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A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar
liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination
of particle configurations on a planar film and on a spherical droplet. The free energy functional
that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations.
The interplay between elastic and surface distortions and the desire to minimize defect volumes
(boojums and half-saturn rings) is shown to be responsible for the formation of intriguing ordered
structures. As a general trend, the particles prefer to localize at defects to minimize the overall free
energy. However, multiple metastable configurations corresponding to local minima can be easily
observed due to the high energy barriers that separate distinct particle arrangements. We also
show that by controlling anchoring strength and temperature one can direct liquid-crystal mediated
nanoparticle self-assembly along well defined pathways.

Keywords: Liquid Crystals, Landau-de Genes, Ginzburg-Landau relaxation, monte-carlo, nanoscale assembly

I. INTRODUCTION

Liquid Crystals (LC) represent highly tunable media
whose morphology can be tailored for specific applica-
tions. Parameters, such as confinement, surface anchor-
ing, temperature as well as the chemistry of the ma-
terial, can all be manipulated to create desirable mor-
phologies [1–6]. The versatility of LCs can be further
augmented through addition of nanoparticles. Indeed,
intricate couplings between particle anchoring and LC
structure can lead to unusual phase transformations that
do not arise in simple, unstructured fluids [4, 7–10]. Such
couplings can in turn be used for a wide range of appli-
cations, including sensing [3, 11].
Colloidal particles in liquid crystals are known to self-

assemble into ordered structures. The precise nature of
such structures depends on the oreintation or anchor-
ing of the liquid crystal at the particle’s interface. Two
homeotropic nano-particles, for example, may undergo a
dipolar interaction, characterized by a hedgehog or point
defect, or a quadrupolar interaction, associated a saturn-
ring or line defect [12]. Many-particle arrangements can
consist of linear chains, periodic lattices or spherical ag-
gregates, to name a few [13–18].
In experiments, anchoring is controlled through chem-

ical treatments, and procedures exist to achieve perpen-
dicular (homeotropic) or parallel (planar) orientations
ranging from weak to to strong anchoring. The preferred
alignment of the LC at a particle surface may induce dis-
tortions in the LC media that result in formation of topo-
logical defects that serve to localize particles at specific
positions [19, 20]. For example, recent experiments on
polystyrene particles at flat LC interfaces show that the
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particles can adopt intriguing ordered structures [8]. On
curved interfaces, the particles are localized in the boo-
jum defects [21]. Simulations using a many-body model
have helped explain the origin of such localization [10].

Note, however, that past computational studies of
nanoparticles at curved LC interfaces have been limited
to particles that exhibit planar anchoring. Furthermore,
such studies where limited to nanoscale droplets with
radii in the range of 50 nm. In this work, we present
a detailed study of homeotropic particle self-assembly at
LC droplet interfaces (see Fig. 1). We adopt a contin-
uum thermodynamic description in terms of Landau-de
Gennes free energy functional. In contrast to past stud-
ies of nanoparticles suspended in LCs, we adopt a novel
Monte Carlo (MC) [22] relaxation method that allows
one to arrive at optimal nanoparticle arrangements with-
out the need for educated guesses. Overall, we find that
particles exhibit well-defined configurations that are con-
sistent with limited available experimental data [11].

The manuscript is organized as follows: we first de-
scribe the thermodynamic model and the relaxation
methods employed in our calculations. We then present
and discuss our results for one, two and three particles
adsorbed on a LC film and on a LC droplet. We con-
clude with a summary of the main observations and a
brief discussion of open questions and future work.

II. THERMODYNAMIC MODEL

The Landau-de Gennes continuum description of the
LC employed here relies on the second moment of the di-
rector vector, n, and the second-order alignment tensor,
Q [23, 24], given by:

Q(x, t) = MII(x, t) −
δ

3
, (1)
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FIG. 1. Schematic representation of the modeled system.
Homeotropic nano-particles are embedded in degenerate pla-
nar liquid crystalline interfaces with a wetting angle of 90o.
The particles perturb the nematic field within the LC. This
perturbation is different depending on the curvature of the
interface.

where δ is 3×3 is the identity tensor, and the second
moment is given by:

MII =

∫

nnψ(n,x, t)dn. (2)

Here, ψ(n,x, t) is the configuration distribution function
of molecular orientations. The tensor order parameter
can be expressed in terms of its eigenvalues and eigen-
vectors as follows [25, 26]:

Q = S

[

nn− δ

3

]

+ η [n′n′ − (n× n′)(n× n′)] , (3)

where S(x) is the scalar order parameter, related to the
maximum eigenvalue 2S/3. The biaxiality η(x) is re-
lated to the other two eigenvalues ±η− S/3. S and η are
bounded by: S ∈ [−1/2, 1] and η ∈ [−1/3(1− S),+1/3(1−
S)]. The eigenvectors, n and n′, corresponding to the
maximum and second largest eigenvalues, define an or-
thonormal basis {n,n′, (n× n′)} for the LC orientation.
Homogeneous nematic configurations have been found to
be uniaxial, and it is commonly assumed that η(x) is
zero [23–25]. This approximation, however, is not appro-
priate in the presence of defects [27–29].
Since the alignment tensor is symmetric and traceless,

only five out of its nine cartesian components are inde-
pendent. Here we take advantage of a tensor basis to
write Q in compact form according to [30–32],

Q (x, t) =
5

∑

ν

aν (x, t)T
ν , (4)

where the orthonormal basis is defined by five tensors:

T1 =
√

3/2 [zz]
ST

=
√

3/2 (δ33 − δij/3) ,

T2 =
√
2 [xy]

ST
=

√
2 (δ1iδ2j + δ2iδ1j) /2,

T3 =
√
2 [xz]

ST
=

√
2 (δ1iδ3j + δ3iδ1j) /2,

T4 =
√

1/2 (xx − yy) =
√

1/2 (δ1iδ1j − δ2iδ2j) ,

T5 =
√
2 [yz]

ST
=

√
2 (δ2iδ3j + δ3iδ2j) /2,

(5)

where x, y and z are the canonical ℜ3 basis, [A]
ST

is a
symmetric-traceless projection operation, and δij is the
Kronecker delta. Because the {Tm} basis is orthonormal,

tr(TmTn) = Tm
ij T

n
ij = δmn, (6)

ensures that the five scalar components aν of the align-
ment tensor represent simple projections, i.e.

aν = tr(QTν). (7)

Thus, instead of dealing with nine components and the
corresponding constraint equations, we can efficiently
specify a configuration of the alignment tensor field,
Q(x), through the set of five independent scalar fields
aν(x).
The thermodynamic description of the LC is provided

by the free energy functional F (Q). It includes a short-
range contribution that captures the isotropic-nematic
transition, fL (the Landau energy density), and a long-
range elastic contribution that penalizes deformations
from a homogeneous state, fE (the elastic energy den-
sity). LC-surface interactions are represented by a sur-
face free energy density, fS . The resulting free energy
functional is thus given by [23, 24, 33]:

F (Q) =

∫

d3x [fL(Q) + fE(Q)] +

∮

d2xfS(Q). (8)

The Landau short-range free energy density may be
expressed as a polynomial expansion of the tensor invari-
ants [33–35]:

fL =
A

2

(

1− U

3

)

tr
(

Q2
)

− AU

3
tr
(

Q3
)

+
AU

4
tr
(

Q2
)2
,

(9)
where A and U are phenomenological coefficients that are
functions of temperature (or concentration) and pressure.
A sets a scale for the energy density, while U controls the
isotropic-nematic transition [13, 24, 36–38].
The elastic energy density is obtained from a model

proposed by Oseen, Zocher and Frank [39–43]. In terms
of the alignment tensor it is defined by [1, 23]

fE =
1

2
L1

∂Qij

∂xk

∂Qij

∂xk
, (10)

where

L1 =
1

6S2
(k33 − k11 + 3k22) , (11)
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quantifies the orientational elasticity of the LC. The ”k”
constants are the elastic moduli that describe the inde-
pendent modes of deformation: splay (k11), twist (k22)
and bend (k33) [25]. In this work, we adopt a single-
elastic-constant approximation k11 = k22 = k33 that
satisfies the Ericksen inequalities [44] and the stability
ranges proposed both by Gartland et al. [45] and Longa
et al. [28].
The surface free energy density describes the interac-

tion of the liquid crystal with a surface. For homeotropic
anchoring, we use a Rapini-Papoular [46–50] energy den-
sity,

fS,R =
1

2
WR (Q−Q⊥)

2
, (12)

where WR represents the strength of the homeotropic
anchoring and Q⊥ is the perpendicular tensor preferred
at the surface, defined as follows:

Q⊥ = S

[

νν − 1

3
δ

]

(13)

Here, ν(x) is the normal unit vector at any point x

along the surface. A degenerate planar anchoring is in-
cluded through the 4th order Fournier-Galatola energy
density [51],

fS,F =
1

2
WF

(

Q−Q⊥

)2
+

1

4
WF

(

Q : Q− S2
)2
, (14)

where Q = Q + Sδ/3, Q⊥ = p · Q · p is the tensor
projection on the surface and p = δ − νν.
The physical properties of the LC serve to set three

characteristic length scales. the nematic coherence length
ξN , the homeotropic extrapolation length ξR and the pla-
nar extrapolation length ξF :

ξN =
√

L1/A, ξR = L1/WS , ξF,1 = L1/WF . (15)

The nematic coherence length represents the distance
over which local fluctuations are correlated, whereas the
extrapolation length defines the relative strength be-
tween the bulk elasticity to the surface anchoring. The
nematic coherence length sets a scale for the free energy
functional, Aξ3N = L1ξN , and relaxation time, γξ2N/L1,
where γ is the LC rotational viscosity coefficient.

III. FREE ENERGY FUNCTIONAL
MINIMIZATION

Depending on the length scales of interest, LC systems
can be described in terms of continuum approaches [52–
57], coarse-grained many-particle models with molec-
ular dynamics (MD) or Monte Carlo (MC) simula-
tions [7, 9, 58–60] or simpler but faster lattice Monte
Carlo simulations [61–64]. Continuum techniques rely
on a minimization of the free energy functional in or-
der to find the equilibrium state of the LC. Conventional

minimization techniques, however, can get trapped in
metastable states. An alternative to conventional energy
minimization was proposed by Gruhn and Hess [65]. In
their work, the authors used an MC algorithm to find the
equilibrium director field for a Lebwhol-Lasher model.
Ruhwandl and Terenjev [66] proposed a related MC al-
gorithm to solve a simplified form of the free energy func-
tional [66] around a spherical inclusion in a uniform ne-
matic LC matrix. In this work, we build on their ideas by
performing free energy minimizations using a Ginzburg-
Landau (GL) and Monte Carlo (MC) relaxations, but we
do so by relying on the orthonormal representation in-
troduced earlier (in terms of the aν(x) scalars), thereby
ensuring a uniform, unbiased sampling of configuration
space.
For the simple GL relaxation, using a Q description, a

projector operator ΠQ, is defined according to the nat-
ural construction of the tensor Q: symmetric and trace-
less,

ΠQ (B) =
1

2

(

B+BT
)

− 1

3
tr (B) δ, (16)

for any B (x) ∈ ℜ3 × ℜ3 with x ∈ V and x ∈ σS (do-
main and boundary). The free energy must satisfy the
following Euler-Lagrange equations:

ΠQ

(

δF

δQ

)

= 0, (17)

for x ∈ V and

ΠQ

(

δF

δ∇Q
· ν

)

= 0, (18)

as boundary conditions (x ∈ σS). The Volterra deriva-
tives are defined by [67]:

δF

δQ
=
∂F

∂Q
− ∂

∂x
· ∂F

∂∇Q
. (19)

The solutions to these equations are found by allowing
the tensor order parameter Q to evolve towards equilib-
rium according to a GL relaxation equation of the form

∂Q

∂t
= − 1

γ

[

ΠQ

(

δF

δQ

)]

, (20)

with boundary conditions given in Eqn. (18) and where γ
is a rotational viscosity (or diffusion) coefficient [48, 68,
69].
MC relaxations, using the {a} representation, start

with the random selection of a domain or surface point
xk. The tensor is changed, by a random amount, accord-
ing to

Qij(xk) → Qij(xk) + ξij , (21)

where ξij are cartesian components of a random, symmet-
ric and traceless tensor. This is achieved by adding a uni-
form deviate ξi (in some prescribed interval [ξmin, ξmax])
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to one of the scalar fields: aν(xk) → aν(xk)+ξν . Follow-
ing the standard Metropolis algorithm, a trial change to
the alignment tensor field is accepted with probability

Pacc = min(1, exp[−β∆F ]). (22)

If the update is accepted, we simply record the new value
of the total free energy and begin a new iteration; if the
update is rejected, we restore the alignment tensor to its
previous value and continue with a new iteration. The
Metropolis parameter β can be interpreted in terms of
the spatial scale of the system, and is useful for develop-
ing advanced Monte Carlo algorithms, such as simulated
annealing or parallel tempering that combine simulations
with different values of β. For simplicity, in this work we
implemented an annealing scheme that starts from a low
value of β and steadily increases to facilitate sampling
early on and identify stable states at later stages.
Spatial derivatives and free energy functionals were ap-

proximated by a Finite Difference Method (FDM) using
second order approximations for both the GL and MC
relaxations. A fully explicit first order Euler method
was employed for time integration in the GL relaxation.
Characteristic length and time scales, prescribed by the
nematic coherence length, are resolved numerically dur-
ing the approximation. The FDM scheme was composed
by 1’426,880 nodes and the time step was equivalent
to 0.01 times the characteristic nematic relaxation time
γξ2N/L1. For the GL relaxation, total computational
times were equivalent to 20,000 to 50,000 characteristic
times, with a final tolerance for the free energy difference
of 1×10−10. For MC relaxations, the inverse temperature
was decreased exponentially from 1× 10−2 to 1× 10−12

during the entire relaxation. A typical MC simulation
needed around 1’000,000 MC moves with a 30% accep-
tance criteria.

IV. RESULTS

Simulations were performed using 4’-pentyl-4-
cyanobiphenyl (5CB) liquid crystal [33, 70]: A≈ 1 × 105

J/m 3 and k11 ≈ 5− 7× 10−12 N, resulting in a nematic
coherence length ξN = 7.15 nm. The parameter U , in
the Landau free energy density, was determined from

Sbulk =
1

4
+

3

4

√

1− 8

3U
. (23)

For a bulk system in the isotropic phase, this parameter
is expected to have values of U < 8/3 (Sbulk=0.41). For
a system in the nematic phase, U ≥ 5.0 (Sbulk=0.76) [37,
71]. In this work, we used values of U = 3.0 and U =
5.0 (Sbulk = 0.5 and Sbulk = 0.76) as the initial order
parameter.
We considered nano-particles with radius rp = 85 nm,

modeled as spheres that are half-submerged in the LC
films or droplets. The anchoring at these particles is
homeotropic with infinite strength. We studied a planar

film (infinite curvature) of thickness R = 500 nm, and
a droplet of radius R = 500 nm. The LC anchoring at
these interfaces is planar degenerative. The anchoring
strength on the LC interfaces is WF = 1× 10−2 J/m2.
We start by examining a planar interface with one, two

and three particles. The particle distribution is fixed and
several initial conditions are studied to explore the free
energy landscape. Relaxations by GL and MC can be
pursued simultaneously, and final configurations can be
exchanged to guarantee that a global minimum is indeed
identified.

A. Planar LC film

Figure 2 shows the director field (n) for a system that
was initially oriented along the x-axis (the (1, 0, 0) di-
rection). The figure presents side views for one, two
and three particles, together with the director field and
the defects around the particles, which consist of half-
Saturn rings. For the director field, the blue color indi-
cates an orientation along the preferred direction of the
bulk, while red corresponds to a perpendicular orienta-
tion. The strong homeotropic anchoring on the particles
clashes with the director field in the film, leading to gra-
dients that result in defects. These distortions reach a
maximum in the regions where the LC director and the
particle are normal. For the systems considered here, the
defects induced by the particles, remain localized next to
the particles, i.e. there is only a short-range relaxation
of the LC away from the particles.
Addition of nanoparticles to a droplet induces defor-

mations that increase the free energy of the system. As
shown in Fig. 2, the location of a single particle is in-
variant with respect to position and direction in the pla-
nar LC film. The LC around the particle will re-orient
and form a single half-Saturn ring defect. Two particles,
however, introduce a new direction; as the free energy
is minimized, the LC can get trapped in local minima
that correspond to different directions with respect to
the axis of the particles [72]. GL and MC relaxations
were performed from a fixed LC initial orientation along
the x−direction, (1 0 0). Figure 3 shows the potential of
mean force (PMF), ψ = F −F0, as a function of the dis-
tance between particles, d, for different angles between
the particles and the nematic field, α. The reference free
energy, F0, is defined as the energy at the largest separa-
tion for each angle. For particles that are far apart, the
PMF is independent of the orientation angle. As they get
closer, the PMF becomes attractive (ψ < 0) or repulsive
(ψ > 0), depending on the value of α.
Our results are summarized in Fig. 4, where the PMF

is now plotted as a function of α for different particle sep-
arations. The figure reveals that, for orientations in the
range 0◦ < α < 35◦, the highest energy penalty occurs
when particles are near each other. It is in this region
where film and particles’ directors differ the most, lead-
ing to the highest gradients and energy penalties. For
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FIG. 2. Side and bottom views of particles (rp = 85 nm)
submerged in an LC degenerate planar film (R = 500 nm
height). The strong homeotropic anchoring on the particles
clashes with the director field of the film, leading to gradients
that result in formation of a half-Saturn ring defect. Multiple
particles are oriented in a manner that minimizes surface and
elastic contributions to the free energy. The figure includes
the final orientation field of the principal eigenvector n and
iso-surfaces of the scalar order parameter S = 0.6.

directors in the range 35◦ < α < 90◦, the situation is re-
versed and the energy penalty reaches its minimum when
particles are near each other. In this region, LC directors
start to align along the particle’s anchoring orientation,
thereby decreasing the gradients. As a consequence, the
defect configuration between the two particles leads to
a lower energy penalty than having two independent de-
fects. There are two angles that are worth highlighting:
α = 35◦ where the free energy is independent of particle
separation (i.e. ψ = 0), and α = 75◦, where the energy
goes through a minimum for d = 2ξN . As the parti-
cle separation increases, the angle that set the energy
minimum decreases (dotted line in Fig. 4): i.e. defects
interact less as the distance between them increases.

Figures 5 and 6 summarize additional results for two
and three particles from GL and MC free energy mini-
mizations. Figure 6 presents the PMF as a function of
the initial director orientation for different particle sep-
arations. As expected, the PMF follows the behavior of
the two-particle system: the highest energy penalties are
observed for 0◦ < α < 35◦, while for 35◦ < α < 75◦ we
find the most favorable configurations. α = 75o is also
the most favorable configuration for adjacent particles,
and the angle that corresponds to the energy minimum
decreases as the particle separation increases.
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Bottom view: α = 75o

FIG. 3. Potential of mean force between two particles at an
LC film, ψ = F − F0, as a function of the distance between
particles, d, for different angles between the particle separa-
tion axes and the nematic field, α. Final particle and defect
arrangements, S = 0.6, for α = 75o and three different sepa-
rations.
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FIG. 4. Potential of mean force between two particles at an
LC film, ψ = F − F0, as a function of the relative angle be-
tween the LC and the particle separation axes for different
particle separations, d. Final particle and defect arrange-
ments, S = 0.6, for d = 2ξN . The location of the energy
minimum follows the dotted line as the separation between
particles increases.

B. LC droplet

For the LC droplet, sizes, anchoring strengths, temper-
ature and number of particles were kept equal to those
employed for the LC film. Unless otherwise stated, the
GL and MC relaxations were started from a random di-
rector configuration.
For strong planar anchoring, the isolated LC droplet

adopts a bipolar morphology (shown in Fig. 1) where two
point defects, or boojums, are located at opposite poles.
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FIG. 5. Potential of mean force between three particles at
an LC film, ψ = F − F0, as a function of the distance be-
tween particles, d, for different angles between the particle
separation axes and the nematic field, α. Final particle and
defect arrangements, S = 0.6, for α = 75o and two different
separations.

 -200

 -100

    0

  100

  200

  300

 0  15 30 45  60  75 90
α

ψ
 (

k
B
T

)

Bottom view

α

d d

d = 2ξ
N

d = 4ξ
N

d = 6ξ
N

d = 8ξ
N

d = 10ξ
N

d = 24ξ
N

FIG. 6. Potential of mean force between three particles at
an LC film, ψ = F − F0, as a function of the relative angle
between the LC and the particle separation axes for different
particle separations, d. Final particle and defect arrange-
ments, S = 0.6, for d = 2ξN . The location of the energy min-
ima follows the dotted line as the separation between particles
increases.

A clear difference between LC films and droplets is that,
in droplets, half-submerged particles will perturb the LC
orientation and will interact with the boojums. Figure 7
shows cross sections of representative configurations cor-
responding to one, two and three embedded particles.
These were selected from an extensive portfolio of con-
figurations and provide a representation of distortions,
defects and phases. As shown in the closeups, the parti-
cles are driven to the boojums as an attempt to relax the
surface/elastic distortions. Notice that when the particle
is at the boojum, the halt-saturn ring melts and disap-

FIG. 7. Representative cross sections and closeups of par-
ticles (rp = 85 nm) on the surface of an LC planar droplet
(R = 500 nm). Color contours represent the relative direc-
tion between the local eigenvector n and the averaged nematic
direction: blue is for parallel and red is for perpendicular. Iso-
surfaces of the scalar order parameter for S = 0.6 are shown
in magenta.

pears.

For a single half-submerged particle, during energy
minimization the LC changes its orientation in order to
force one of the boojums to engulf the particle. These
results agree with experimental observations [73–76] and
calculations using molecular dynamics [10].

For two half-submerged particles, we fix one of them
at the boojum and gradually change the position of the
second (traveling) particle. The polar angle, θ1, is now
defined as the angle between the axes connecting the
droplet and the particles’ centers. When θ1 = 20◦, the
particles are almost touching, while θ = 180◦ corresponds
to particles located on opposite boojums. Figure 8 shows
the free energy difference or PMF, ψ = F −F0, as a func-
tion of the polar angle, where F0 is the configuration with
the lowest free energy. Final LC phases at the equilib-
rium state are also included in the figure. Intuitively, the
lowest energy configuration is obtained when θ = 180◦.
This configuration leads to an energy minimum, since
placing the particles at the existing boojums melts the
half-Saturn ring around the particles. It is cheaper to
melt the defects than to create extra defects by locating
particles elsewhere. This arrangement is the closest to
that of a pristine bipolar phase in an LC droplet with
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FIG. 8. Potential of mean force between two particles at
an LC droplet, ψ = F − F0 as a function of the particles’
relative position, measured through the angle θ1. The black
line corresponds to degenerate planar anchoring, while the
red curve is for non-degenerate planar anchoring. Insets in
the plot show the morphology at select particle separations,
where the white particle is fixed at one boojum and the red
particle is displaced by θ1.

no particles. When the particles are near each other,
θ1 = 20◦, the droplet phase remains bipolar with both
particles located at one boojum. This is a local minimum,
with a free energy difference of ∼ 800 kBT . The addi-
tional energy cost corresponds to the small defect (not a
complete half-Saturn ring) surrounding the particle that
is not on the boojum.

As θ1 increases from 20◦, a series of interesting phe-
nomena can be observed. The PMF increases continu-
ously from ∼ 1000 kBT to ∼ 1500 kBT . This differ-
ence corresponds to the creation of a full half-Saturn ring
around the traveling particle. The PMF of ∼ 150 kBT
remains approximately constant until the angle reaches
θ = 90◦; note that in this range the droplet always ex-
hibits two poles. At θ = 90◦, there is a sudden decrease
in the free energy because the free boojum is grabbed
by the traveling particle. The system prefers to gen-
erate elastic distortions than having a full half-Saturn
ring, i.e. now each particle possesses its own boojum.
We divide this free energy diagram into: “non-arrested
boojum” for 20◦ < θ1 < 90◦ and “arrested boojum”
for 90◦ < θ1 < 180◦ (separated by the dotted line in
Fig. 8). Previous calculations using molecular dynamics
(MD) simulations of a many-body system [10] did not
reveal arrested boojum configurations until θ1 ∼ 180◦.
Interestingly, when we adopt a model that enforces non-
degenerate planar anchoring at the droplet (modeled
through a Rapini-Paopular energy density), we recover
the results of MD simulations for small droplets. The
red line in Fig. 8 serves to emphasize that the restriction
provided by non-degenerate anchoring eliminates the ar-
rested boojum configurations, as it becomes more diffi-

cult for the system to generate elastic distortions.

It is well known that surface anchoring, WF , and ne-
matic strength, U (temperature or concentration), influ-
ence the equilibrium phase of LC droplets [77–79]. Fig-
ure 9 shows the energy densities, at the global minima, as
a function of the surface anchoring for two temperatures:
U = 3 and U = 5. Results are included for the Landau,
elastic, surface and total energy differences for droplets
without particles and with one and two particles. Note
that weak anchoring results in uniform phases in the iso-
lated droplet (no boojums); in that limit, the system
prefers to enforce ∇n = 0, while for strong anchoring,
it is preferable to have ∇n 6= 0 than to penalize surface
anchoring. This transition is understood by following the
monotonic increase in elastic energy as the anchoring is
increased, as the surface energy reaches a maximum. At
this maximum, it is preferable to undergo additional elas-
tic distortions. Adding one or two particles decreases the
anchoring strength at which this transition occurs. For
strong anchoring, inclusion of particles always decreases
the elastic and surface distortions. On the other hand,
at low anchoring strengths, the particles penalize elastic
distortions. As the temperature decreases (U increases),
the energy differences increase and the transition anchor-
ing strength moves towards weaker values, due to the
increase in the nematic Landau free energy density.

For three half-submerged particles, the number of pos-
sible arrangements is considerably larger. In this work,
we limit our analysis to three different sets of config-
urations: two iso-planar and one symmetric triangular
arrangement.

The first iso-planar configuration fixes two particles at
the boojums and moves a single particle. Figure 10 shows
the PMF using the 2-1 configuration as the minimum ref-
erence energy (F0). In this 2-1 configuration, at θ1 = 10◦,
the particles are so close to each other that their defects
merge, providing the lowest possible interaction between
boojums and particles. As the polar angle, θ1, increases,
the distance between particles also increases, providing
enough room to form an individual half-Saturn ring de-
fect around the traveling particle. The elastic penalty
builds up until θ1 ≈ 40◦. Inserts in Fig. 10 show the
morphology for three different angles. Similar to the ob-
servations for two particles, the particles merge at the
boojums.

Figure 11 summarizes the free energy difference as a
function of the polar angle θ2. When the tree particles are
close to each other, almost touching, one boojum engulfs
them, while the other remains at the opposite pole. As θ2
increases, enough space is available for the formation of
individual half-Saturn ring defects. Therefore, the free
energy difference increases abruptly from ∼ 1000 kBT
to ∼ 5000 kBT . At this energy peak, where θ ∼ 20◦,
the traveling particles trap the boojums, minimizing de-
fects while maximizing elastic distortions (depicted red
in the contours in Fig. 11). From this angle, the energy
monotonically decreases. Notice that the θ2 = 90◦ is
equivalent to the θ1 = 90◦ in Fig. 10. The θ2 = 15◦ ar-
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FIG. 9. Droplet free energy differences as a function of surface anchoring, for U = 3 (top) and U = 5 (bottom). A particle-free
droplet is compared with one/two-particle droplets.

FIG. 10. Free energy difference as a function of the particle’
arrangement for two particles (white) at the boojums and a
single traveling (red) particle. The polar angle θ1 measures
particle separation. Inserts in the plot correspond to the min-
imum energy state for three representative values of θ1.

rangement may be considered a local minimum, due to
the high energy barrier that exists between this configu-
ration and the 2-1, θ1 = 10◦ in Fig. 10. In other words, if
during minimization the particles are nearby, the system
will be trapped in the 3-0 configuration. Note that in
the figure, red symbols (on top of black symbols) indi-
cate that MC relaxations find the same final state that
GL minimizations.
We finish this analysis by considering three particles

arranged in a triangle on the droplet surface. Figure 12
summarizes the free energy differences as a function of
polar angle θ3. For the closest arrangement, θ3 = 10◦,
the particles form a consolidated defect and forces one
boojum to the opposite pole (equivalent to θ2 = 15◦ in
Fig. 11). When the distance between particles reaches a
critical value, θ3 ≈ 25◦, each particle develops its own

FIG. 11. Free energy difference as a function of the particles’
arrangement for one fixed particle (white) and two traveling
(red) particles. The polar angle θ2 measures separation. In-
serts in the plot correspond to the final phase at representative
values of θ2.

defect, thereby incurring in the highest energy penalty.
There are configurations where the free energy decreases:
θ3 = 25◦ and θ3 = 60◦. These correspond to morpholo-
gies where one particle or two particles are near a boo-
jum. These relaxations started from random configura-
tions of the tensor order parameter.

V. CONCLUSIONS

In this work we considered the effects of nano-sized
homeotropic particles adsorbed on nematic liquid crys-
talline surfaces. For concreteness, we focused on the
case of strong anchoring, with nanoparticles of radius
rp = 85 nm, half-submerged in an LC droplet of 1 µm
diameter. Past work with such systems has been limited
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FIG. 12. Free energy difference as a function of the particles’
arrangement in a triangular positioning. The polar angle θ3
measures separation. Inserts in the plot correspond to the
final phase at representative values of θ3.

to planar anchoring. These conditions are accessible in
experiments with dark-field or fluorescence microscopy,
and the predictions of our calculations could eventually
be examined in experiments. When these particles are
adsorbed on a flat interface, the particles exhibit an at-
traction energy of approximately 100 kBT per particle.
This attraction is induced by the underlying LC, and the
relative particle orientation between the particle’s sepa-
ration axes and the director is 75◦. Adding an additional
third particle to the flat LC interface results in a larger
free energy gain, but the particles’ arrangement resem-
bles that observed with two particles. When a particle
is adsorbed at the interface of an LC bipolar droplet,
it segregates to one of the boojums, thereby alleviating
nematic distortions. The boojum and the particles’ half-
saturn ring merge with each other. The energy difference
between having a free boojum and a boojum/particle is
much larger, approximately ∼ 1000kBT . In contrast to
our observations for the flat interface, two particles in
a bipolar LC droplet are localized in opposite boojums.
The free energy difference between two particles sharing
the same boojum or residing in opposite boojums is now
∼ 1000kBT , an order of magnitude higher than observed
on the flat interface. When a third particle is added, the
formation of a half-saturn ring around that third particle
increases the free energy by ∼ 2000kBT . The additional
particle therefore prefers to reside near one of the parti-
cles at one of the boojums. Because of the large penalty
associated with a half-saturn ring, a large energy barrier
must be overcome to move a particles from one boojum

to the other.
Past theoretical work with homeotropic nanoparticles

in LC droplets was limited to many-body simulations of
a Gay-Berne model and, as such, was limited to small
nanoparticles and small droplets, with radii on scales
of tens of nanometers. The results presented here were
generated by relying on a continuum representation of
the liquid crystal. They correspond to much larger sys-
tems and, as such, should facilitate comparison to fu-
ture experiments. Note that, in general, the results of
continuum calculations are consistent with those from
many-body simulations, but the energy minima corre-
sponding to particle localization or aggregation are much
more pronounced. Specifically, Whitmer et al. [10] stud-
ied nanoparticles with weak homeotropic anchoring and
a planar droplet; for the system sizes considered in that
work the anchoring was uniform. The particle entrap-
ment at the boojum reported here for degenerate an-
choring occurs at lower angles than those observed by
Whitmer et al.; when we consider non-degenerate an-
choring in continuum simulations, however, our results
converge onto those of Whitmer et al. More recently,
Rahimi et al. [80] considered planar particles on a planar
droplet. These authors found that the energy difference
between two particles located on opposite boojums is ap-
proximately 700 kBT lower than when they share a boo-
jum (we obtain 1000 kBT for homeotropic particles). For
three particles, the global minimum also corresponds to
two particles in one boojum and one particle in the other
boojum; the main difference, however, is that for the pla-
nar case a third particle can be localized at a 90 angle
with respect to the boojums, without formation of the
half-saturn ring reported here, leading to the appearance
of a local minimum.
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