show that the excited transverse wave is an acoustic
microfluidic phonon, and our experimental approach enables
us to specifically excite such modes with a large amplitude.
The power spectra also show a clear signature of longitudi-
nal oscillations which is explained in detail in the following
subsection.

Here it is also possible to increase experimentally the am-
plitude of the longitudinal waves by increasing the distance
between the droplets. A droplet train with such ‘gaps’ is
shown in figure 13 along with the corresponding longitudi-
nal and transverse power spectra. Compared to the sine-like
waves without gaps, cf. figure 8, the transverse modes here
exhibit a broader signal around the main wavelength. More-
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Fig. 11 Power spectra obtained from simulations of the sine-like
waves with wavelength λ = 6a (top) and λ = 5a (bottom). The
white lines are the dispersion relations ω⊥(k) for transverse
phonons, Eq. (15) and the phenomenological dispersion relation
ω‖(k) from Eq. (22). The theoretical dispersion relation (15) for
longitudinal phonons is shown in grey. The dashed lines are the
continuum approximations of Eq. (24).

over, the longitudinal signature extends over a whole range
of wavelength, similar to the longitudinal modes observed in
computer simulations, cf. figure 4. This indicates that a range
of wavelengths have been excited longitudinally by increasing
the droplet spacing, while the transverse sine-like wave is still
predominant. From the optofluidic point of view, these hetero-
geneous structures are the most interesting. When the droplet
distance approaches the hydrodynamic screening length, more
heterogeneous structures are observed in line with the results
from computer simulations in section 4.1.

4.3 Coupling of longitudinal and transverse oscillations

The experimental and numerical power spectra in figure 8 and
11 also show a clear signature of longitudinal oscillations, in
particular for the simulation results. The dominant frequencies
from experimental measurements agree quantitatively with the
simulation results. However, the dispersion relation of the lon-
gitudinal modes is qualitatively different from the prediction
of the linearised theory. The frequency curve ω‖(k) for acous-
tic phonons, c.f. Eq. (15), is plotted as a grey line in figure
11 and describes waves that propagate upstream, whereas the

Fig. 12 Space-time plots of simulation runs of a train of 90 droplets
forming a sine-like wave for wavelengths λ = 6a and λ = 5a.

observed frequencies indicate a positive group velocity. The
shape of the measured frequency curve resembles instead the
shape of the transverse dispersion relation ω⊥, yet the maxi-
mum appears shifted towards the edge of the Brillouin zone
and has a higher frequency than the maximum of ω⊥(k).

The anomalous properties of the longitudinal modes are
also apparent in the correlation strength

C(k‖,k⊥) =

〈
x̃(k‖, t)ỹ(k⊥, t)

〉
t√〈

|x̃(k‖, t)|2
〉

t 〈|ỹ(k⊥, t)|
2〉t

(20)

between longitudinal and transverse modes

x̃‖(k, t) =
N

∑
j=1

δx j(t)exp
[
−2πi

jk
N

]

ỹ⊥(k, t) =
N

∑
j=1

δy j(t)exp
[
−2πi

jk
N

]
.

(21)

The correlation strength for the transversely excited oscil-
lations is shown in figure 14 and indicates that longitudinal
and transverse modes strongly correlate if k‖ and k⊥ have the
same sign. This is in contrast to correlations that are expected
for purely acoustic phonons, where the matching condition
k‖ = −k⊥ is expected.24 Furthermore, by employing the fre-
quencies for correlated wave-vectors in the observed disper-
sion relations (figure 11), we find that the matching waves
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Fig. 13 (Top) Experimentally observed droplet pattern as generated
by periodic ‘mismatches’ using the setup shown in figure 6 with
increased spacing or ‘gaps’ between some droplets. (Bottom)
Corresponding longitudinal and transverse power spectra of the
droplet oscillations as calculated from experimental trajectories
extracted from microscopy time series.

approximately obey ω‖ = 2ω⊥. These observations indicate
a strong coupling of the longitudinal modes to the transverse
oscillation which is beyond a linearised far-field theory. This
coupling is induced by the relatively large amplitude of the
transverse waves which brings the droplets close to the wall
where the imposed flow is not uniform but decays due to no-
slip boundary conditions.25 The droplets are slowed down at
both channel walls which leads to the figure-eight trajectories
seen in figure 10. In the co-moving frame, the droplets move
backwards when they are close to the wall, and forward when
they cross the channel. During one transverse cycle, two wall
approaches take place such that

ω‖ = 2ω⊥

in agreement with the matching condition found above. In-
spection of the spatial wave patterns reveals that a full longitu-
dinal wave extends over each crest or trough of the transverse
wave, hence

k‖ = 2k⊥.

Combining these conditions leads to the dispersion relation

ω‖(k) = 2ω⊥(k/2). (22)

This relation is also plotted in figure 11 and is in remarkable
quantitative agreement with the signature of the longitudinal
oscillations.

The correlation strength for the longitudinal pairing waves
discussed in section 4.1 is shown in figure 15. Here, the
oscillations seem to be highly correlated in a region where
k‖ = k⊥−π . However, this pattern was only found if the gaps

Fig. 14 Correlation strength C(k‖,k⊥) of phonon modes obtained
from simulations of transversely excited oscillations with initial
wavelengths λ = 6a and λ = 5a. The dashed line is the
phenomenological relation k‖ = 2k⊥.

Fig. 15 Correlation strength C(k‖,k⊥) obtained from simulation
data of longitudinal pairing waves triggered by gaps.

between pairs were small, and since the pairing waves are con-
siderably less stable, it is difficult to clearly identify the origin.

We conclude that the lateral confinement in connection with
the considerable amplitude of the transverse excitations leads
to a strong interaction of longitudinal and transverse waves in
confined microfluidic crystals. It is interesting to note that for
the excitation mechanism studied here, this coupling does not
seem to lead to an instability. A possible explanation is that
in the dense droplet crystal, longitudinal oscillations cannot
grow due to steric constraints between the droplets.

4.4 Long-time behaviour and stability

While the transverse waves excited by positional exchange ap-
pear to be relatively stable, the pairing waves excited by the
introduction of gaps in the droplet train persist only for much
shorter times. This is evident in the space-time plot of the
longitudinal droplet distance in figure 16, which extends the
time scale of figure 5 by 5 five times and shows that the ini-
tial order disappears and other patterns emerge. One feature
that is visible for a range of initial gap widths is the formation
of subregions with small longitudinal droplet distances (dark
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Fig. 16 Space-time plots of simulation runs of a train of 40 droplets
initially perturbed by gaps with average spacing between the
droplets a/R = 2.2 and a/R = 2.4, respectively.

red regions in the space-time plot). Inspection of configura-
tion snapshots reveals that in these subregions, the droplets ar-
range in a dense zigzag order without oscillations. We hypoth-
esise that the formation of these ordered regions as observed
in simulations is similar to flow-induced crystallisation.46 The
‘frozen’ parts of the droplet train propagate with a velocity
that depends on the size of the subregion, and due to differ-
ent velocities some zigzag clusters catch up and merge with
others. Simulation trajectories reveal that the droplets crys-
tallise at the leading edge and melt at the trailing edge of the
subregions. In between the ordered regions, the droplet train
is disordered. In some instances, we observe a phonon-like
transverse wave that develops in these regions.† One simula-
tion snapshot of a droplet train that simultaneously exhibits an
ordered zigzag region and a transverse phonon wave is shown
in figure 17.

In the simulations, the long-time behaviour is significantly
affected by thermal fluctuations, which tend to lead to a disor-
dered droplet ensemble where the crystal structure disappears.
When the droplets move away from their regular crystal posi-
tions, they can be regarded as a continuous ensemble, and the
finite-differences in the equation of motion are to be replaced

by a continuum approximation47,48 for small a

δxn+ j−δxn− j ≈ 2 ja
∂δx
∂x

δyn+ j−δyn− j ≈ 2 ja
∂δy
∂x

.

(23)

Using this continuum approximation to derive the equations of
motion and the dispersion relation as in section 2, we obtain

ω‖(k) =−4kaB coth( jπβ )csch2( jπβ )

ω⊥(k) = 2kaB [1+ cosh( jπβ )]2 csch3( jπβ ).
(24)

These relations are plotted as dashed lines on the power spec-
tra in figure 11. The longitudinal pairing waves clearly show
a dispersion branch that is linear in k, and the spectra of the
transverse waves also have a signal that agrees with a linear
dispersion relation. We find that this part of the spectrum
becomes more pronounced at longer simulation times, which
supports our hypothesis that the droplet train becomes disor-
dered due to fluctuations. Overall our analysis sheds some
light on the long-time behaviour of oscillations in microflu-
idic crystals, however, more data will be needed to study the
onset and growth of instabilities further.

5 Summary and discussion

Excitation mechanisms for collective waves in microfluidic
crystals have been investigated. We have demonstrated that
both longitudinal and transverse waves can be systematically
excited by creating specific defect patterns. Experimental re-
sults were confirmed by computer simulations, and our results
reveal instabilities and mode coupling that originate from the
underlying hydrodynamics.

The excited longitudinal modes show cascades of pairs
of laterally displaced droplets. Due to the pairing instabil-
ity, the pairing cascade is rather short-lived, and over time
other modes are observed. Since the constraints prevent the
dense crystal from becoming completely disordered, some
parts ‘freeze’ into a zigzag arrangement while others exhibit
transverse oscillation. This is a possible indication of flow-
induced crystallisation, and it will be interesting to further
investigate the dynamic formation of the inhomogeneous re-
gions.

The transverse waves show the dispersion relation of a mi-
crofluidic phonon. Comparison with the analytical prediction
demonstrates that a linearised far-field theory works well even
in a dense droplet crystal. A possible reason is the relatively
strong lateral confinement, which may screen the higher-order
reflections of the dipolar interactions. The power spectra of
the oscillations exhibit a correlation that arises from a cou-
pling of longitudinal to transverse modes. This coupling is
induced by the boundary conditions at the confining channel

1–13 | 11

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 17 Simulation snapshot illustrating the formation of ordered and unordered subregions within a train of 40 droplets. The right part of the
train has ‘frozen’ into a stable zigzag configuration, while the left part exhibits a travelling sine-wave.†

walls. At large amplitudes, the inhomogeneity of the imposed
flow affects the dynamics of the droplets and leads to novel
collective modes. Our results thus shed light on the mech-
anisms underlying non-linear mode coupling in microfluidic
crystals.

Experimentally, the excited waves are highly stable and do
not undergo instabilities. This raises the question whether
some of the instabilities observed in microfluidic crystals10,15

are suppressed in the dense droplet ensembles studied here.
Large displacements are inhibited by steric interactions be-
tween the droplets which may have a stabilising effect, e.g.,
on the pairing cascades. A detailed study of the impact of ge-
ometric constraints on the stability of the collective modes is a
topic for future research. In the simulations, the smaller Peclet
number leads to a more pronounced influence of thermal fluc-
tuations. This opens up the possibility for fluctuation-induced
instabilities and our simulation approach may thus be used to
investigate instabilities in microfluidic devices.

The good agreement of the experimental and numerical re-
sults with the linearised far-field prediction suggests that the
dynamics of dense and confined microfluidic droplets is acces-
sible theoretically and leads to novel insights into the origin of
instabilities and mode coupling effects. Furthermore, it seems
promising to apply the experimental and numerical techniques
to other microfluidic systems, such as dense droplet systems
in 2D, crowded particle systems, or self-propelled particles.
Finally, the experimental techniques may be used to control
particle flows in microfluidic applications such as flow cytom-
etry or high-throughput assays using microchips.
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