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DOI: 10.1039/ In the comment by Epand et al. on our recent article1, it is stated that the term “cholesterol 

solubility limit” is misused. As Epand et al. point out, there is extensive literature on cholesterol phase 

separation in phospholipid bilayers and this term is used to define the appearance of cholesterol crystals. 10 

Moreover, as they state, this does not preclude them from existing as bilayered crystals or cholesterol-

only domains within the membrane itself. Since our SANS data directly measured the maximum amount 

of cholesterol harboured by POPC and POPS membranes, it may have been more appropriate to use the 

term “cholesterol saturation limit”. Nonetheless, we stated that the saturation and solubility limits of 

cholesterol coincide in both POPC and POPS. Epand and et al. suggest that the data shown was 15 

insufficient to uphold this claim. Herein, we present data that supports the coincidence of cholesterol’s 

saturation limit with cholesterol’s solubility limit in 100nm POPS unilamellar vesicles, where previously 

it has been reported to not be the case2. 

Although the phase diagram of mixtures of lipids and cholesterol 
can generally be described by results from a mean field 20 

approach3, experimentally it is known that lipid saturation plays a 
major role in phase behavior. For example, with unsaturated 
lipids, the liquid ordered phase is absent4, 5. Consequently, 
cholesterol in an unsaturated lipid membrane remains in a single 
(condensed) fluid phase until a cholesterol-only phase emerges. 25 

This is cholesterol’s solubility limit. In the model by Pata et al.3, 
above this cholesterol solubility limit, the cholesterol-only phase 
forms solely outside the membrane as crystals. However, whether 
the membrane can actually harbor cholesterol above the solubility 
limit in the form of cholesterol-only domains within the 30 

membrane remains contentious. Experiments and MD 
simulations using saturated lipids and cholesterol show that the 
membrane can retain cholesterol above the solubility limit in the 
form of cholesterol-only bilayered domains6, 7. For unsaturated 
lipids, however, this may not be the case. POPC, for example, 35 

cannot retain cholesterol above the solubility limit in the 

membrane8, 9. On the other hand, POPS has been reported to 
retain cholesterol-only domains in the membrane’s bilayer up to 
66 mol% cholesterol2, which is well above a solubility limit of 
~36 mol%10, 11. 40 

In our small angle neutron scattering (SANS) study we directly 
showed that in 100nm unilamellar lipid vesicles of POPS with 
cholesterol, the bilayer retains a relatively high concentration of 
cholesterol (~70 mol%). To determine whether cholesterol-only 
domains are present in these vesicles above the reported 45 

solubility limit of ~36 mol% we collected small and wide angle 
x-ray scattering (SAXS and WAXS) data on samples with 
increasing amounts of cholesterol and shown in Figure 1A. The 
X-ray data show no evidence of the 17 Å and/or 34 Å anhydrous 
cholesterol peaks6, 8, 11. Additionally, we took differential 50 

scanning calorimetry measurements for the 50 mol% cholesterol 
sample. The resulting heating and cooling scans are shown in 
Figure 1B and do not show an anhydrous cholesterol peak as 
detected previously10, 11.  
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SANS is an exquisitely sensitive technique in detecting 
compositionally distinct coexisting regions or domains in 
membranes12.  If the scattering length density of the solvent, 
ρsolvent, matches that of the average scattering length density of the 
whole membrane as if it was fully mixed (<ρvesicle>), then any 5 

excess scattering, from an otherwise flat curve, is solely due to 
the presence of compositional inhomogeneities within the 
membrane. SANS data for 100nm unilamellar vesicles of 
deuterated POPS with 60 mol% cholesterol in a solvent that 
matches <ρvesicle> is shown in Figure 2A. The data shows some 10 

remaining contrast between the lipid tails and headgroups as 
expected13, but the signature of domains is missing. Epand et al. 
argued correctly in their comment that if cholesterol domains 
were sufficiently small, there would be no excess scattering. Yet, 
at what domain size can we consider cholesterol to be in 15 

cholesterol-only domains as opposed to being mixed in the 
membrane? Figure 2A shows SANS data of a contrast matched 
1:1 deuterated DPPC:DLPC mixture with 12 mol% cholesterol 
which had been concluded to be fully mixed using FRET (to 
within the resolution of 5nm of the fluorescent pair used for this 20 

measurement)14. Indeed, when domains are small (~5nm), the 
excess scattering is not large as compared to data from 
DPPC:DLPC (devoid of cholesterol) where domains are of order 
~30nm (Figure 2B). However, clearly the signal from 5nm 
domains is sufficient to show that, in the case of 60 mol% 25 

cholesterol in POPS, there is no evidence of domains. 
Consequently we conclude that we do not detect cholesterol-only 

domains in unilamellar vesicles of POPS, setting the cholesterol 
solubility limit in POPS to that reported in our recent 
publication1.  30 

As a final comment we want to reiterate that MD simulations 
have been able to model, in saturated lipid systems, phase 
separation of ordered phases15 and the formation of cholesterol-
only bilayered domains above the solubility limit, and are 
therefore consistent with experiments7, 16. Similarly, our MD 35 

simulations for POPC and POPS agree with our experimental 
results except that beyond the saturation limit, cholesterol is 
placed in the center of the membrane instead of being expelled 
from the bilayer to form crystals. While recent all-atom 
simulations on pure cholesterol bilayers appeared to show a 40 

single stable bilayered cholesterol-only domain17, this behavior is 
inconsistent with what is observed experimentally, where, 
independent of saturation, the membranes’ cholesterol saturation 
limit is ~70 mol% or less. Thus coarse-grained and all-atom MD 
simulations are still unable to capture the behavior of cholesterol 45 

in membranes beyond the saturation limit. 
In conclusion, even though Epand et al. correctly state in their 
comment that the SANS data presented in our previous study 
cannot truly exclude the existence of cholesterol-only domains, 
the new data presented in this response clearly support our 50 

previous conclusions. As a result, we thank Epand et al for their 
criticism and feedback.  

 

Figure 1. A) X-ray diffraction data plotted as a function of intensity versus amplitude of the momentum transfer vector q. 
Powdered samples of POPS and cholesterol were measured at room temperature and data are shown as the bottom two spectra. 
100nm unilamellar vesicles of POPS with 0, 25, and 50% of molar cholesterol were measured at 25oC (solid lines) and 63oC 
(thicker dashed lines). The cholesterol anhydrous peaks, marked using arrows, are clearly not observed in the XRD data for the 
vesicles. B) µDSC heating and cooling scans, offset for viewing clarity, for a single sample of 100nm unilamellar vesicles 
composed of POPS and Cholesterol in a 1:1 molar ratio dissolved in water. The amount of cholesterol was 17 mg with 33 mg of 
POPS. The four top curves are heating scans and the bottom four curves are cooling scans. The numbers denote the order in 
which scans were run. All curves were obtained at a 1oC/min scan rate except for curves 7 and 8 which were run at 0.5oC/min. 
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