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Based on Brownian Dynamics computer simulations in two dimensions we investigate aggregation scenarios of colloidal particles

with directional interactions induced by multiple external fields. To this end we propose a model which allows continuous change

in the particle interactions from point-dipole-like to patchy-like (with four patches). We show that, as a result of this change, the

non-equilibrium aggregation occurring at low densities and temperatures transforms from conventional diffusion-limited cluster

aggregation (DLCA) to slippery DLCA involving rotating bonds; this is accompanied by a pronounced change of the underlying

lattice structure of the aggregates from square-like to hexagonal ordering. Increasing the temperature we find a transformation to

a fluid phase, consistent with results of a simple mean-field density functional theory.

1 Introduction

Recent progress in the synthesis and directional binding of

nanometer to micrometer sized patchy and anisotropic parti-

cles makes possible the assembly of colloidal structures with

multiple directed bonds1–3. The directional bonding can also

be achieved by permanently embedded or field-induced dipole

and/or multipole moments allowing directional and selective

particle bonding4–8. Within this class, particles with field-

induced dipolar interactions8–12 are especially interesting be-

cause switching the fields on and off is equivalent to switch-

ing the particle interactions on and off. This means that ag-

gregation mechanisms13,14 can be ’dialed in’. Furthermore,

the orientation of inductive fields may be used to direct par-

ticle aggregation9–12,15,16. In consequence, such directed self-

assembly processes may be exploited for the formation of new

functional materials with specific and/or adjustable proper-

ties. Hence, understanding the interplay between externally

induced particle properties, external fields and thermodynamic

conditions, e.g., temperature, is of fundamental interest in

modern material science, but also from a statistical physics

point of view.

An important subset of the many classes of self-assembled

structures are percolated colloidal networks, which are char-

acterized by system-spanning cross-linked (patchy) parti-

cle clusters that are realizable even at low volume frac-

tions12,17–21. Such network-like aggregates are considered

to be the underlying micro-structures of gels and have
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been intensively investigated in experiment and theory un-

der equilibrium as well as non-equilibrium conditions22–24.

In the latter, qualitatively different aggregation mechanisms

can be identified, namely diffusion limited cluster aggre-

gation (DLCA)25,26 and reaction limited cluster aggregation

(RLCA)27. In the DLCA regime each particle collision leads

to the formation of a rigid and essentially (on the timescale of

the experiment) unbreakable bond with fixed spatial orienta-

tion. In contrast, in the RLCA regime the probability to form

a rigid bond at collision is small. Systems with DLCA un-

dergo irreversible dynamics and form fractal aggregates with

specific fractal dimensions Df ≈ 1.71 in continuous two-

dimensional space26,28. Such colloidal systems are consid-

ered to be ’chemical gels’ and can be realized by having par-

ticle interactions that are much stronger than kBT , preventing

particles from dissociating due to thermal fluctuations. This

leads to a pronounced hindrance of structural reconfiguration

of large particle aggregates22,29. However, at higher tempera-

tures these systems become ’physical gels’ where single par-

ticles and larger substructures start to connect and disconnect

frequently. This strongly affects (increases) the fractal dimen-

sion23,30 and finally allows the system to achieve its equilib-

rium state.

A recently introduced new type of DLCA, which accounts

for local rearrangements via flexible bonds, is slippery diffu-

sion limited cluster aggregation (sDLCA)31,32. Slippery bonds

allow particles to move or rotate around each other as long

as they stay in contact, meaning that bonds are still unbreak-

able but can change their orientation. This additional degree

of freedom generates, at least in three-dimensional simula-

tions31,32, aggregates of the same fractal dimension as clas-

sical DLCA but with a larger coordination number.
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DLCA processes have been studied extensively in systems

with isotropically attractive particles25,28 but also in systems

with patchy particles bearing permanent and/or locally re-

stricted interaction sites on their surfaces23,33–38. In the latter,

the spatial orientations of interaction sites can either be free to

rotate23,33,38 or fixed in space17,37,39,40. When the orientations

of interaction sites are fixed in space, the associated ’chemical

gels’ undergo anisotropic diffusion limited aggregation which

yields a fractal dimension of Df ≈ 1.537–41, lower than for the

isotropic case. This situation occurs, e.g., due to the presence

of external fields16,37 or in lattice models39–41, where motion

is naturally restricted to certain directions.

In the present paper we are particulary interested in the

aggregation of colloids with field-induced multipolar inter-

actions. Examples are capped (metal-coated dielectric parti-

cles studied earlier by some of us12,17), where time-dependent

electric fields can induce quadrupolar-like interactions. Here

we consider even more complex interactions caused by

crossed (orthogonal) fields. We briefly mention two examples

of possible experimental realizations of such systems. The

first one is a quasi two-dimensional system of suspended col-

loidal particles, each composed of super-paramagnetic iron-

oxide aggregates embedded in a polymer matrix, which has

been investigated experimentally by one of us9,42. In this case

crossed external electric and magnetic fields, oriented in plane

but perpendicular to each other, can be used to induce inde-

pendent electric and magnetic dipole moments in the colloids

leading to a directed self-assembly process resulting in two-

dimensional single-particle chain networks. A second possi-

ble experimental and quasi two-dimensional system consists

of suspended colloidal particles under the influence of two in-

plane orthogonal AC electric fields with a phase shift of π.

The fields will polarize the particles’ ionic layer periodically

but at different times due to their phase shift. By adjusting the

field frequencies and phases to the relevant timescales govern-

ing particle diffusion and the relaxational dynamics of the po-

larized ionic layer, two decoupled orthogonal dipole moments

in each particle can in principle be generated by this setup. In

both cases, the crossed dipole moments might be characterized

as point-like or having a finite distance between their consti-

tutive charges (or microscopic dipole moment distributions in

the magnetic case).

Here, we investigate the structure formation in such systems

in a conceptional fashion by means of two-dimensional Brow-

nian dynamics (BD) simulations of a generic particle model.

The idea is to mimick externally-induced dipole moments via

two pairs of screened Coulomb potentials that are decoupled

to account either for magnetic and electric interactions or for

two temporarily present electric interactions. The two charges

associated with each pair are shifted outward from the par-

ticle center, one parallel to the corresponding field and the

other one anti-parallel. A sketch of such a particle with its

Fig. 1 (Color online) Distribution of externally induced fictitious

”charges” q inside a particle. Positions of charges are determined by

the vectors δ
αk ∈ [−δex, δex,−δey, δey]) pointing either parallel

or anti-parallel to the corresponding fields.

internal arrangement of interaction centers is shown in Fig. 1.

By changing the charge separation, we systematically investi-

gate the (transient) structural ordering and aggregation behav-

ior predicted by this model.

Highlights of our results are the following: At very high in-

teraction energies and large charge separations we find that the

particles undergo anisotropic diffusion limited cluster aggre-

gation with rectangular local particle arrangements. Lowering

the charge separation shifts the model behavior to a slippery

diffusion limited aggregation (sDLCA) regime accompanied

by a sharp transition of the lattice structure from rectangu-

lar to hexagonal. In the proximity of this transition we ob-

serve long-lived or arrested frustrated structures consisting of

strongly interconnected hexagonal and rectangular lattice do-

mains connected with each other. We also show that, upon in-

crease of the temperature, the systems enter a fluid state. The

corresponding ’fluidization’ temperature turns out to be very

close to the spinodal temperatures obtained from a mean-field

density functional theory.

The rest of this paper is organized as follows. In section 2

we present our model. Corresponding target quantities cal-

culated from the simulations are described in the appendix.

Numerical results are described in section 3, where we dis-

cuss first a specific low-temperature, low-density, state and

then turn to the role of temperature and density. Finally, our

conclusions are summarized in section 4.
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2 Theoretical Model

In the present section our aim is to construct a model which

captures essential features of the interactions between colloids

in crossed fields. However, we do not claim to model one spe-

cific (electric and/or magnetic) system in its details, but rather

provide a generic and computationally convenient model. To

this end, we consider a two-dimensional system of N soft

spheres of equal diameter σ. The soft sphere interactions are

repulsive and are modeled by a shifted and truncated (12,6)

Lennard-Jones Potential

USS(rij) = 4ǫ
(

(σ/rij)
12 − (σ/rij)

6 + 1/4
)

(1)

which is cut off at rc,SS
ij = 21/6σ. Here, rij = |rj − ri| is the

particle center-to-center distance and ǫ sets the unit of energy.

The crossed orthogonal external fields induce orthogonal

dipole moments µm = µem and µe = µee which we term

for simplicity as ’magnetic’ and ’electric’ dipoles (although

the model is also appropriate for two electric moments). The

coordinate frame is adjusted to coincide with the directions of

these moments so that em = ex and ee = ey . In general these

moments could have different absolute values but for simplic-

ity they are assumed to be equal. The two types of dipole

moments are also assumed to be independent from each other

and interact only with dipole moments of the same type on

other particles.

Intuitively, one would model the interaction energy between

dipoles of particles 1 and 2 by the point-dipole potential

Uα
dip(r12) =

µα
1 · µα

2

r312
− 3

(µα
1 · r12)(µ

α
2 · r12)

r512
, (2)

where α indicates the dipole type as being either e or m. Due

to the constraint µα
1 ‖ µα

2 it follows that

Uα
dip(r12) =

µα
1µ

α
2

r312
(1− 3

(r12 · eα)
2

r212
). (3)

The resulting total dipolar interaction between two particles is

the sum of the dipolar potentials stemming from the magnetic

and electric dipoles, respectively. Using µ = |µα
i | and the

relation (r12 · ee + r12 · em)2 = r212 (which holds since µe

and µm are orthogonal) we obtain

Ue
dip(r12) + Um

dip(r12) = −
µ2

r312
. (4)

The resulting interaction on the right side of Eq. (4) is an

isotropic, purely attractive interaction that lacks any kind

of directional character. Therefore, the potential defined in

Eq. (4) can not generate any rectangular structures as observed

in experiments9,42. Underlying reasons for the more complex

character of the true interactions might be many-body effects
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Fig. 2 (Color online) Normalized direction-dependent pair interac-

tion U(rij) [see Eq. (9)] between a particle in the center of the co-

ordinate frame and a second particle (indicated as black circle in

(a)) at various positions rij for three different charge separations

δ = 0.1, 0.21, 0.3σ corresponding to (a), (b), (c). Sterically ex-

cluded areas are indicated by white circles. (d) Interaction energy

at distance rij = σ as function of φ, the angle measured in multiples

of π against the x-axis, for δ = 0.1σ (yellow), δ = 0.21σ (purple)

and δ = 0.3σ (black).

like mutual depolarization43–45, and/or nonuniform intraparti-

cle properties e.g., the distribution of magnetic material inside

particles46. Nevertheless, the occurence of rectangular parti-

cle arrangements in experiments9 suggests an effective ’four-

fold valency’ of pair interactions, irrespective of other details.

Here we want to take into account the four-fold valency but

also the overall attractiveness (no repulsion) of the crossed

point-dipole setup [see Eq. (4)]. We thus introduce, as de-

tailed below, artificial ’dipole moments’ composed of charges

with short-ranged interactions. Note that the fixed orienta-

tion of dipole moments and the overall attractiveness contrasts

the ’classical’ theoretical concepts of patchy particles2,19–21,24,

which are able to rotate and are characterized by localized at-

tractive and repulsive interactions.

To be specific, each dipole moment µα (with α = e,m)

is replaced by two opposite charges −qα1 = qα2 which are

shifted out of the particle center by a vector δαk = (−1)kδeα,

with k = 1, 2. The vector δαk points either parallel (k = 2)

or antiparallel (k = 1) along the corresponding point dipole

moment µα. Independent of their type, all charges have the

same absolute value q = |qαk | = 2.5(ǫ/σ)−1/2 and shift |δ|
for the sake of simplicity. In principle though, this ’extended’

dipole model allows also to vary the values of q and δ for dif-

ferent interaction types. Also, the choice of the value q = 2.5
is essentially arbitrary, as we will later normalize the inter-

action energy to eliminate the dependence of its magnitude
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on the charge separation δ [see Eq. (8) below]. A schematic

representation of the model with its internal arrangement of

’charges’ is shown in Fig. 1. Mimicking magnetic dipoles via

spatially separated ’charges’ is clearly artificial from a physi-

cal point of view, but in the spirit of the generic character of

our model.

Charges k and l on different particles i and j interact via a

Yukawa potential

Uαkαl

ij (rij) = −q2
exp(−κrαkαl

ij )

rαkαl

ij

(5)

with rαkαl

ij = |rj − ri + δαl − δαk |. The inverse screening

length is choosen to κ = 4.0σ−1 and a radial cutoff rc = 4.0σ
is applied, which ensures interaction energies smaller than

10−6 at cut-off distance. Using a screened potential between

the charges has mostly computational reasons; correct treat-

ment of the true, long-ranged coulomb potential requires spe-

cific simulation methods47. In the present model the effort

is enhanced by the fact that each particle has four charges.

Still, the directional dependence of the interactions does not

change due to the screening. We also note that some of us

previously used similar models with comparable interaction

ranges to describe dipolar colloids in the framework of discon-

tinous molecular dynamics simulations18,48. The arrangement

of charges inside particles then results in a pair-interaction

UDIP (rij) given by

UDIP (rij) =

2
∑

k,l=1

[Uekel
ij (rij) + Umkml

ij (rij)]. (6)

In principle, UDIP (rij) is a function of q and δ. To facilitate

the comparison between the interactions at different δ (q is

chosen to be constant), we normalize UDIP (rij) according to

ŨDIP (rij) = UDIP (rij)× u/UDIP (σeα) (7)

where the constant u = −2.804ǫ is calculated from the unnor-

malized energy UDIP (σeα) with model parameters δ = 0.3σ
and q = 2.5(ǫ/σ)−1/2. This procedure ensures that the nor-

malized energy between two particles at contact (rij = σ) and

direction rij = σeα (pointing along one of the fields) has the

constant value u for all δ, that is

ŨDIP (σeα) = u. (8)

The full pair interaction of our model is then given by

U(rij) = USS(rij) + ŨDIP (rij). (9)

The resulting potential is illustrated in Fig. 2(a)-(c) for a parti-

cle in the center of the coordinate frame and a second particle

at various distances rij and angles φ = arccos(r12 · ex/r12)

with ’charge’ separations δ = 0.1, 0.21, 0.3σ. The value

δ = 0.21σ is motivated by our simulation results presented in

Sec. 3.1. Sterically-excluded areas are shown in white and en-

ergy values are color coded in units of ǫ. The weak anisotropy

of the resulting particle interactions at small δ (where one es-

sentially adds two dipolar potentials, see Eq. (4)) transforms

to a patchy-like pattern20,21 by increasing δ. Energy minima

become more and more locally restricted and interactions re-

veal an increasing four-fold (i.e., ’patchy’) character, although

remaining their attractiveness in general. This is also seen in

Fig. 2(d) which gives the energy between two particles in con-

tact as function of φ for different δ. From Fig. 2(d) we also

see that, independent of the ’charge’ separation δ, the min-

ima of the full interaction potential [see Eq. (9)] occur for

connection vectors rij = σee and rij = σem (i.e., pointing

along the fields). Note that this already holds for the unnor-

malized energy given in. Eq. (6). Simulations are performed

with N = 1800 to 3200 particles at a range of reduced num-

ber densities ρ∗ = ρσ2 and temperatures T ∗ = kBT/ǫ, in a

square-shaped simulation cell with periodic boundary condi-

tions. The equations of motion

γṙi = −

N
∑

j=1

∇U(rij) + ζi(t) (10)

are solved via the Euler scheme with an integration step-

width ∆t = 10−4τb, where τb = σ2γ/kBT is the Brownian

timescale, γ is the friction constant and ζi(t) is a Gaussian

noise vector which acts on particle i and fulfills the relations

〈ζi〉 = 0 and 〈ζi(t)ζj(t
′)〉 = 2γkBTδijδ(t − t′)50. We per-

form simulations for up to 103τb.

3 Results

Our large-scale Brownian dynamics simulations show that the

system is very sensitive to changes in temperature T ∗, num-

ber density ρ∗, and charge separation δ. In this large parameter

space we find a variety of different states ranging from small

fractal aggregates and single-chain structures at low tempera-

tures to coarser, isolated or interconnected clusters at higher

temperatures. In the following sections 3.1 - 3.3 we first dis-

cuss the structure, the time correlation functions and the frac-

tal dimensions at a low temperature and an intermediate den-

sity, focussing on the impact of the model parameter δ. In

section 3.4 and 3.5 we then turn to the impact of temperature

and density.

3.1 Effect of Charge Separation on Local Order

At first we study the system at low temperature T ∗ = 0.05 and

intermediate density ρ∗ = 0.3 for different charge separations

δ. In Fig. 3 simulation snapshots for δ = 0.1σ, 0.21σ, 0.3σ at
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Fig. 3 (Color online) Simulation snapshots at ρ∗ = 0.3 and T ∗ = 0.05 for (a) δ = 0.1σ, (b) δ = 0.21σ and (c) δ = 0.3σ. Particles are

colored according to their value of φ4

i .

t = 300τb [see. Eq. (10) below] are shown, where τb is the

Brownian timescale. The colorcode reflects the orientational

bond order parameter φ4
i of each particle i. All three cases are

characterized by clusters with irregular shapes. However, lo-

cal particle arrangements differ strongly. While for δ = 0.1σ
the particles aggregate in a hexagonal fashion, at δ = 0.3σ
they aggregate into rectangular structures. At the intermediate

charge separation δ = 0.21σ, hexagonal order dominates the
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F
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Fig. 4 (Color online) Results for simulations with N = 1800 at

temperature T ∗ = 0.05 and density ρ∗ = 0.3. (a) Orientational

bond order parameters Φ4 for square (black) and Φ6 (yellow) for

hexagonal particle arrangements. (b) Mean coordination number z̄

as function of charge separation δ at times t = 100, 200, 300τb.

system; however, some clusters also reveal subsets of parti-

cles in rectangular arrangements. A more quantitative descrip-

tion is given by the orientational bond order parameters Φ4(6)

shown in Fig. 4(a) as functions of δ. By increasing δ, one

observes a sharp transition at δ ≈ 0.21σ from hexagonal to-

wards rectangular (square) order. This transition turned out to

be independent of the considered particle numbers as test sim-

ulations revealed. Physically, it can be interpreted as a reduc-

tion in valency of a ’patchy’ particle from six-fold (isotropic

interaction) to four-fold.

The very presence of such a sharp transition can be ex-

plained via energy arguments based on the δ-dependent pair

potential plotted in Figs. 2(a)-(d). To this end, we calculate

the energy Uhex
i (δ) =

∑6
j=1 U(rij) of a particle i with six

neighbors j, which are located in a hexagonal arrangement at

’contact’ distance σ around i. Note that not all hexagonal con-

figurations do have the same contact energy. This is due to the

anisotropy of interactions, see Fig. 2(d). Therefore we con-

sider a hexagonal configuration in which the contact energy is

as low as possible (this configuration was found numerically).

The dependence of this lowest contact energy Uhex
i (δ) on the

charge separation parameter is plotted in Fig. 5. Also shown

is the corresponding energy Usq
i (δ) =

∑4
j=1 U(rij) = 4× u

of a particle with four neighbors j located at distance σ in a

rectangular arrangement, i.e., in the energy minima around i
(the quantity u was defined below Eq. (7)). Note that the en-

ergy Usq
i (δ) does not depend on δ according to Eq. (8). As

shown in Fig. 5, the two curves intersect at a ”critical” value

of δ = 0.24σ. Thus, the simple energy arguments already

suggest a transition between states with local hexagonal and

square order, even though the predicted critical value is some-

what larger than the value of δ = 0.21σ seen in the actual

simulations at finite temperature and density [see Fig. 4(a)].

1–?? | 5

Page 5 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0.10 0.15 0.20 0.25 0.30 0.35

d

-16

-14

-12

-10

-8
U
[�
]

Uh (6)

Us (4)

Fig. 5 (Color online) Minimum energy of a particle with six neigh-

bors in hexagonal arrangement as function of δ (black) and energy

for a particle in rectangular arrangement with 4 neighbors (red).

Further information is gained from the behavior of the mean

coordination number as a function of δ plotted in Fig. 4(b) for

three different times t = 100τb, 200τb and 300τb. At all times

considered, z̄ undergoes a steep decrease at δ ≈ 0.21σ from

a nearly constant value, z̄hex ≈ 4.5, to a value z̄sq ≈ 3.5.

This behavior reflects, on the one hand, again the presence

of a sharp transition; on the other hand, the actual values of

z̄hex(z̄sq) reveal the ”non-ideal” character of the aggregates in

terms of coordination numbers. For example, for δ > 0.21σ
we find that z̄ and Φ4 decrease with δ, while Φ6 increases.

However, this does not indicate a decline of the rectangu-

lar order; it rather results from an increasing amount of par-

ticles residing in chains oriented either in x- or y-direction.

The coordination number zi of a particle i in such a chain is

≤ 2, leading to a mean coordination number z̄ < 4. Further-

more, the parameters φ4
i and φ6

i [see Eq. (15)] become unity

for a particle forming exactly two bonds under an angle of

π (straight chain). This does not affect Φ4, which is already

large at δ > 0.21σ, but significantly increases Φ6. Finally,

the counter-intuitive decrease of Φ4 with δ results from the

increasing amount of particles with only one neighbor (e.g.,

ends of chains appearing white in Fig. 3(c)). These particles

yield no contribution to Φ4 [see Eq. (15)].

The ”non-ideal” values of z̄hex and z̄sq also explain why

our energy argument for the location of the hexagonal-to-

square transition, which was based on ideal arrangements with

six and four neighbors, respectively, does yield the transition

value δ = 0.24σ rather than δ = 0.21σ obtained from sim-

ulation. We can now reformulate the argument by using the

actual mean coordination numbers extracted from our simu-

lations, z̄sq = 3.5 (instead of 4) and z̄hex = 4.5 (instead

of 6). Following the calculations for the ideal arrangements

described before, the energy of the square-like arrangement is

Usq = 3.5×u. For the hexagonal arrangement, we use the av-

erage minimum energy with either zi = 4 or zi = 5 neighbors,

yielding Ūh(z̄hex, δ) = (Uhex(4, δ)+Uhex(5, δ))/2. The re-
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Fig. 6 (Color online) Time correlation functions obtained from sim-

ulations with N = 1800 at temperature T ∗ = 0.05 and density

ρ∗ = 0.3. (a) [(b)] Time evolution of the bond [angle] autocor-

relation function cb(t) [ca(t)] for three different charge separations

δ = 0.1σ, 0.21σ and 0.3σ colored in yellow, purple and black re-

spectively.

sulting critical value of the charge separation is δ ≈ 0.21σ,

which coincides nicely with the transition value observed in

our simulations.

3.2 Transient character of aggregates

Although the local structures characterized by z̄ and Φ4(6) per-

sist, in general, over the simulation times considered, we are

still facing a transient (out-of-equilibrium) structure forma-

tion as seen, e.g., from the slight increase of z̄ with time in

Fig. 4(b). This raises a question about the typical ”lifetime” of

the aggregates.

To this end we now consider dynamical properties, namely

the bond and bond-angle auto-correlation functions, cb(t) and

ca(t). It is not reasonable to extract decay rates from these

functions (as it is usually done) because in transient states, de-

cay rates are, strictly speaking, functions of time themselves.

Still, it is interesting to see whether the temporal correlation

of bonds (bond angles) for different δ allows us to distinguish

between qualitatively different aggregation regimes.

Numerical results for cb(t) and ca(t) are plotted in

Figs. 6(a) and (b), respectively, where we consider a large time

range up to t ≈ 103τb. The time axis starts at the finite time

when all the systems have formed stable aggregates. The data

in Figs. 6(a) and (b) pertain to three representative values of

the charge separation parameter related to the hexagonal struc-

tures (δ = 0.1σ), rectangular structures (δ = 0.3σ), and to the

transition region (δ = 0.21σ). In the square regime (δ = 0.3σ)

the decay of both cb(t) and ca(t) is almost identical and very

slow. From this we conclude that the square regime is charac-

terized by almost unbreakable bonds with fixed orientations.

This is different in the hexagonal regime (δ = 0.1σ) where

cb(t) remains nearly constant even after long times (meaning

that bond-breaking is very unlikely), while ca(t) decays much

faster. Thus, the directions of bonds are less restricted. We

interprete this behavior as evidence that two particles, though
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Fig. 7 (Color online) Fractal dimension Df as a function of charge

separation at ρ∗ = 0.3 and T ∗ = 0.05. At δ = 0.21σ we find a

bimodal distribution of fractal dimension with peaks at Df = 1.48
(solid line) and 1.6 (dashed line).

being bonded, are still able to rotate around each other to some

extent. This is a characteristic feature of slippery bonds. Fi-

nally, in the transition regime (δ = 0.21σ) both functions cb(t)
and ca(t) decay significantly faster than in the other cases,

with the decay of the bond-angle correlation function being

even more pronounced. In that sense we may consider the

bonds in the transition region also as slippery (although less

long-lived than in the other cases).

We conclude that the different structural regimes identified

in the preceding section are indeed characterized by different

relaxational dynamics. Moreover, all of the observed aggre-

gates have lifetimes of at least several hundered τb. Such long-

lived bonds are indicative of diffusion limited cluster-cluster

aggregation. In the next section we therefore consider the frac-

tal dimension.

3.3 Diffusion limited aggregation

In Fig. 7 the fractal dimension Df is shown as a function of

δ at time t = 250τb, density ρ∗ = 0.3 and temperature T ∗ =
0.05. We find that Df increases slightly with δ but remains

in a range between 1.4 and 1.5, except at δ = 0.21σ. There,

the fractal dimension exhibits a bimodal distribution, taking

values between Df ≈ 1.48 and Df ≈ 1.6 (dashed line in

Fig. 7).

Despite these variations and taking into account the error

range, the values of Df found here are significantly smaller

than the fractal dimension Df = 1.71 observed in earlier

studies of DLCA in two-dimensional continuous (off-lattice)

systems25,28. Except for the case δ = 0.21σ, the values in

Fig. 7 are comparable with previous findings for DLCA in

two-dimensional lattice systems and systems with spatial or

interaction anisotropies39–41. The present system is indeed

anisotropic in the sense that the external fields impose prefer-

ences on the directions of particle bonds and therefore also on

the orientations of aggregates. This effect is most pronounced

in the rectangular regime (δ = 0.3σ). Therefore, it is plausible

that our system undergoes a special case of anisotropic DLCA,

in (quantitative) accordance with experimental results37 and

theoretical predictions26,33,39,40. We should note that, due to

our simulation method, the cluster sizes (typically involving

101−103 particles) are relatively small compared to the parti-

cle numbers considered in the literature (106 particles)26,28,49

and therefore most probably subject to finite size effects. A

more accurate study of (the impact of anisotropic interactions

on) the fractal dimension is beyond the scope of this study.

Still, our results do indicate a non-typical diffusion limited

aggregation behavior.

We also relate our findings to the newer concept of slip-

pery DLCA31,32, where the bonds are essentially unbreakable

but able to rotate. Indeed, as discussed in section 3.2, bonds

are slippery in nature for small δ in the hexagonal regime.

For three-dimensional systems it has been reported31,32 that

the fractal dimension Df remains the same for slippery and

classical DLCA, while the mean coordination number z̄ dif-

fers. Specifically, z̄ is significantly higher for sDLCA31,32.

The same observation emerges when we consider our values

of z̄ plotted in Fig. 4(b), from which one sees a pronounced

decrease of z̄ upon entering the square (DLCA) regime. How-

ever, in contrast to earlier studies we find Df to slightly in-

crease with δ, especially in the hexagonal regime. We inter-

pret this behavior as a consequence of the fact that binding

energies in the hexagonal regime decrease with increasing val-

ues of δ, while they remain constant in the square regime (see

Fig. 5). The corresponding stability of bonds should be cor-

related to the binding energies which explains the slightly in-

creasing values of Df in the hexagonal regime. Note that the

increase of Df with δ turns out to be larger (but still compa-

rable) than the error range in Fig. 7. Hence, the interpretation

given above remains somewhat speculative.

Finally, in the transition region (δ = 0.21σ) we found a bi-

modal distribution of the fractal dimensions Df with maxima

at Df ≈ 1.48 and Df ≈ 1.6. This second maximum corre-

sponds to only ≈ 25% of the considered cases (twelve inde-

pendent simulation runs). The first maximum at Df ≈ 1.48
therefore clearly dominates and fits nicely to the functional

dependence of Df on δ (see Fig. 7). We assume that the

less frequent peak results from a switching of the local struc-

tures between hexagonal and rectangular arrangements, which

is accompanied by a significantly larger bond-breaking prob-

ability (see Fig. 6(c)). Again this allows compactification of

aggregates and increases the fractal dimension in the transition

regime.

3.4 Beyond DLCA - Higher Temperatures

Diffusion limited aggregation is restricted to systems with at-

tractive particle interactions much stronger than kBT . By in-
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Fig. 8 (Color online) Temperature dependence of the system properties at density ρ∗ = 0.3 for charge separations δ = 0.1, 0.21, 0.3σ colored

in yellow, purple and black, respectively. (a) Fractal dimension Df evaluated at t ≈ 250τb, (b) Mean coordination number, (c) Orientational

order parameters Φ4 and Φ6.

creasing the temperature sufficiently, thermal fluctuations be-

come able to break bonds which results in a faster decay of the

the bond auto-correlation functions and a compactification of

aggregates. Indeed, for square lattice models it was found that

Df is a monotonically increasing function of temperature38,41.

In Fig. 8(a) the fractal dimension Df of the present model is

plotted as a function of temperature T ∗ for charge separations

δ = 0.1σ, 0.21σ and 0.3σ.

We first concentrate on the case δ = 0.3σ, corresponding

to the square regime at low T ∗. In the range of very low tem-

peratures T ∗ < 0.25, the fractal dimension is small and stays

essentially constant. Increasing T ∗ towards slightly larger val-

ues then leads to an increase of Df , reflecting the (expected)

compactification. This increase of Df is accompanied by an

increase of the mean coordination number z̄ [see Fig. 8(b)]

within the temperature range considered, indicating the grow-

ing number of bonds due to local and global structural re-

configurations. The corresponding changes in the stability of

the bonds are illustrated in Fig. 9, where we have plotted the

time evolution of cb(t) for several temperatures (at δ = 0.3σ).

Clearly, the decay of cb(t) becomes faster for higher tempera-

tures. This is the reason why structural reconfigurations and,

in consequence, compactification of aggregates becomes pos-

sible.

These trends persist until T ∗

f,sq ≈ 0.375, beyond which the

system at δ = 0.3σ starts to behave in a qualitatively differ-

ent way. The mean coodination number z̄ displays a maxi-

mum and subsequently a rapid decay. We also find that the

fractal dimension has not yet reached its maximum value at

T ∗

f,sq; this maximum occurs at the slightly larger temperature

T ∗ ≈ 0.42 (see Fig. 8(a)). This ’delay’ of Df can be under-

stood from the fact that, upon the entrance of bond-breaking,

filigree parts of the aggregates are more likely affected than

more compact ones. Hence, the fraction of ’compact’ small

aggregates still grows. Even more important, the function

Φ4(T
∗) in Fig. 8(c) displays a pronounced decay of rectan-

gular order for T ∗ > Tf,sq . From the sum of these indications

we conclude that, at temperatures higher than T ∗

f,sq ≈ 0.375,

the system transforms into a (stable or metastable) fluid phase.

In this fluid phase, the overall structure starts to become ho-

mogeneous and isotropic, while the local structures involve

only a small number of bonds with short bond-life times.

For the system at δ = 0.1σ (hexagonal structure at low T ∗),

an estimate of the ”fluidization” temperature T ∗

f,hex based on

the behavior of order parameters, coordination number and

fractal dimension is more speculative. Nevertheless, the data

suggest that T ∗

f,hex > T ∗

f,sq . This is indicated, first, by the

fact that Φ6(T
∗) decays only very slowly with temperature

until T ∗ ≈ 0.6 (see Fig. 8(c)). Second, the mean coordination

number shows only a weak maximum (and no fast decay after-

wards) compared to the case δ = 0.3σ. Third, the fractal di-

mension keeps increasing with T ∗ for all considered tempera-

tures T ∗ < 0.6. Therefore we conclude that T ∗

f,hex > 0.6. We

understand this higher fluidization temperature at δ = 0.1σ
from the fact that binding energies in hexagonal structures are

larger; therefore, higher coupling energies must be overcome.

To further justify these interpretations, particularly the

emergence of fluid phases, we performed a stability analy-

sis of the homogenous isotropic high temperature state based

100 300 500 700 900

t[tb ]
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T * =0.55

Fig. 9 (Color online) Bond auto correlation function cb(t) for dif-

ferent temperatures T ∗ at charge separation δ = 0.3σ and density

ρ∗ = 0.3.

8 | 1–??

Page 8 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



-30 -20 -10 0 10 20 30

x[s]

-30

-20

-10

0

10

20

30

y
[s

]

(a)

-30 -20 -10 0 10 20 30

x[s]

(b)

-30 -20 -10 0 10 20 30

x[s]

(c)

0

0.2

0.4

0.6

0.8

1.0

f
4 i

Fig. 10 (Color online) Simulation snapshots at ρ∗ = 0.3 with δ = 0.21σ at (a) T ∗ = 0.15, (b) T ∗ = 0.3, and (c) T ∗ = 0.45. Particles are

colored according to their value φ4

i .

on mean-field density functional theory (DFT). Specifically,

we consider the isothermal compressibility χT . Positive

values of χT imply that the homogeneous (fluid) phase is

stable, whereas negative values indicate that this phase is

unstable. Specifically, the instability arises against long-

wavelength density fluctuations, i.e. condensation. According

to Kirkwood-Buff theory52 one has

χ−1
T ∝ 1− ρc̃(k = 0), (11)

where c̃(0) is the Fourier transform of the direct correlation

function (DCF) c(r12) in the limit of long-wavelengths (k →
0). We approximate the DCF for distances rij > σ according

to a mean field (MF) approximation, that is

cMF (r12) = −(kBT )
−1U(r12), r12 > σ, (12)

and use the Percus-Yevick DCF cHS(r12) of a pure hard-

sphere fluid53 for |r12| ≤ σ. The full DCF is then given by

c(r12) = cHS(r12) + cMF (r12). (13)

0.15 0.30 0.45 0.60

T *

-1.0

-0.5

0.0

0.5

1.0

1-rÄc(0)

Fig. 11 (Color online) Numerical solutions to Eq.11 as function of

T ∗ for density ρ∗ = 0.3 and charge separations δ = 0.1, 0.21, 0.3σ
colored in yellow, purple and black, respectively.

In Fig. 11 we present numerical results for the expression

1− ρc̃(0) at ρ∗ = 0.3 as function of temperature. At low T ∗,

all systems are characterized by negative values of 1− ρc̃(0).
This indicates that the homogeneous isotropic phase is unsta-

ble, consistent with the results of our simulations. Upon in-

creasing T ∗ the mean-field compressibility χT then becomes

indeed positive for all charge separations considered. Specif-

ically, for δ = 0.3σ the change of sign (related to a ”spinodal

point”) occurs at T ∗

f,sq = 0.325 and for δ = 0.1σ at the much

higher temperature T ∗

f,hex = 0.6. These values are in surpris-

ingly good agreement with our estimates for the ”fluidization”

temperatures based on the order parameter plots.

The case δ = 0.21σ is again different. Here we find

[see Fig. 8(b)] that, starting from low temperatures inside the

DLCA regime, the mean coordination number monotonically

decreases. However, this does not indicate ”fluidization” but

rather a gradual transition from a state with dominant hexago-

nal order towards a mixed state comprised of coexisting clus-

ters with local hexagonal and square-like order. Indeed, [see

Fig. 8(c)], the orientational order parameters Φ4 and Φ6 reveal

that the fraction of particles bound in square clusters increases

with T ∗ and finally overtakes the fraction of particles involved

in hexagonal clusters at T ∗ ≈ 0.35. Corresponding snapshots

of simulation results are shown in Fig. 10. At all temperatures

considered one observes separated clusters. With increasing

temperature their shape becomes more regular, while the lo-

cal rectangular order becomes more pronounced. Finally, at

T ∗ = 0.45 the fractal dimension Df and the square order

parameter Φ4 reach their maximum values, suggesting a ”flu-

idization” similar to the behavior observed at other values of δ.

Interestingly, our stability analysis [see Eq. (11)] indicates an

instability at the same temperature T ∗

f = 0.45. With this sur-

prisingly accurate agreement between theory and simulation,

1–?? | 9

Page 9 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



-20 -10 0 10 20

x[s]

-20

-10

0

10

20

y
[s

]

0

0.2

0.4

0.6

0.8

1.0

f
4 i

Fig. 12 (Color online) System at T ∗ = 0.05, density ρ∗ = 0.7
and δ = 0.21σ. The colorcode gives the orientational bond-order

parameter φ4

i of each particle i.

we conclude that in the transition regime (δ = 0.21σ), increas-

ing thermal fluctuations first push the system from a domi-

nantly hexagonal state into a rectangular one, which then en-

ters a metastable fluid phase after passing the ”spinodal point”.

3.5 Spotlight on higher densities

In this section we revisit the system behavior at the low tem-

perature T ∗ = 0.05, but consider different densities in the

range ρ∗ ≤ 0.7. Whereas low-density systems at T ∗ = 0.05
display DLCA as discussed in sections 3 A-C, this aggrega-

tion mechanism is expected to disappear at higher densities:

here, the particles are just unable to diffuse sufficiently freely.

Rather, the particles will very frequently collide and then im-

mediately form rigid bonds. A typical structure at the high-

est density considered, ρ∗ = 0.7, and separation parameter

δ = 0.21σ is shown in Fig. 12. Clearly, the system is per-

colated, that is, the particles form a single, system-spanning

cluster. Interestingly, this cluster is composed of extended re-

gions characterized by either square-like order or hexagonal

order. We note that, at δ = 0.21σ, simultaneous appearance

of clusters with both types of order also occurs at low den-

sities and higher temperatures (see section 3.4). However, at

the high density considered here the regions of each type are

larger and the particle arrangements are much more regular

(i.e., there are less defects).

To better understand the impact of the density on the cluster

structures we plot in Fig. 13(a) the orientational bond order

parameters Φ4 and Φ6 as functions of ρ∗ for δ = 0.21σ (at

δ = 0.1σ and δ = 0.3σ the order parameters are essentially

independent of the density). From Fig. 13(a) it is seen that
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Fig. 13 (Color online) (a) Orientational bond order parameter Φ4

and Φ6 as function of density ρ∗ for δ = 0.21σ at T ∗ = 0.05. (b)

Mean coordination number z̄ as function of ρ∗ at T ∗ = 0.05 for

different δ = 0.1σ, 0.21σ and 0.3σ colored in yellow, purple and

black, respectively.

the amount of rectangular (hexagonal) order sharply increases

(decreases) at a density of ρ∗ ≈ 0.45. This is a surprising

result as one would expect that, upon compressing the system,

close-packed, hexagonal structures rather become more likely.

However, at the low temperature considered here, structural

reorganization is strongly hindered.

We also note that all of the systems investigated at densi-

ties ρ∗ > 0.45 turned out to be percolated (suggesting that the

value ρ∗ = 0.45 is indeed related to the percolation transi-

tion). It thus seems that the percolation tends to stabilize the

initially formed square-lattice symmetry, as the subsequent re-

organization is hindered by the lack of mobility. In effect, we

are faced with quenched states that could not densify within

the time domain studied. This interpretation is also consistent

with the decrease of the mean coordination number once the

system is percolated (ρ∗ > 0.45) as shown in Fig. 13(b).

4 Conclusions

In this work we propose a new model for field-directed ag-

gregation of colloidal particles with anisotropic interactions

induced by external fields. The model was inspired by recent

experimental work8–10,12,37,42 on novel colloidal particles in

which external fields can induce two, essentially decoupled,

dipoles.

The formation of particle networks with multiple percola-

tion directions can find application in a range of new materi-

als with anisotropic electrical and thermal conduction, mag-

netic or electric polarizability or unusual rheological proper-

ties. The aggregated clusters can be dispersed in liquid, while

the percolated networks can be embedded in a polymer or gel

medium54. The key to the fabrication of such novel classes

of materials containing particle clusters and networks is the

control of the process parameters to obtain the desired inter-

connectivity, density and structure.

Against this background, the focus of our theoretical study
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was to understand the formation of transient, aggregated struc-

tures appearing at low-temperatures. Performing large-scale

BD simulations we have found that, depending on the patchy-

ness of particles, which is governed by the distribution of the

field-induced attractive ”sites” in the particles , different ag-

gregation mechanisms arise. These have been analyzed via

appropriate structural order parameters, bond time-correlation

functions as well as by the fractal dimension. Our BD results

demonstrate that by varying the charge separation parameter,

that is, the distribution of attractive sites, the systems trans-

form from DLCA (essentially rigid bonds) towards sDLCA

(slippery bonds). Moreover, we show that the change of ag-

gregation behavior is accompanied by significant changes of

the local cluster structure.

Indeed, the cluster structure can be easily manipulated by

exploiting the interplay between temperature, density and

model parameter δ. This allows formation of unexpected

structures e.g., pronounced rectangular packing instead of

closed packed hexagonal structures by increasing density.

This unusual behavior appears to be dictated by the inabil-

ity of the originally formed lattices with square symmetry

to re-arrange into more dense hexagonal lattices. It has po-

tentially important consequences for colloidal assembly, as is

points out the ability to use mutidirectional field-driven assem-

bly for the making of lower-density, yet highly interconnected,

phases.

Future research should focus on a more detailed investiga-

tion of the interplay between the aggregation mechanisms ob-

served here (anisotropic and slippery DLCA), and the equi-

librium phase behavior, particularly the location of a conden-

sation transition and of percolation at higher densities. This

includes investigation of the influence of entropy which we

did not discuss but is expected to strongly influence the aggre-

gation behavior55. Furthermore, connections to transient and

directional cluster formation mediated by DNA-links56, long-

ranged repulsion57 or other non-equilibrium mechanisms such

as activity58,59 and/or hydrodynamics60 are of interest.

In conclusion, we studied structural and dynamical

phenomena accompanying self-assembly of complex col-

loids19,23. In particular, we have introduced a generic model

describing colloids in multidirectional fields yielding tunable

multipolar interactions. Our study thus contributes to a mi-

croscopic understanding of aggregation processes in such sys-

tems.

Acknowledgements

We gratefully acknowledge stimulating discussions with Bhu-

vnesh Bharti (NCSU). This work was supported by the NSF’s

Research Triangle MRSEC, DMR-1121107 and by The Ger-

man Research Foundation via the International Research

Training Group (IRTG) 1524 ’Self-Assembled Soft Matter

Nano-Structures at Interfaces’.

References

1 A. Walther and A. H. E. Müller, Soft Matter, 2008, 4, 663.

2 Yufeng Wang, Yu Wang, Dana R. Breed, Vinothan N.

Manoharan, Lang Feng, Andrew D. Hollingsworth, Marcus

Weck1, and David J. Pine, Nature, 2012, 491, 51

3 M. J. Salomon, Current Opinion in Colloid & Interface Sci-

ence, 2011, 16, 158.

4 S. Scanna, L. Rossi and D. J. Pine, J. Am. Chem. Soc., 2012,

134, 6112.

5 F. Ma, D. T. Wu and N. Wu, J. Am. Chem. Soc., 2013, 135,

7839.

6 J. Yan, M. Bloom, S. C. Bae, E. Luijten and S. Granick,

Nature, 2012, 491, 578.

7 G. Rosenthal, K. E. Gubbins, and S. H. L. Klapp, J. Chem.

Phys., 2012, 136, 174901.

8 S. O. Lumsdon, E. W. Kaler, and O. D. Velev Langmuir,

2004, 20, 2108.

9 B. Bharti and O. D. Velev, Langmuir, 2015, DOI:

10.1021/la504793.

10 A. Ruditskiy, B. Ren and I. Kretzschmar, Soft Matter,

2013, 9, 9174.

11 S. Gangwal, O.J. Cayre and O. D. Velev, Langmuir, 2008,

24, 13312.

12 S. Gangwal, A. Pawar, I. Kretzschmar and O. D. Velev,

Soft Matter, 2010, 6, 1413.
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Appendix

Target quantities

To characterize the structure of the systems we consider sev-

eral quantities. The first one is the mean coordination number

z̄ =
1

N

N
∑

i=1

zi, (14)

where zi is the number of neighbors of particle i and the sum

is over all particles. In the following, two particles are consid-

ered to be nearest neighbors if their center-to-center distance

is smaller than rb = 1.15σ.

To identify local particle arrangements, the orientational

bond order parameter is of special importance. For particle

k it is given by

φn
k =

1

zk

zk
∑

l=1

| exp(inθklλ )| (15)

with zk being the number of neighbors and θklλ = arccos(rkl ·
rkλ/(rklrkλ)) being the angle between the bond of particle k
and its neighbor l measured against a randomly chosen bond

of particle k to one of its neighbouring particles λ. Hence,

φn
k = 0 for zk < 2. The integer value n determines the type

of order which is detected by this parameter. We concentrate

on φ4 and φ6 to identify square (rectangular) and hexagonal

lattice types. Its ensemble average is calculated via

Φn =
1

N

N
∑

i=1

φn
i . (16)
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The reversibility of ’bond’ formation and slipperyness of ex-

isting bonds can be characterized by the bond and the bond-

angle auto-correlation functions cb(t) and ca(t). To evaluate

cb(t) we assign a variable bij(t) to each pair of particles at

each time step which is 1 if the particles i and j are nearest

neighbors or zero otherwise. The bond auto-correlation func-

tion is then defined as

cb(t) = 〈bij(t0)bij(t)〉, (17)

where the brackets indicate an average over all pairs that are

bonded at time t0. The bond-angle auto-correlation function

ca(t) is defined similarly by defining the unit vector

aij(t) = rij(t)/rij(t), (18)

such that

ca(t) = 〈1− arccos (aij(t) · aij(t0))/π〉 (19)

where we average again over all pairs. While cb gives the

information on how stable bonds are over time, ca tells how

stable their direction is over time. Note that in contrast to the

typical definition of correlation functions for stationary sys-

tems51, here the functions cb(t) and ca(t) are not independent

of the time origin t0.

Finally, we consider the fractal dimension Df of parti-

cle clusters, which is particularly important in the context of

DLCA. Clusters are defined as a set of particles with common

next neighbors. The size of a cluster is then quantified by its

radius of gyration

R2
g =

1

Ncl

Ncl
∑

i=1

(ri − r̄)2, (20)

where Ncl is the number of particles in the cluster, and r̄ is the

postion of its center-of-mass. By plotting lnRg against lnNcl

for different clusters, we extract the fractal dimension Df via

the relationship Rg ∼ N
1/Df

cl (see Ref.25,37).
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Based on Brownian dynamics simulations we investigate the non-
equilibrium aggregation of colloidal particles in external fields. 
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