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An electric potential difference across the plasma membrane is common to all living cells and is essential to physiological

functions such as generation of action potentials for cell-to-cell communication. While the basics of cell electrical activity are

well established (e.g. the Hodgkin-Huxley model of the action potential), the reciprocal coupling of voltage and membrane

deformation has received limited attention. In recent years, studies of biomimetic membranes in externally applied electric

fields have revealed plethora of intriguing dynamics (formation of edges, pearling, phase separation) that challenge current

understanding of membrane electromechanics.

1 Introduction

Living cells maintain an electrical potential across the plasma membrane as a result of the activity of membrane-bound ion chan-

nels1,2. Modulation of the transmembrane electric field is often associated with membrane deformation, e.g., electromotility of

outer hair cells3–10, axon swelling (volume increase) during action potential propagation11,12, and possibly phase transitions13,14.

External electric fields can have more dramatic effects, e.g., directing cell growth15, migration16–19 or causing membrane po-

ration20. Reversible electroporation, in which the pores reseal thereby restoring cell integrity after the field is turned off, is of

great interest for biomedical technologies such as gene transfection21, while irreversible electroporation leading to cell death is

desirable in cancer treatment22.

Basic understanding of membrane deformation and stability in electric fields remains elusive23–25, and has spurred research

with model biomimetic systems20,26–28. A cell-sized closed lipid bilayer (giant unilamellar vesicle) provides a natural model

system to study the coupling between transmembrane potential and membrane shape27,29,30. First, the vesicles’ “giant” size

(10-100 µm) allows direct observation of dynamic features of the membrane, e.g., shapes and composition, in real time with op-

tical microscopy. Second, experiments with vesicles in a spatially uniform electric field (the simplest possible geometry) reveal

morphological changes that closely mimic cell behaviors, e.g., elongation into a spheroid31–33, pearling of a tubular vesicle34,

and phase–separation (“raft” formation) in multicomponent membranes35. Other intriguing dynamics have also been observed:

lipid flows and mixing36, wrinkling37, and burst38. While some of these behaviors , e.g., vesicle elongation, are reasonably

well understood24,27,39, a long-standing puzzle remains: a vesicle in a DC field can form edges and become a spherocylin-
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Fig. 1 Vesicle “squaring”: A quasi–spherical vesicle exposed to a square DC pulse deforms into a spherocylinder with long axis parallel (A) or perpendicular

(B) to the field depending on the conductivity ratio of the inner and outer solutions Λ, Λ > 1(A) and Λ < 1 (B). Image courtesy of R. Dimova and K. Riske 40.

Pulse duration 0.25ms (A) and 0.4ms (B).

der, a phenomenon dubbed “vesicle squaring”40, see Figure 1; the extreme curvature of the edges may affect poration41 and

curvature-sensitive processes, e.g., protein or lipid sorting. Furthermore, while there is a consensus theoretically that the bending

modulus should increase with the electric field42–44, comprehensive experimental data is lacking. Given the wide use of the

electrodeformation method45–48 (which relies on vesicle elongation in a uniform AC electric field) to measure bending rigidity,

it is important to have a clear estimate about the electric field effect in order to interpret the experimental data.

2 Basic membrane electromechanics

2.1 Membrane bending and shape fluctuations

The molecularly thin bilayer resists bending because a change in curvature involves compression and expansion of the two

opposing monolayers. The energy cost is described by the classical Helfrich model49–51

Eb =
κ
2
(2H −C0)

2 (1)

where κ is the bending elastic modulus, H is the mean curvatures. C0 is the bilayer spontaneous curvature, which is intrinsic

curvature due to asymmetry in packing density of the lipid molecule’s head and tail52.

The self–assembled lipid bilayer is held together by non-covalent bonds, which allow for the lipid molecules to rearrange

freely. As a result, the membrane behaves as a fluid, more precisely, a nearly incompressible two–dimensional fluid due to the

high energy cost of increasing the area per lipid29,53. The area–incompressibility implies that the membrane tension is not a

material property (as for fluid-fluid interfaces) but a Lagrange multiplier enforcing the area-constraint.

Vesicles display a rich spectrum of equilibrium shapes, which is in stark contrast with drops and bubbles whose equilibrium

shape is a (plain) sphere. Equilibrium vesicle shapes correspond to minima of the membrane bending energy subject to the

constraints of constant area (because the number of molecules in the bilayer is fixed) and volume (because the membrane is

impermeable to ions and osmotic pressure resists changes in volume). Alternatively the shapes can be found as solutions of the

generalized Laplace’s equation54–56

∆p = 2Hσ0 + τκ , (2)

where the equilibrium tension σ0 = const, τκ is the bending traction, derived from Eq.[1]54,55,57,58, and ∆p is the hydrostatic

pressure jump between the vesicle interior and exterior.

The bending rigidity of lipid bilayers is κ ∼ 20kBT 29,59,60 (here kB is the Boltzmann constant and T is the absolute tempera-

ture). As a result, lipid membranes are easily bent by thermal noise. The thermal undulations store area which can be pulled out

without stretching the true area (specified by the area per lipid) by application of pressure either by suction in a micropipette61

or electric field45,47. A quasi-spherical vesicle deforms in response to externally applied stress and the vesicle apparent area A0

(which is observable within the optical resolution of the microscope) increases due to flattening of the shape undulations; this

effect is called entropic elasticity. Restricting the fluctuations raises the tension61,62

σ = σ0 exp

[

8πκ

kBT
α

]

, α =
A−A0

A0
(3)

where σ0 is the membrane tension in absence of applied forces. Eq.[3] can be used to obtain the membrane bending rigidity κ if

the area increase and tension can be measured independently, see e.g. the electrodeformation method discussed in Section 2.4.

Page 2 of 7Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



1–7 | 3

2.2 Fluctuation analysis to determine membrane bending rigidity and tension

Because the cost of membrane bending is comparable to the thermal energy, vesicle shapes are not static and “flicker”. The

deviation of the membrane from its equilibrium shape can be decomposed into Fourier modes, u(x, t) = ∑k uk exp(ikx− t/tk).
The amplitudes have averaged spectrum47,62–68

〈|uk|
2〉=

kBT

κk4 +σ0k2
, (4)

where u(x, t) is the deviation of the membrane from its equilibrium shape. 〈|uk|
2〉 can be determined from measured vesicle

contours, and Eq.[4] is then used to obtain the membrane bending rigidity κ and tension σ0. The correlation time at wave

number k (which characterizes how fast a shape fluctuation with wavenumber k decays) is63,

tk =
κk3 +σ0k

4µ
, (5)

where µ is the medium viscosity (it is assumed that the membrane separates fluids with the same viscosity, which is the typical

case for vesicles since the inner and outer fluids are aqueous solutions).

2.3 Membrane electrostatics

2.3.1 Renormalization of the bending rigidity and tension: The electrostatic effects on membrane elasticity have been

studied in two contexts:

Charged lipids in the absence of external fields: Increasing surface charge stiffens the membrane because the repulsion be-

tween the charged lipids effectively suppresses the membrane undulations thereby increasing the membrane bending rigidity.

Spontaneous curvature arises if there is charge asymmetry between the membrane physical surfaces, e.g., if the inner and outer

Debye lengths (which characterize the thickness of the diffuse double layers adjacent to the membrane surfaces) are different.

These effects have been described theoretically69–74, however, experimental verification is lagging60 even though techniques for

preparing vesicles with asymmetric membranes have been developed75,76.

Neutral lipids in external electric field: Application of electric field leads to the accumulation of ions (carried by conduction)

at the membrane physical surfaces because the bilayer hydrophobic core is impermeable to ions. Unlike the fixed charges due to

lipid ionization, these are mobile charges with surface density Q determined by the membrane capacitance

Cm = εmm/h , Q =VmCm (6)

where Vm is the transmembrane potential (difference between the electric potential at the inner and outer physical interfaces of

the membrane), h is the membrane thickness and εmm is the membrane dielectric constant.

Fig. 2 The electrostatic attraction between the charges on the opposite physical surfaces of the membrane gives rise to compressive electric stresses which

decrease the membrane tension

The electrostatic interaction between the charges on the physical surfaces of the membrane, see Figure 2, modifies the

membrane tension, σ = σ0 − σel
25,77–79 (similarly to the Lippmann effect in electrocapillarity), and bending rigidity, κ =

κ0 +κel
42–44,74. The electrostatic corrections are predicted to be

σel ∼CmV 2
m , κel ∼CmV 2

mh2 (7)

The numerical prefactors in Eq.[7] found by different authors vary. Furthermore, in reality the induced charge Q is not located

exactly at the membrane physical surfaces but spatially distributed in diffuse layers. Intriguingly, κel > 0 and this membrane

stiffening by the transmembrane potential is at odds with the slight softening measured by the electrodeformation method47

(the method is described in the next section). A possible explanation for the apparent softening may be flexoelectricity80,
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εex,λex

εin,λin

Fig. 3 Electric field lines around a fully charged spherical capacitor. The dashed line shows that the vesicle elongates along the field direction. θ is the angle

with the applied field direction, θ = 0,π are the vesicle poles. Vesicle elongation depends of the conductivity ratio Λ = λin/λex.

i.e., membrane polarization due to curvature changes6,81 (bending a bilayer creates charge asymmetry and changes membrane

polarization; conversely, changing the applied field changes the curvature.) The flexoelectric coefficient k f is related to the

spontaneous curvature44 k f = κCel
0 /Em (Em = Vm/h is the electric field in the membrane). Indeed, the tubular protrusions

observed in giant vesicles exposed to strong electric pulses82 might be a manifestation of high spontaneous curvature generated

locally by the field.

2.4 Electrodeformation method for measuring the bending rigidity of lipid bilayers:

If the capacitor is fully charged, i.e., the charge density on the inner and outer interface is the same, the electric field inside

the vesicle is zero, see Figure 3, and the only possible steady shape of a nearly–spherical vesicle in a uniform applied electric

field is a prolate ellipsoid. The electrodeformation method for measuring the bending rigidity relies on this result45. The prolate

vesicle deformation results from nonuniform radial electric pressure, pel = pe(ω,Λ)εexE2
0 (1+3cos(2θ)), which modifies the

mechanical equilibrium condition for a quasi-spherical vesicle (for which τττκ = 0 and deformation results solely from pulling

area stored in the fluctuations) Eq.[2]

∆p+ pel = 2σH(θ) , (8)

Vesicle elongation is characterized by the major and minor axes, a|| = 1+ 2s and a⊥ = 1− s, where s2 = 5α/8. Subtracting

Eq.[8] at the pole (θ = 0) and equator (θ = π/2) eliminates the constant hydrostatic pressure ∆p and yields

peεexE2
0 =

2s

a
σ , (9)

Hence, given the asphericity s (from experimental measurement), the above equation can be solved for the tension σ and then

the bending rigidity κ is determined from Eq.[3], see Gracia et al.47 for details. The method relies on the assumption of fully

charged capacitor which implies low frequency AC field, where pe is approximately 3/32 (independent of the conductivity ratio

Λ)39.

3 Open problems:

• Membrane bending rigidity, tension, and spontaneous curvature are modulated by the transmembrane potential, but the

theoretical predictions vary and experimental data is lacking. Extensive theoretical effort has focused on the electrostatics

of a charged membrane in the absence of external electric field, in which case the transmembrane field arises from fixed

surface charge69–74. The problem of a neutral membrane in applied electric field, i.e., the effect of induced surface charge

on membrane elasticity, has received little attention and the theoretical predictions differ25,43,44,83.

While the tension decrease in electric field has been experimentally detected in a floating lipid bilayer84,85, there is only

one attempt to measure the bending rigidity of a lipid bilayer as a function of electric field strength (to the best of the

authors’s knowledge): using flickering spectroscopy35, the time-correlations were utilized to extract the bending rigidity

from relaxation rates Eq.[5]67. The preliminary results suggest that the bending rigidity in an electric field increases.

However, a direct comparison with the theoretical prediction Eq.[7] can not be made because the transmembrane potential
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along the vesicle surface is not constant, see Eq.[10]. Furthermore, membrane dynamics in electric field may be quite

complex and Eq.[5] not applicable86–89.

• The existing models are limited to a symmetric planar membrane (separating identical fluids) subjected to a perpendicular

electric field; in this case, the transmembrane potential is uniform along the membrane. However, curved membranes (such

as spherical vesicles) have transmembrane potentials that depend on the geometry of the system. For a sphere90,91

Vm(t,θ) =
3
2
aE0

[

1− exp
(

− t
tmm

)]

cosθ , (10)

where tmm is the characteristic time scale for the capacitor charging tmm = aCm

(

1
λin

+ 1
2λex

)

, which is sensitive to the

conductivities of the inner and suspending solutions.

A position- and time-dependent transmembrane potential, as well as asymmetry in the diffuse charge on the two sides of the

membrane (due to difference in the solutions conductivities) may result in (i) membrane shape fluctuations that do not obey

the equilibrium spectrum Eq.[4], and (ii) instabilities leading to singular shapes such as edges.

It has been suggested35 that the edge in “squared” vesicles may separate a porated zone around the poles and intact (insu-

lating) sides. The membrane conduction in the porated zone results in Vm ∼ 0, while in the intact zone Vm ∼ aE cosθ . The

discontinuity in Vm(θ) gives rise to a sharp change in the membrane elastic properties (because of their dependence on Vm,

see Eq.[7]) thereby causing extreme membrane curvature (edge) at the boundary between porated and intact regions.

• Dynamics of multicomponent or asymmetric membranes in electric fields is virtually unexplored. Lipid demixing has been

investigated in supported bilayers92,93, and only recently in vesicles36,94. Intriguingly, electric fields induce membrane flow

which can change the morphology of the domains: domains may undergo break up or coalescence36.

A systematic investigation of bilayer deformations in response to changes in the transmembrane potential, and, in particular,

of the small thermally-driven bilayer undulations and the large buckling-like deformations in an applied electric field, requires

approach blending mechanics, electrostatics, and biophysics. It is likely that the findings will uncover new physics relevant to

a broad range of physiological processes involving excitable cells. The author hopes that the highlight will stimulate greater

interest in this topic.
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