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We study structural properties of a ring polymeric melt confined in a film in comparison to a linear counterpart using molecular

dynamics simulations. Local structure orderings of ring and linear polymers in the vicinity of the surface are similar to each

other because the length scale of surface-monomer excluded volume interaction is smaller than the size of an ideal blob of the

ring. In a long length scale, while the Silberberg hypothesis can be used to provide a physical origin of confined linear polymer

results, it no longer holds for a ring polymer case. We also present different structural properties of ring and linear polymers in

a melt, including the size of polymers, an adsorbed amount, and the coordination number of a polymer. Our observation reveals

that a confined ring in a melt adopts highly segregated conformation due to a topological excluded volume repulsion, which may

provide a new perspective to understand the nature of biological processes, such as territorial segregation of chromosomes in

eukaryotic nuclei.

1 Introduction

Understanding the nature of DNA packing during interphase

in a nucleus for higher eukaryotes has been a long-lasting chal-

lenge in the field of biophysics. One of the most interesting

features of DNA in a nucleus is chromosomal territories, in

which chromatin fibers are not tangled to each other with-

out making any knot, and each chromosome occupies a dis-

tinct territory.1–3 Experiments have been performed to quan-

tify the chromosome structure using, e.g., HiC for a contact

probability4–6 and FISH for subchain sizes.7–9 In these works,

the exponents of scaling relations for the contact probability

Pc(s) ∼ s−γ and for the subchain size r(s) ∼ sν versus the ge-

nomic distance s turned out to be γ ≈ 1 and ν ≈ 1/3, respec-

tively. These experimental data provide both intriguing and

challenging questions to polymer physicists since DNA, being

a polymer with open ends, seems to provide different scaling

exponents from those of entangled linear polymers character-

ized by γ ≈ 1.5 and ν ≈ 1/2.10–12

An early theoretical suggestion to interpret the DNA pack-

ing in terms of polymer physics involves an idea of a crumpled

globule.13,14 It is formed by a fast collapse of a single poly-

mer as the solvent quality is quenched. Although the crumpled

globule shares some characteristics with the chromosome, in-

cluding knot-free configurations and the same fractal dimen-

sion, the idea still remains a hypothesis due to, e.g., long-term

stability issue.15 In recent years, inspired by aforementioned

properties of crumpled globules, a ring in a melt has been pro-
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posed as a good candidate for elucidating the nature of DNA

packing.16,17 Since both ends of the ring are connected to

each other it possesses intrinsic topological constraints, non-

knotting and non-concatenation, as represented in the chromo-

some structure.

Much attention has been paid to understand the effect of

the topology of rings in a melt on their structures. In the

early stage of these studies, it was understood that rings in

a melt have an intermediate size characterized by the Flory

exponent of 2/5 in a long length scale, which was supported

by Flory-type argument18 as well as simulation studies.19–23

Recently, however, numerical simulations of sufficiently long

rings gave an evidence for an asymptotic behavior of the ring

size with the Flory exponent of 1/324–28 as well as for the

chromosome structures.7–9 Especially, it turns out that a uni-

versal behavior of the ring sizes was found, regardless of simu-

lation models,26 which provoked many theoretical studies re-

garding a better understanding of the ring statics. Modified

Flory argument implementing topological constraints of a ring

also reproduced the asymptotic behavior of a ring size and

crossover behavior between an ideal and a compact polymer

statistics.29,30 In these works, topological constraints are dealt

with the effective excluded volume interactions. It is also fas-

cinating that a simulation snapshot of ring polymers in a melt

recently reported in Ref. 31 allows one to recall the image

of segregated chromosomes in a nucleus.1 Motivated by the

above works, showing knot-free, unentangled conformations

similar to the interphase chromosome structures, study of the

physics of rings in a melt has recently come into the spotlight.

Coming back to the problem of the DNA packing, it may
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be useful to review recent research activities focusing on the

question why the chromatin fiber does not show reptation be-

havior even though it has free ends to reptate. One of the stud-

ies reveals that the reptation time of chromatin fiber is much

longer than a cellular lifetime because its length is much larger

than the nuclear size.16 Bulky ends formed by repeated telom-

eric DNA sequence32,33 and some parts of chromatin fiber at-

tached to inner surface of the nuclear envelope are also sus-

pected to prevent the chromosome from relaxing to the inter-

mixed state through reptation.17 Along the line of these stud-

ies, it is worthwhile to investigate the adsorption of the DNA

on the nuclear envelope in the language of polymer physics.

A lot is known for the structures of confined linear polymer

in a melt via experiments,34–36 computer simulations,36–39

and theories.40–43 It is also interesting to note that two-

dimensional linear polymers in a melt, i.e., the limit of the

ultrathin film, show highly segregated conformations and

amoeba-like dynamics,44–47 which resemble the physics of

rings in a melt.48 Compared to the linear case, a relatively lit-

tle attention has been paid to the confined ring systems for the

needs of understanding confined circular biopolymers, e.g.,

circular DNAs. Starting from the self-consistent field theory

of a single adsorbed ring polymer on the surface,49 some ex-

periments50–52, simulations51,53–55 and a theory55 of confined

ring polymers in a dilute regime have been performed. How-

ever, the confinement and the surfaces effects on the concen-

trated rings have remained a challenge. Problems in synthesiz-

ing the non-concatenated, non-knotted and monodisperse ring

polymers make one difficult to investigate physics of confined

rings in a melt by an experimental approach.56

In this study, therefore, employing molecular dynamics

simulations, we study perturbation of confined ring structures

by a surface and show how the surface affects the static prop-

erties of rings, e.g., ordering of local structures, sizes of rings,

adsorbed amounts, and the coordination numbers of a poly-

mer. The aim of this work is not only to investigate the ring

structures when the surface effect is added to intrinsic topolog-

ical constraints, but to look for new perspective for the nature

of DNA packing in a nucleus.

The rest of this paper is organized as follows. We first ex-

plain a flexible Kremer-Grest bead-spring model and a film

system designed by implicit soft walls in Sec. 2. In Sec. 3,

after observing well-defined layering structures of monomers

and bonds near the surface, we present structure perturbation

on the scale of the polymer size. The static properties altered

by the surface interaction and the topological repulsion are

also provided. Concluding remarks follow in the final section.

2 Simulation Methods

In order to study static properties of linear and ring poly-

mers near the surface in a thin film morphology, we performed

Table 1 System description: N, M, Lz, Lx = Ly, and teq are,

respectively, the degree of polymerization, the number of polymers

in a system, a film separation, a system size along x and y direction,

and an equilibration time. The monomer densities of all systems are

0.85σ−3 .

N M L
′

z Lx = Ly teq

32 128 20.00 15.98 1.0× 105

64 128 20.00 22.60 1.0× 105

128 128 40.00 31.49 1.0× 105

256 256 40.00 44.53 5.0× 105

512 256 60.00 51.18 2.0× 107

molecular dynamics simulations of polymers via the flexible

Kremer-Grest model (Fig. 1).12 In this model, a polymer con-

sists of beads having unit mass m. Non-bonded beads inter-

act with each other through repulsive Lennard-Jones (Weeks-

Chandler-Anderson, WCA) potential (Eqn. 1) with the unit

energy ε and the unit length σ . The covalent bond be-

tween beads is described by finite extensible nonlinear elastic

(FENE) potential (Eqn. 2) to prevent bond crossing. No angle

potential is included to describe flexible polymers.

Upair(ri j) =

{

4ε[(σ/ri j)
12 − (σ/ri j)

6 + 1
4
], ri j < 21/6σ

0, otherwise,
(1)

Ubond(ri j) =

{

−0.5kR2
0 ln[1− (ri j/R0)

2], ri j < R0,
∞, otherwise

(2)

In Eqn. 2, k = 30ε/σ2 and R0 = 1.5σ are used to suppress

the bond length fluctuation. Implicit soft walls perpendicu-

lar to z-axis are located at the bottom and top of z-axis. Two

different non-bonded interaction potentials between the sur-

face and a monomer are used to compare chain properties be-

tween attractive and repulsive surfaces. The attractive surface

is represented by Lennard-Jones potential using the same pa-

rameters with WCA potential described above, except for the

cutoff distance 2.5σ and attraction strength 3ε . The repulsive

surface is modeled by WCA potential with the same parameter

in the monomer-monomer repulsion. The unit time is scaled

by τ = σ
√

m/ε . We employ the weak temperature coupling

method, Langevin thermostat (Eqn. 3) in which a tempera-

ture, an integration time step, a friction coefficient are set to

be 1.0ε/kB, 0.01τ and 0.5τ−1, respectively.

r̈i = ∇ ∑
i6= j

Ui j −Γṙi +Wi(t) (3)

All simulations are conducted by LAMMPS package.57
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Fig. 1 Schematic description of a simulation system of N = 32 ring

polymers. A ring polymer colored by red represents one of adsorbed

polymers.

We simulate monodisperse polymer systems of five differ-

ent lengths, N = 32, 64, 128, 256, and 512 for both lin-

ear and ring polymers (Table 1). The number density of

monomers is 0.85σ−3, which is a typical monomer density of

a melt for the bead-spring model. To take into account the ex-

cluded volume of surfaces, we calculate the system volume by

V = LxLyLz = LxLy(L
′

z − 21/6σ), where L
′

z is the actual sep-

aration between two surfaces (Fig. 2). To avoid a bridged

polymer, the separation between two surfaces should be larger

than 4Rg,bulk, where Rg,bulk is the radius of gyration in the bulk

phase. The bridging structure is not observed at all in our

simulation trajectories. To minimize the finite size effect, we

enlarge the system size along x− and y− directions and also

increase the number of polymers in the system as N increases.

Obviously, periodic boundary condition is used only in x− and

y− directions (Table 1).

To focus on the properties of non-concatenated, non-

knotted ring polymers we adopt the following preparation

scheme. At first, after fixing the film separation to the desired

value, we place monomers with perfect circular morphology

and the planes of the circles are perpendicular to z− axis. Cen-

ters of circles are placed on square lattice sites in the xy-plane.

All monomers are located at the center between two surfaces.

To avoid concatenation, the lattice constant of the square lat-

tice should be larger than a diameter of a circle. To do so,

we set the lattice constant to 2.5r = 2.5N21/6σ/2π , because

N21/6σ ≈ 2πr for N >> 1, where r is a radius of a circle.

At high pressure of P = 5.0ε/kB in x- and y- directions, short

NPT simulations are performed until desired values of Lx and

Ly which satisfy ρ =NM/LzLxLy are obtained. In these prepa-

ration procedures, attractive interactions between chains are

turned on by changing the cutoff distance of WCA potential

Fig. 2 Schematic description of the surface-monomer excluded

volume. It should be taken into account when one calculates the

system volume.

to rc = 2.5σ . For all systems, desired densities are attained

within 5× 103τ (Table 1).

In order to equilibrate systems, NVT simulations are per-

formed starting from the initial configuration obtained by the

above method. We again change the cutoff distance of WCA

potential from rc = 2.5σ to rc = 21/6σ , to turn off inter-

monomer attractions. Equilibrations are executed during time

larger than five times of Rouse time of polymers in the bulk

phase. The lengths of production runs of all systems are 107τ
and the configurations are saved in every 102τ to get ensemble

averages.

3 Results and Discussions

3.1 Chain Non-ideality at the Vicinity of the Surface

Before studying properties of confined polymers, we first cal-

culate the sizes of linear and ring polymers in the bulk phase

as shown in Table 2. The density of monomers in the bulk is

0.85σ−3 as well as in the film system. As expected, the fully

flexible linear chains used in our simulation show ideal statis-

tics characterized by the fractal dimension 2 (inset of Fig. 3).

However, physics of ring polymers varies with the degree of

polymerization N. Halverson et. al.26 found striking merging

behavior of the ring sizes for many different models, which

provides a clear crossover from Gaussian regime represented

by Rg ∼ N1/2 to compact globular regime by Rg ∼ N1/3 as

shown in Fig. 3. Rings in this study correspond to 0.4Ne

through 8Ne (Ne ≈ 70 for the flexible bead-spring model58)

and long rings of N = 256 and 512 lie on the intermediate

regime in which the ring size is approximately proportional to

N2/5. They are expected to show the different physical prop-

erties from confined linear polymers due to the different Flory

exponents.

Returning our attention to the confined polymers, it would

be instructive to study the effect of local non-ideality in the

vicinity of the surface induced by the excluded volume inter-
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Table 2 Gyration radii and end-to-end distances (spanning

distances) for linear and ring polymers in the bulk phase.

Linear Ring

N R2
g R2

e R2
g R2

e

32 8.21 49.55 4.41 14.06

64 17.32 104.56 8.51 26.14

128 35.85 215.80 16.02 48.00

256 72.76 436.89 29.51 86.64

512 149.13 896.49 52.92 152.74

10-1

100

10-1 100 101 102

<R
g2 (N

)>
/[

<R
g2 (3

N
e)

>
(N

/3
N

e)
4/

5 ]

N/3Ne

(N/3Ne)
1/5 (N/3Ne)

-2/15

This work
Ref. 19
Ref. 20
Ref. 25
Ref. 58
Ref. 59
Ref. 60

100

101

101 102

N
1/2

Linear

N

Rg

Fig. 3 Rescaled gyration radii multiplied by N4/5 of rings as a

function of degree of polymerization normalized by entanglement

length, Ne, which was originally provided in the work of Ref. 26.

Those obtained in our simulations (black filled squares, Ne = 70)

and other previous works in Ref. 19 (Ne = 85), Ref. 20 (Ne = 40),

Ref. 25 (Ne = 28), Ref. 59 (Ne = 140), Ref. 60 (Ne = 40), and Ref.

61 (Ne = 175) are shown by different point types. Inset shows the

gyration radii of our linear polymers, which are exactly scaled by

N1/2.

action between a monomer and a surface. We display vari-

ations of monomer densities, bond lengths, and bond align-

ments for linear and ring polymers as a function of the distance

of a monomer from the surface z in Fig. 4. In this figure, it

is shown that the oscillation of monomer densities fades away

beyond z ≈ 4σ by forming four layers regardless of N. Re-

sults of N = 512 linear polymers within attractive surfaces are

also plotted by black dotted lines in the same graphs. Linear

and ring polymers with other N give almost the same vari-

ations with the N = 512 linear polymer (not provided here).

The attractive surface leads to the polymer structure with more

order, but the length scale hardly depends on the attraction

strength. In the absence of a strong and long-range attrac-

tion such as Coulombic potential, the length scale of solely

the excluded volume interaction between the monomer and

the surface, usually ≈ σ , is shorter than the polymer size.

0.0

2.0

4.0

0.0 1.0 2.0 3.0 4.0 5.0

ρ m
on

(z
)

z

Linear, N=32
64

128
256
512

Ring
Att

0.960

0.962

0.964

0.966

0.968

0.970

<l>

-0.5

0.0

0.5

P
2(

co
s(

θ)
)

Fig. 4 Variations of monomer densities (bottom), bond lengths

(middle), and bond orientations (top) as a function of distance

between the monomer and the surface. Black dashed lines represent

the position at which densities of monomers are minimal. In all

figures, results of attractive surfaces for linear polymers of N = 512

are represented by black dotted line.

The surface contributes to forming the first layer whose thick-

ness is about σ . The ordered monomers in the first layer help

the monomers to be ordered in the second layer, and in turn,

the third and fourth layers are also formed in a layer-by-layer

fashion. During this procedure, ordering becomes weak as z

increases. Such a layering structure is observed not only in

polymer systems but in the various confined liquid systems,

e.g., ionic liquids in the graphine double layers.62

Bond lengths and orientations are also oscillate near the sur-

face. Second Legendre polynomial, P2(cos(θ )), is calculated

to obtain bond alignments by such that,

P2(cos(θ )) =
3

2
〈cos2(θ )〉−

1

2
, (4)

where θ is an angle between the bond vector and the normal

to the surface. This value varies from -0.5 meaning that the

bonds are parallel, to 1.0 being perpendicular to the surface.
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When bonds align randomly, it is averaged out to be zero. Not

only the monomer densities, bond lengths and alignments os-

cillate with the same amplitude and the wavelength regard-

less of N. In Fig. 4, black dashed vertical lines indicate the

distances from the surface at which the monomer density is

minimal. In the region where the monomers are sparsely dis-

tributed, the bonds are elongated and align perpendicular to

the surface. In the dense region, in contrast, they contract and

align with the surface. Note that only the magnitude of oscilla-

tion varies as the interaction strength between the surface and

the monomer changes. These observations indicate that the

bond length interaction hardly affects the structure ordering,

and the oscillations of bond properties are chiefly determined

by the monomer positions.

In addition to independence of the chain length and the sur-

face attraction on the local structure ordering, the response of

the confined polymer structure is insensitive to the chain topol-

ogy (dashed lines in Fig. 4). The surface perturbs the polymer

structures in a layer-by-layer fashion and the size of ring poly-

mers is typically larger than the length scale of the surface-

monomer excluded volume interaction. Thereby, the surface

can not recognize whether the interacting monomers belong

to the linear or the ring polymer. While an elongated layering

structure is expected in the system of higher monomer density,

all systems produce the same length scale of this non-ideal

structure in our simulation condition regardless of the chain

length, the strength of surface interaction and the chain topol-

ogy. For the further discussion, it is useful to keep in mind

that the length scale of the chain non-ideality, ≈ 4σ , is even

smaller than the sizes of N = 128 < 3Ne ring polymers giving

ideal statistics characterized by the Flory exponent ν = 1/2

(see Table 2 and Fig. 3).

3.2 Segment Properties

To study the effect of the surface-monomer interaction on the

polymer structure, it is instructive to take into account the Sil-

berberg hypothesis63 based on the random walk with the re-

flective surface, which explains the physics of the confined

linear polymer melts (Fig. 5). In this argument, assuming

a reflecting boundary in the middle of an ideal chain, one

can imagine that monomers which would have been located

behind the boundary in the bulk phase are reflected through

the boundary. Because of no excluded volume interaction be-

tween monomers in an ideal chain, the reflected monomers

do not perturb the structure of remaining part of the chain, the

consequence of which is that the parallel size of the chain does

not vary from the bulk one.

The monomer excluded volume in the real system, how-

ever, cannot be screened out as argued in the structure ordering

near the surface. Here we provide segment properties of ad-

sorbed polymers, such as the sizes and the numbers of trains,

Fig. 5 Schematic description (side view) of the conformation

transfer through a reflecting boundary. Shaded monomers with

orange color behind the surface are reflected in front of the surface.

R is the polymer size if it were in the bulk phase and dl is the height

of the disk represented by black shaded area.

loops and tails to understand the interplay between the chain

non-ideality in the vicinity of the surface and the overall struc-

ture perturbation. The definitions of segments are the same as

in previous works.38,42 As depicted in Fig. 6, successive ad-

sorbed monomers are considered to a train, and the segment of

successive non-adsorbed monomers whose both ends are ad-

sorbed on the surface is a loop. A tail is defined by consecutive

non-adsorbed monomers in both ends of a linear chain. Obvi-

ously, a ring polymer does not have a tail. From now on, we

discuss only the results of systems with the repulsive surface

since the surface interaction strentgh modeled by short-range

Lennard-Jones potential does not change structural properties

of polymers significantly. Figure 7(a) presents the average

numbers of loops 〈nl〉, trains 〈ntr〉, and tails 〈ntl〉 per an ad-

sorbed chain as a function of N, where the adsorbed chain is

defined such that at least one monomer belonging to it is lo-

cated in the first layer represented in Fig. 4, which is identical

to the definition in the Scheutjens-Fleer theory.41,42 In Fig.

1, the highlighted ring polymer is an example of an adsorbed

chain. According to the definitions, the number of trains of

a ring polymer is the same as that of loops if the perfectly

adsorbed polymer is absent. The relations, ntr = nl + 1 and

0 ≤ ntl ≤ 2, also hold for linear polymers. In accordance with

the recent work of Ref. 38, 〈ntr〉 and 〈nl〉 of linear polymers

simultaneously grow with N, but 〈ntl〉 very slowly increases

below 2. 〈ntr〉 and 〈nl〉 of ring polymers also increase with N,

and are larger than those of linear ones. Figure 7(b) shows the

average sizes of loops 〈sl〉, trains 〈str〉, and tails 〈stl〉 per each

segment. We find that 〈ntr〉 and 〈str〉 follow power laws as N

1–13 | 5

Page 5 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 6 Schematic descriptions of a loop, a train, and a tail in a

linear polymer. Monomers colored with orange are adsorbed on the

surface. Definitions of segments of a ring polymer are the same as

those of a linear polymer.

Table 3 Fitted scaling exponents for an adsorbed amount, δ , the

average number of trains, γn, and the average size of trains, γs,

versus N in the film and the bulk systems.

Film Bulk

Linear Ring Linear Ring

δ 0.50 0.42 0.49 0.42

γn 0.47 0.57 0.48 0.58

γs 0.03 0.01 0.03 0.00

varies with the scaling exponents, γn and γs, respectively, such

that 〈ntr〉 ∼ Nγn and 〈str〉 ∼ Nγs (Insets of Fig. 7(a) and 7(b)).

The fitted exponents for linear and ring polymers are listed

in Table 3. It is intriguing to note that the sizes of trains for

both linear and ring polymers, which slowly vary with N, are

very similar to each other. The sizes of trains are determined

only by the very local structure of polymers close to the sur-

face. We argue that the length scale of structure ordering due

to the surface is smaller than the that of chain ideality even

of the ring polymers in a bulk phase. This indistinguishability

between linear and ring polymer in a very short length scale

leads to the same train size.

The probability distributions of segment sizes also sup-

port the above argument of the local indistinguishability be-

tween polymer topologies. Figure 8 displays the size distribu-

tions of (a) trains and (b) loops for N = 512 linear and ring

polymers. As expected from the previous analytical42,43,64

and numerical38,65 studies for the ideal chains, the train size

distribution of linear polymers follows an exponential form,

P(str)/〈str〉 ≈ exp(−str/〈str〉), and the loop size distribution

decays as a power law, P(sl) ∼ s−3/2, where s is a contour

length. Notice that the train size distributions of linear and ring

polymers are the same with each other, which means that the

train size of the ring polymer melt can be explained in terms

of ideal chain statistics. The fact that loop size distribution

of the ring polymer is also similar with linear ones in small

5
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<n
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g>

N

Linear,<nl>
<ntr>
<ntl>

Ring,<ntr>

2.0

4.0

8.0

32 128 512
N

<ntl>

~ N0.57

~ N0.47

(a)

10

20

30

40
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 200  400

<s
se

g>

N

Linear,<sl>
<str>

Ring,<sl>
<str>

3.0

4.0

32 128 512
N

<stl>

~ N0.03

~ N0.01

(b)

Fig. 7 (a)The average number and (b)the average size of loops

(squares), trains (circles), and tails (triangles) for linear (black) and

ring (red) polymers. The sizes of trains for linear polymers overlap

with those for rings in (b). Insets in both figures show log-log plots

of the number and the size of trains. Both average values can be

scaled by Nγ and the fitted exponents are represented in each figure.

s also supports the argument of indistinguishability. Appar-

ently, a high looping probability in large s of the ring polymer

is originated from the topology of connected chain ends.

To explain the difference in the average numbers of seg-

ments between linear and ring polymers, we evaluate the seg-

ment properties of the bulk polymers in the following proce-

dure. Based on the idea of random walk with the reflective

boundary (Fig. 5), we place a fictitious slab parallel to the

xy-plane and in the middle of z−axis of the simulation box

whose thickness is two times of the layer thickness in Fig.

4, such that dl = 2× 1.05σ = 2.10σ . We define a train in

this system as successive monomers located in this slab, and

a loop as successive monomers not located in the slab in anal-

ogy to the definition in the film system. The size distributions
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Fig. 8 The probability distributions of (a) train and (b) loop sizes

for linear (squares) and ring (circles) polymers of N = 512. An inset

of (a) is a log-linear plot of the train size distribution which shows

exponential decay of probability distributions. Symbols colored by

red represent results obtained in bulk system. In (b), all symbols

merge into a single line which is scaled by Pl(s)∼ s−3/2 except for

s > N/2 loops for rings.

of trains and loops of bulk polymers well reproduce the results

of confined polymers in Fig. 8. The fact that fitted exponents

of the relations 〈ntr〉 ∼ Nγn and 〈str〉 ∼ Nγs listed in Table 3

are also in agreement with those of confined polymers reveals

the local ideality of a ring. Using the Silberberg’s idea, the

number of segments that visit the slab is regarded as the num-

ber of trains, which is closely related to the overall structure

of polymer, especially, to the self-monomer density. The self-

monomer density of a ring polymer in a melt is higher than

that of a linear polymer.25 Thereby the segments of the ring

visit the slab frequently, resulting in the higher average num-

ber of trains.

3.3 Center of Mass Density

Up to now, we have focused on the local structure near the sur-

face. The observation of the average numbers of trains moti-

vates us to study the overall structure perturbation on the scale

comparable to the polymer size. To do so, we first provide the

density of polymer center-of-mass as a function of a distance

of a polymer center-of-mass from the surface, zCM, also nor-

malized by the bulk radius of gyration, Rg,bulk (Fig. 9). Pack-

ing structure of polymer molecules toward the surface is ob-

served as well as the monomer ordering. It is obvious that the

size of polymers at zCM < Rg,bulk is influenced by the surface

as represented by a red arrow in Fig. 9. One can find a notice-

able difference between linear and ring polymers. Rings are

more densly packed toward the surface than linear polymers

reflected by the high peaks of the center-of-mass density pro-

files at z ≈ Rg,bulk. These high densities are compensated by

the small densities at around z≈ 2Rg,bulk. This trend resembles

the packing of monomers which indicates that, unlike the lin-

ear polymers, the ring acts like a globular object rather than the

ideal chain. It can be also understood by the topological ex-

cluded volume interaction imposed by the non-concatenation

and the non-knotting constraints.29,30 Another observation of

non-monotonous peak heights of rings at z ≈ Rg,bulk with in-

creasing N also supports this argument, which can be under-

stood by two contributions of the local non-ideality and the

topological repulsion. For small N, due to the comparable size

of a ring to the length scale of the monomer packing struc-

ture, rings are densely packed. As N increases, the surface-

induced non-ideal structure becomes a small part of a ring,

which weakens ordering of the molecules. If N continuously

grows to the asymptotic regime (ν = 1/3), the strong topolog-

ical repulsion makes the ring again ordered.

3.4 Polymer Size Near the Surface

Motivated by the topological interaction of a ring on the large

scale, we now study the non-ideality of a ring polymer on the

scale comparable to its size. According to the above argument,

a long ring of N > 3Ne in a bulk is composed of ideal blobs of

the size ζ ∼ g1/2, where g is the number of monomers in this

blob, expected to g < 3Ne. These blobs are densely packed

with each other in space characterized by R ≈ ζ (N/g)ν ∼ Nν ,

where ν = 2/5 for long rings in this study. It is worthwhile

to apply the ring to the argument of the conformation trans-

fer through the reflective boundary. Reflected blobs in front

of the boundary experience topological interactions imposed

by the non-knotting constraint, which makes the ring expand.

In Fig. 10, we plot the gyration radii normalized by Rg,bulk

versus zCM/Rg,bulk. As the molecule approaches to the sur-

face, it slightly shrinks at z ≈ Rg,bulk, but again swells in the

vicinity of the surface for both linear and ring polymers. The

increased amount near the surface is greater for ring polymers
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Fig. 9 Densities of polymer center-of-mass normalized by the bulk

density as a function of the distance from the surface also

normalized by a radius of gyration of a bulk polymer for linear

(solid) and ring (dashed lines) polymers. A red arrow indicates the

Rg,bulk.

than that for linear counterparts. It is clear to see the paral-

lel, R
||
g , and perpendicular components, R⊥

g , of gyration radii

to the surface as shown at the bottom of Fig. 10. R⊥
g ’s for

all systems merge into a single line within errorbars, which

is in agreement with the above argument that the sizes of the

polymers in zCM < Rg,bulk are affected. The validity of Silber-

berg hypothesis is underpinned by the obeservation that R
||
g’s

of the linear systems are not much deviated from their bulk

sizes, in agreement with the previous work.65 For this linear

case, a slight expansion of chain sizes in the vicinity of the

surface is due to the non-ideality by the surface-monomer ex-

cluded volume interaction whose scale is up to 4σ . For the

ring polymer case, however, not only this short-range surface

interaction but the topological repulsion enlarge the ring size

along the parallel direction to the surface.

Figure 11 represents top-view snapshots of our simulations

of N = 128 linear and ring polymers adsorbed on the surface.

This figure clearly shows the difference of self-monomer den-

sities of adsorbed polymers around their center-of-mass be-

tween linear and ring polymers. Linear polymers can pene-

trate into the space occupied by the other adsorbed linear poly-

mer highlighted by pink color in Fig. 11(a) even at close to the

surface. In contrast, a ring has hardly ever allows other rings

to be tangled. Because of the topological excluded volume in-

teraction, blobs in a ring repel each other, which causes the

swelling of the ring under confinement.

3.5 Adsorbed Amount

We now present another physical property of confined poly-

mers, an adsorbed amount Γ, whose behavior depends on the
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Fig. 10 Normalized gyration radii (top) and their parallel and

perpendicular components to the surface (bottom) as a function of

the distance of a molecule center-of-mass from the surface, zCM, for

linear (open symbols) and ring (filled symbols) polymers. In the

bottom, squares and triangles represent parallel and perpendicular

sizes to the surface, respectively. In the upper figure, error bars for

both polymers of N = 32 are shown. Errors in zCM/Rg,bulk ≥ 0.75

are smaller than the size of symbols.

chain ideality and the topological interactions. We define Γ
as the total mass of adsorbed chains per unit area. Figure

12 shows Γ as a function of N for both polymers. The ad-

sorbed amount of a linear system increases with N with the

power law, Γ ∼ Nδ , with the exponent δl = 0.5, which is well

consistent with several previous studies.38,41,42 One intrigu-

ing observation is a behavior of the adsorbed amount for the

ring system. It also follows a power law, but the exponent is

somewhat smaller than that of the linear polymer, δr = 0.42.

Interestingly, these two exponents of linear and ring polymers

seem to be close to their Flory exponents, νl and νr, respec-

tively. As pointed out earlier, a linear chain in a melt follows

ideal statistics with νl = 1/2, but the sizes of N = 256 and 512

ring polymers lie on the intermediate regime with νr ≈ 2/5

between an ideal chain and a compact globule (Fig. 3). In or-

der to compare two exponents, ν and δ , we also plot the ratio

of the adsorbed amount to the size, Γ/Rg,bulk as a function of

N in the inset of Fig. 12. In this figure, the fact that the ratio
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(a) (b)

Fig. 11 Top-view snapshots of N = 128 (a) linear and (b) ring

polymers which are adsorbed on the surface. The surface interacting

with highlighted polymers is located in front the page.

is constant in asymptotic limit of N → ∞ means that ν ≈ δ .

Using the picture of conformation transfer (Fig. 5), we can

prove this relation for the linear polymer case via mean-field

approach. The number of adsorbed monomers per a single ad-

sorbed polymer, nads, can be evaluated by counting the number

of monomers transpiercing the disk of the height dl and the ra-

dius R, which is described by shaded area in Fig. 5. Because

the self monomer density, ρself, is proportional to N/R3 and

the volume of the disk is Vdisk ∼ R2dl, the number of adsorbed

monomers per an adsorbed polymer is calculated as:

nads ≈Vdisk ×ρself ≈ R2dl×
N

R3
∼

Ndl

R
. (5)

If we let the size of the polymer in the bulk phase, R, be pro-

portional to Nν , then we can obtain nads ∼ N/Nν ∼ N1−ν . Re-

call that each adsorbed monomer occupies almost the same

area on the surface in Fig. 4 since the total number of

monomers adsorbed on the surface, which corresponds to an

area under the curve of the first peak, is regardless of N. From

this, nads is proportional to the area occupied by an adsorbed

polymer, and 1/nads is proportional to the number of adsorbed

polymers per unit area. The adsorbed amount, Γ, is the num-

ber of adsorbed polymers per unit area multiplied by the num-

ber of monomer in a polymer, so finally, we can obtain that

Γ ∼ Nδ ∼ n−1
ads ×N ∼ Nν , which reduces to ν = δ for the

ideal chain adsorbed on the reflecting surface. Discrepancy of

two exponents at small N can be also explained by the com-

parable lengths between the local chain non-ideality and the

polymer size.

It is an interesting problem to investigate why two expo-

nents of ring polymers are similar to each other for large N

even though they are not ideal. In Eqn. 5, we used the size of

polymers in bulk phase, R, when calculating the volume of the

disk and self-monomer density because they are considered

as ideal chains. However, rings swell along parallel direction

to the surface as observed in Fig. 10, thus we can not di-

 5´100

 1´101

 2´101

 4´101

32 64 128 256 512

Γ

N

Γ~ Nδ

Linear
Ring

δl=0.50
δr=0.42

2.0

3.0

32 128 512

Γ/Rg,bulk

N

Fig. 12 Log-log plots of adsorbed amounts, Γ′s, as a function of N

for linear (black) and ring (red) polymers. In both cases, adsorbed

amounts are proportional to the Nδ and fitted exponents are

expressed in legends. Inset shows the adsorbed amounts divided by

gyration radii in the bulk, Γ/Rg,bulk, versus N.

rectly substitute the size of the adsorbed polymer into its bulk

size in Eqn. 5. Instead, the volume of disk Vdisk, is propor-

tional to R
||2
g dl and the self-monomer density is proportional

to N/Vring ≈ N/RxRyRz where Vring is the volume occupied by

an adsorbed ring and Rα represents the gyration radius along

α-direction (α = x, y, z). Thereby, nads for the ring is:

nads ≈Vdisk ×
N

Vring

≈ R||2dl ×
N

RxRyRz

. (6)

Figure 13 shows log-log plots of parallel size of linear and

ring polymers versus N. In this figure, R
||
g seems to follow

scaling behavior with exponent, ν ′, and fitted exponents for

linear and ring polymers are 0.51 and 0.44, respectively. ν ′ of

linear polymers is very close to the bulk one, ν = 0.5, which

is supported by the Silberberg hypothesis. However, it should

be noted that the size of adsorbed ring polymers, even though

their parallel sizes increase compared to those in the bulk as

in Fig. 10, are scaled by the exponent which is very similar to

Flory exponent. Especially, for long rings of N = 256 and 512,

parallel polymer sizes are proportional to N2/5, which yields

the same scaling behavior as the bulk ring size. As a result,

the scaling exponent of Vdisk versus N does not change while

we replace R
||
g by R in Eqn. 6.

It is also desirable to compare R3
x,bulk (≈ R3 in Eqn. 5) with

RxRyRz for the valid substitution of the bulk self-monomer

density into the adsorbed one, where Rx,bulk is radius of gyra-

tion along x− direction of a bulk polymer. RxRyRz and R3
x,bulk

represent, approximately, Vring in the film and in bulk phase,

respectively. In Tab. 4, it is shown that the volume of a lin-

ear polymer adsorbed on the surface is much smaller than that

in bulk phase because the parallel size is decoupled from the
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Fig. 13 Log-log plots of parallel components of gyration radii to

the surface versus N for linear (open squares) and ring (filled

squares) polymers. Black and red dashed lines represent Rg ∼ N0.50

and ∼ N0.40, respectively.

perpendicular one. The volume of an adsorbed ring polymer

is, however, very similar with a bulk ring. This observation

reflects the highly packed structure of a ring because reduc-

tion of perpendicular ring size is compensated by increase of

parallel size. The better consistency between R3 and RxRyRz

is expected for the more compact ring polymers of N → ∞.

According to this argument, by substituting R3 into RxRyRz,

Eqn. 6 arrives at the same relation with the ideal chain (Eqn.

5) which reproduces ν ≈ δ .

The exponent δ can be also obtained by the relation be-

tween the adsorbed amount and the train properties, using

scaling exponents, γn and γs. If there is no correlation between

ntr and str , the product of two averaged qantities, 〈ntr〉× 〈str〉
indicates the average number of adsorbed monomers per an

adsorbed polymer, nads. Because 1/nads is proportional to the

number of adsorbed polymers on unit area and Γ/N ∼ Nδ−1

as mentioned above, the equation, 1/nads ∼ N−γn−γs ∼ Nδ−1,

arrives at δ = 1−γn−γs. Fitted scaling exponents of γn and γs

with δ are listed in Table 3. Because the summation of three

exponents equals unity, the number of trains and the size of

train are uncorrelated. The relation, δ = 1− γn − γs, reflects

that the dependence of N on the adsorbed amount is deter-

mined by those of train size and the number. γs for linear and

ring polymers are almost the same with each other and are

close to zero, which means that the effect of train size on the

change of adsorbed amount is negligible. The main factor de-

termining different adsorbed amounts between linear and ring

polymers is the number of trains, which, in turn, is due to the

difference in self-monomer densities.
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Fig. 14 Coordination numbers normalized by bulk values for linear

(solid lines) and ring (dashed lines) polymers as a function of the

distance of the polymer center-of-mass from the surface. Different

colors represent different lengths of polymers. An inset shows the

coordination numbers of linear and ring polymers in bulk phases.

3.6 Coordination Number of Polymers

Another striking result in static properties of confined poly-

mers is the decrease of the coordination number of a poly-

mer, which is a good measure of conformational properties

of polymeric melts. It is well known that while the coordi-

nation number of the linear polymer grows with N1/2, that of

the ring polymer saturates at N → ∞ (inset of Fig. 14).25 We

evaluate the coordination numbers normalized by their bulk

values as a function of zCM in Fig. 14. Here, the number of

contacting molecular pairs per a polymer is defined by the co-

ordination number, where two polymers of which at least one

monomer-monomer pair is closer in space than σ are regarded

as the contacting pair. Note that the amount of decrease for the

ring is larger than that for the linear counterpart except for the

N = 32 case. This observation reveals that the repulsive topo-

logical interaction due to the reflecting blobs makes the locally

tangled neighboring rings squeeze out. From this result, it is

strongly suspected that the confinement effect contributes to

forming a segregated chromosome in a nucleus. For N = 32

linear case, the small chain size comparable to the non-ideality

in the vicinity of the surface leads to the exceptional drop of

the number of surrounding molecules.

4 Conclusions

In this work, we have presented structures of confined ring

polymers in a melt by comparing those of ideal chains. Ring

polymers in a melt are known to form compact structure by

packing ideal blobs. The length scale of local structure or-

dering due to the surface-monomer excluded volume interac-

tion is shorter than the size of the ideal blob, which leads to
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Table 4 Gyration radii in different directions and multiplication of three gyration radii in the film and bulk systems. Because gyration radii in

different directions of a bulk polymer are almost the same, we use R3
x,bulk instead of Rx,bulkRy,bulkRz,bulk in Eqn. 5.

Linear Ring

N Rx Rz RxRyRz R3
x,bulk Rx Rz RxRyRz R3

x,bulk

32 1.71 1.48 4.38 4.52 1.27 1.10 1.76 1.78

64 2.48 2.14 13.11 13.88 1.75 1.53 4.71 4.78

128 3.55 3.08 38.94 41.31 2.40 2.11 12.22 12.35

256 5.05 4.42 113.77 119.43 3.25 2.86 30.10 30.85

512 7.20 6.59 323.51 350.47 4.34 3.81 71.76 73.09

the very similar local structures between linear and ring poly-

mers. According to the Silberberg’s reflecting boundary argu-

ment, the reflecting blobs of linear polymers do not feel the

excluded volume interaction. In contrast, reflecting parts of

ring polymers feel the repulsion with other blobs due to the

topological excluded volume interactions. As a result, the con-

fined ring crowds out the neighboring molecules which makes

itself more compact, and it expands along parallel direction to

the surface. Because we have yet to reach very long rings in

asymptotic limit, the exponents obtained in this work, ν , γ , δn,

and δs are not universal. Nevertheless, we found interesting

relations between these exponents which are expected to also

hold for very long rings due to the stronger topological effect

than our rings. Moreover, longer rings are expected to show

the larger amount of parallel size expansion and a bigger drop

of the coordination number than our ring polymers. Our obser-

vations provide the possibility that segregated conformation

of chromosomes is originated from the confinement effect in

a nucleus envelope in addition to the factors mentioned in the

introduction, e.g., a long disentanglement time of a chromatin

fiber and a telomeric region at the end. In this view point, it is

challenging to investigate variation of crossover lengths of the

ring polymer structure from ideal to globular statistics under

the confinement. In addition to the confinement effect, various

aspects for the interplay between the physics of ring polymer

melt and the chromosome packing are currently under study.
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