
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Confronting the Complexity of Carbon Nanotube Materials †

Fernando Vargas-Lara∗a and Jack F. Douglas∗a

The morphology of commercially available carbon nanotube materials is often much more complex than the term “carbon nan-

otube” (CNT) would imply. Commercial CNT materials are typically composed of roughly spherical CNT domains having a

highly ramified internal structure and a size on the order of microns. Clearly, such structures cannot reasonably be modeled as

“rods”. To address this problem, we first perform molecular dynamics simulations (MD) to generate structures similar to those

measured experimentally, based on the presumptions that CNT domains are composed of worm–like cylinders having observed

persistence lengths and that these CNTs are confined to spherical domains having the observed average domain size. This sim-

ple model generates structures remarkably similar to those observed experimentally. We then consider numerical path–integral

computations to calculate the self–capacitance C and intrinsic conductivity [σ]
∞

of these CNT rich domains. This information is

then incorporated in a generalized effective medium theory to estimate the conductivity of bulk composite materials composed of

these complex–shaped “particles”. We term these CNT structures “tumbleweeds”, given their evident morphological similarity

to this naturally occurring growth form. Based on this model, we find that the conductivity percolation threshold of the tumble-

weeds can be quite low, despite their quasi–spherical average shape. We also examine the structure factor S(q) of the CNT–rich

domains as function of the number N of CNTs within them, and the overall domain size to aid in the structural characterization

of CNT nanocomposites. The structure factor S(q) of our model tumbleweed is found to resemble that of hyperbranched, star

and dendrimer polymers, and also domain structures observed in polyelectrolytes. Commercial CNT materials at high loading

should then have physical features in common with suspension of “soft” colloidal particles by virtue of their deformability and

roughly spherical shape.

Adding carbon nanotubes (CNTs) to polymeric materials

can enhance their viscosity and mechanical strength1, as well

as electrical2,3 and thermal conductivity4. It is generally ap-

preciated that these property changes depend strongly on the

structural parameters of the individual CNTs, such as their

shape (e.g., CNT persistence length or other measure of CNT

undulation scale), length, or diameter, as well as their degree

of dispersion in the polymeric matrix5. While it is possible

to synthesize long and relatively straight CNTs6, and even

to separate single wall CNT by length7 and chirality8, com-

mercial CNT materials produced by chemical vapor deposi-

tion (CVD) are commonly composed of CNT–rich domains

having a highly irregular internal structure9–11. It is often un-

clear whether these are aggregated CNTs having a worm–like

cylinder morphology or are instead inherently branched car-

bon materials as found with carbon black12. CNT branch-

ing has been directly observed by transmission electron mi-

croscopy in CVD growth of CNT in association with fission

of the catalytic nanoparticles13, leading to a hierarchy of CNT

diameters as in the formation of branches in plants. The

buildup of amorphous carbon probably also acts to “cross–

link” the CNTs. The as–received commercial material nor-

mally contains nodular sub–structures that progressively are
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a Materials Science and Engineering Division, National Institute

of Standards and Technology, Gaithersburg, MD, 20899, USA; E-

mail:luis.vargas@nist.gov; jdouglas@nist.gov

broken down into isolated domains and CNT fragments un-

der aggressive processing conditions aimed at dispersing these

structurally complex materials10. This “tumbleweed” mor-

phology is the reality of most commercially available in CNT

materials9,10 and we directly address what properties derive

from them without judgment about whether such structures

are “better” or “worse” than the ideal rod dispersions often

invoked to explain the properties of CNT polymer nanocom-

posites.

In contrast with most theoretical14 and experimental3,15,16

studies that assume perfectly dispersed CNTs modeled as

rods, we explore how the addition of tumbleweed CNT do-

mains affects the conductivity of composites containing them.

In particular, we approach the calculations of the properties of

composites filled with these complex–shaped particles based

on the same type of continuum theory developed by Ein-

stein17 and Maxwell18 for calculating the viscosity and the

electrical conductivity of rigid and conductive spheres, respec-

tively, dispersed at low concentrations within a fluid or insu-

lating matrix materials, respectively. Unfortunately, the ex-

tension of such calculations to describe particles having other

shapes is a highly non–trivial problem and analytic calcula-

tions are restricted to ellipsoids and a few other mathemati-

cally tractable forms19. The present work utilizes a highly ac-

curate computational method for calculating the leading virial

coefficient for the viscosity and electrical conductivity for es-

sentially any particle shape20,21. In particular, the numerical
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glect conductivity differences that might arise from conduc-

tivity variations in the individual CNT domains. However,

this assumption is probably not generally appropriate for sin-

gle walled CNTs were chirality can have a large influence on

the CNT conductivity, at least at high frequencies32. Conse-

quently, we do not claim to model single–wall CNT materials,

but rather focus on commercial CNT materials normally com-

posed of multi–wall CNTs.

The assumptions of isotropy with respect to the particle ori-

entation and a high contrast in electrical conductivity ∆ =
σCNT/σpol, specifically the ratio of the electrical conductivity

of the particle σCNT to the electrical conductivity of pure ma-

trix material σpol to which the particle is added, reduces the

exact calculation of [σ]
∞

to the determination of the trace of

the electrical polarizability tensor αe of the conductive tum-

bleweed particles33,

[σ (∆ → ∞)] ≡ [σ]
∞

= 〈αe〉/VCNT, (2)

where 〈αe〉 = (1/3) trace (αe), and VCNT is the volume

of the CNT. In the more general case in which the particles

are not isotropically distributed, the determination of [σ]
∞

in-

volves an averaging with respect to the components of αe.

Martin and coworkers34,35 have recently considered this sit-

uation for oriented sheet–like conducting nanoparticle addi-

tives where the calculation of σ requires a different weight-

ing of the polarizability components, a generalization eas-

ily considered in our computational method. These particle

orientational effects should be less important in tumbleweed

structures than in rod–like or sheet particle dispersions where

changes in processing conditions can induce significant parti-

cle orientation and macroscopic property anisotropy in some

cases. Of course, the tumbleweeds should be less prone to

this effect and this might be a great advantage for this class of

disordered CNT materials.

There are two further physical ingredients that we need for

modeling the CNT tumbleweed domains and σ of nanocom-

posites made from adding these particles to a polymeric ma-

trix. First, we need to generate physically reasonable repre-

sentations of these structures on which our path–integral cal-

culations can be applied. We adopt a coarse–grained model

of the CNT domains drawn from the field of polymer science

where structures having the same geometry arise. In particu-

lar, past experiments on fragment CNT materials in the form

of isolated segments have established that these CNT can be

modeled as worm-like tubes36,37. It is apparent also from ob-

servation of the CNT material before it has been mechanically

broken down under CNT shear stress or some other mechani-

cal or chemical degradation process that the CNT are localized

into roughly spherical domain structures that slowly disinte-

grate under prolonged applied stress10. For typical process-

ing times these clusters survive as the predominant structures

within the nanocomposite, along with the CNT segments bro-

ken from the surface of these objects. We then introduce a

“standard” polymer model that generates worm–like tubular

CNT configurations confined to a finite tumbleweed domain

as a reasonable generic model for these complex structures.

Since we are treating this problem from a continuum theory of

conductivity, the interaction between the CNT with the poly-

mer matrix or between the CNTs has only a secondary signif-

icance. The results of this model are validated by comparison

of the simulated tumbleweed structures to representative im-

ages of the real CNT materials used in commercial applica-

tions.

Finally, we must adopt a model for estimating the conduc-

tivity of composite materials made from such complicated–

shaped particles. We approach this problem through the use

of an effective medium theory, and we utilize, in particu-

lar, the “generalized effective medium theory” (GEM)38 since

this model has performed well in previous studies of polymer

nanocomposites containing CNTs3. This model is known to

be useful for estimating the conductivity of composites con-

taining complex–shaped conducting particles, but the conduc-

tivity percolation threshold is normally adjusted empirically

in this model because it has not been possible before to calcu-

late [σ]
∞

for complex–shaped particles As we shall illustrate

below, the conductivity virial coefficient [σ]
∞

fixes the con-

ductivity percolation concentration φc in GEM theory. Since

we can calculate [σ]
∞

precisely for any particle shape with

our path–integral program (ZENO), we can now make esti-

mates of the conductivity of dispersions of highly conductive

particles based on GEM theory. The modeling of σ at high

filler concentrations is subject to the limitations of this effec-

tive medium theory, but allows us to model σ without free

parameters. We next describe our MD–generated CNT tum-

bleweeds based on the model described above, implement the

calculation of C and [σ]
∞

by applying path–integration meth-

ods to 103 ensembles of tumbleweed domains generated by

MD. Finally, we calculate the conductivity of composites of

CNT tumbleweeds based on GEM theory in conjunction with

our path–integral calculations of [σ]
∞

.

Our paper is summarized as follows. In Section 1, we

describe the molecular model utilized to generate CNT do-

mains having tumbleweed–like morphologies. In Section 2,

we calculate the the electric properties of the tumbleweeds,

i.e., C and [σ]
∞

, as well as σ of composites made with these

complex–shaped particles. In Section 3, we present the struc-

ture factor of the tumbleweeds and shape–related properties

that should be useful in the experimental characterization of

these structures. Finally, we conclude in Section 4 .
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1 Molecular Model to Generate CNT Tumble-

weed Morphologies

There is currently limited understanding of the relevant factors

controlling the growth of tumbleweed domains and measure-

ments of the branching characteristics and other topological

properties of these clusters are limited. Under these circum-

stances, we adopt a tentative coarse–grained model intended

to capture the main physical characteristics of these clusters,

an approach validated by comparing the structure generated

with these observed in high resolution imaging and scattering

studies of these structures.

For the MD simulation part of our work, each individual

CNT is represented by a worm–like cylinder model39, as il-

lustrated in Figure 1 (c). As noted above, this is a physically

established model for the observed fragments of both single

and multi–wall CNT materials36,37. The high polarizability

of CNT materials makes the fundamental derivation of a in-

termolecular potential describing the interactions between the

CNT segments extremely difficult and the deduction of such

potentials is further complicated by chemical methods used to

clean the CNT to various degrees that alter the surface chem-

istry and thus the interaction potential. Embedding the CNT

in a polymer matrix further alters this effective interaction.

Given this complex situation, we adopt the procedure that we,

and others, have used in modeling DNA (another structure that

described by a worm–like chain) in solution where hydration,

polarizability, and charge condensation greatly complicate the

modeling of the intermolecular interaction. In particular, we

simply model the collective short–range interaction by a trun-

cated 12–6 Lennard–Jones potential (LJ),

U12−6
LJ (r) = 4ǫLJ

[

(σLJ

r

)12

−
(σLJ

r

)6
]

r < 21/6σLJ,

(3)

where εLJ = 1.0 is a phenomenological measure of the short–

range interaction strength and σLJ = 1.0 defines the diameter

of the CNT. Again drawing on this analogy with DNA struc-

ture, we model the chain by a finitely extensible, nonlinear

elastic (FENE) anharmonic–spring potential,

UFENE(r) = −
kR2

0

2
ln

[

1−

(

r

R0

)2
]

. (4)

Here, k = 30 ǫLJ/σ
2
LJ and R0 = 1.5 σ are the bond strength

and maximum bond length, respectively. In order to mimic

the multi-walled CNT morpholgies commonly found experi-

mentally such as in Ref. 36, we map σLJ with the outer CNT

diameter having a typical value of σLJ = 21 nm, and we con-

sider CNTs formed by a number of beads n, with n = 100 or

200 (L ≈ 2 µm or 4 µm in length). Additionally, to model the

bending stiffness of these multi–walled CNTs, we assume the

connecting beads in each CNT interact via a bending potential,

Ulin(θ) = 9 ǫLJ[1− cos(θ)], (5)

where θ is the angle formed by three consecutive beads yield-

ing CNTs with a static persistence length lps = 200 nm.

An average density ρCNT = 1.726 g/cm3 of multi–walled

CNTs 40 implies that each bead has an average mass mbead =
4.85× 10−18g. In this way, we generate worm–like cylinders

having the observed persistence length of multi-walled CNTs

as the basic primary unit of our CNT domain structures.

To simulate the observed roughly spherical “tumbleweed”

CNT domains (see Figure 1), we consider the CNT to be con-

strained to lie inside a spherical shell of radius R on the order

of 1 µm. The CNT–shell interaction is modeled for simplicity

by a 9–3 LJ potential,

U9−3
LJ (r) = ǫLJ

[

2

15

(σLJ

r

)9

−
(σLJ

r

)3
]

r < (2/5)
1

6 σLJ,

(6)

but almost any short range potential would serve to create the

desire effect of creating spherical diffuse domains of CNT in

the form of a diffuse domain containing CNTs. We vary the

number N of CNTs inside our model spherical tumbleweed

domains (see Figure 1 (c)) as N = 1, 2, 5, 10, 20, 32, 64, 128
or 256. Figure 1 (d) shows a concentrated CNT material

formed by a collection of tumbleweeds (See conclusions). All

the MD simulations were performed at a reduced temperature

T/ǫLJ = 1.0 for ≥ 107 time steps using LAMMPS41.

We emphasize again that our MD simulations are performed

only to create plausible realizations of the CNT tumbleweed

domains and that these simulations are rather insensitive to our

choice of potential parameters. The form of the intermolecu-

lar potential thus has little effect on the calculated transport

properties based on continuum theory using ZENO and its ex-

tension using effective medium theory.

We report the average properties for each tumbleweed clus-

ter. In particular, we sample 103 configurations once CNTs

reach their thermal equilibrium state. The Monte Carlo path–

integration program ZENO21,22,33 allows for the computation

of the conductive properties of the tumbleweed and the com-

posite containing them. We consider a relatively large num-

ber of random paths ≥ 107 for each property calculation to

achieve uncertainty values smaller than the numerical data

points reported in each figure. We fit the data using the soft-

ware Grace42 which considers the Levenberg–Marquardt al-

gorithm. The uncertainties related to the fitting correspond to

one standard deviation which are included on the figures only

if this value is bigger than the symbol size. Visual Molecular

Dynamics (VMD)43 is used to visualize the CNT structures.

Note the close similarities to the observed CNT tumbleweed

domain to the simulated domain illustrated in Figure 1. Now

that we can generate a reasonable facsimile of the CNT do-
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surements on these commercial CNT materials.

0 0.2 0.4 0.6
CNT Volume Fraction (φ)

10
-8

10
-6

10
-4

10
-2

σ 
(S

/m
)

Dispersed rod-like CNTs
Tumbleweed  5 CNTs
Tumbleweed 256 CNTs
Sphere

Figure 3: Generalized effective medium theory (Eq. (9)) estimates

the conductivity σ for model CNT tumbleweeds composed of 5 and

256 CNTs. We compare these results also to those for a single con-

ducting sphere having the same σ as the individual CNTs. We find

that the CNT tumbleweed composites naturally have low percolation

threshold φc on the order of 1 %, even though these particles are not

rod–like. The concentration axis is truncated at the maximum value

for the random close packing of hard spheres φ∗ = 0.64, which is

also a reasonable estimate for the maximum concentration packing

for flexible polymers 52. Of course, this estimate of the maximum

achievable concentration of CNT constitutes an upper bound of the

CNT packing fraction.

Knowing [σ]∞ of the additive, we then estimate how the

conductivity σ of a composite (at fixed frequency) changes as

a function of φ using GEM theory38,

(1− φ)
σ
1/s
epox − σ1/s

σ
1/s
epox +Aσ1/s

+ φ
σ
1/t
CNT − σ1/t

σ
1/t
CNT +Aσ1/t

= 0. (9)

In this expression, we fix A by matching the mean field

Bruggeman symmetric effective medium equation38 to the ex-

act virial expansion19 for σ to obtain A = ([σ]
∞

− 1), and

σepox, and σCNT are the conductivity of the CNTs, and epoxy

matrix, respectively; s and t are the usual conductivity perco-

lation exponents53.

GEM theory is a hybrid model that incorporates ingredients

of effective medium theory (a mean field theory) and exact

scaling results found from percolation theory. As such, it pro-

vides one of the most predictive expressions to the conductiv-

ity and other nanocomposite properties containing complex–

shaped particles. The detailed arguments on which this model

is based are described in Ref. 38. In previous studies3, GEM

theory successfully described σ of single wall and multi–wall

CNT filled–materials, having a rod–like morphology (such

materials exist, but, as noted above, this is not the norm for

commercial CNT materials9,10). We simply utilize this pow-

erful framework with one important difference, we directly

calculate the conductivity percolation threshold based on our

ZENO calculation of [σ]
∞

. This is a new development intro-

duced in this paper.

In Figure 3, we show the GEM model σ (φ) predictions

for composites containing tumbleweeds formed by 5 and 256
CNTs. The tumbleweeds containing N = 5 CNTs give rise

to a relative low percolation thresholds, φc ≈ 1 %, consis-

tent in order of magnitude with conductivity measurements

on multi–walled CNT composites in polypropylene54 where

the conductivity data was fit to the GEM equation under both

quiescent and steady–shear conditions. Here, we chose the

three dimensional values of the conductivity percolation ex-

ponents53 s = 0.73, t = 2.0 and we take the contrast ratio2,3

σCNT/σepox = 106. We further take σCNT to be the con-

ductivity of the densest achievable packing of the CNT mate-

rial, a property that depends strongly on the contact resistance

between the tubes and, in particular, on the CNT defect den-

sity, surface chemistry, etc. This plateau value can apparently

vary by orders of magnitude in CNT materials depending on

how the CNT are fabricated and processed and in Figure 3 we

chose representative values of σCNT for multi–walled mate-

rials that we have studied before at NIST55. Investigation of

the physical factors controlling σCNT is an attractive topic for

future investigations.

We see from Figure 3 that the conductivity percolation

threshold φc can be small even if the CNTs are in the form

of tumbleweed domains rather than dispersed rods. The key

to a low φc in these particles is their diffuse polymeric struc-

ture and their corresponding high polarizability. Of course, the

estimated φc is somewhat smaller if the CNT are actually dis-

persed in the form of randomly oriented and fully dispersed

worm–like cylindrical structures. Taking a reasonable esti-

mate for the persistence length and CNT diameter36, as in our

analysis above or the tumbleweed domains, we can also calcu-

late φc using ZENO and GEM theory to get an estimate of the

limiting φc that might be achievable in such ideal dispersions.

Extending our calculations above to such model CNT struc-

tures indicates that φc can be quite small when the CNT are

long. In particular, the GEM model predicts that φc (inflection

point in Fig. 3) scales in inverse proportion to [σ]∞,

φc ≈ 1.6/[σ]∞, (10)

which should apply to conducing particles of any shape. Since

we find that [σ]∞ depends on the length L of the worm–like

CNTs as,

[σ]∞ ∼ L0.9±0.05, (11)

we conclude that φc for worm–like CNT should scale as,

φc ≈ 4 L−0.9±0.05, (12)
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where L is in nm and we have taken the representative esti-

mate of the static persistence length, lps = 200 nm. (Mans-

field and Douglas44 previously investigated [σ]∞ for worm–

like cylinders as a model of CNTs where the diameter and the

length of the CNTs were varied over a wide range of values).

However, this work did attempt neither to calculate the con-

ductivity percolation thresholds based on this information nor

estimate the conductivity of nanocomposites made of these

type of particles). For L on the order of O(1000 nm), we

then see that φc is predicted to be very small, φc ∼ O(10−3),
for such well–dispersed worm–like tube dispersion. We see,

however, that φc remains low and σ hardly changes for tum-

bleweeds containing 5 CNTs so the practical advantage of be-

ing “fully dispersed” CNTs is not really that great. Notably,

the present method of calculations can be extended and ap-

plied to NPs having any prescribed shape.

A problem with such “ideal” CNT dispersed system is that

it is hard to fabricate such materials in large enough quantities

at a reasonable cost. Additionally, such systems have an in-

herent tendency to exhibit orientational ordering and bundling

effects that can increase φc substantially. The loss of sta-

bility of these dispersions over time and under temperature

cycling can be expected to give rise to undesirable property

changes in end–use applications, even if were possible to re-

produce these materials and disperse them in polymer matri-

ces in an economical fashion. The tumbleweed morphology

should be relatively free of this type of “aggregation” prob-

lem and the roughly isotropic nature of the tumbleweed CNT

domains should make them less prone to alignment by either

electric or flow fields. Thus, the irregular form of these com-

mercial CNT materials probably make these materials more

desirable for some applications.

We are currently performing experiments at NIST to char-

acterize the morphology and conductivity properties of CNT

composites made from representative commercial CNT sam-

ples formulated into epoxy nanocomposites? . Preliminary

measurements clearly indicated the presences of the isolated

and roughly spherical tumbleweed structures within the com-

posite whose number changes with concentration, but whose

size has an invariant value of ≈ 2 µm. Conductivity mea-

surements have revealed, as we predict, that the conductivity

percolation threshold is very low ≈ 1% in volume fraction

for these nanocomposites, despite the absence of any appre-

ciable amount of rod–like structures within the nanocompos-

ites. Quantitative comparison with experiments will require

high resolution imaging of the tumbleweed internal structures

to determine the number of CNT in each domain, the nature of

the branching involved, etc. For the present, we note that all

the observation are qualitatively consistent with our model and

we stress the need for better characterization of these struc-

turally complex materials.

3 Structural Properties of Tumbleweeds

Scattering measurements provide a powerful experimental

method for probing the internal structure of CNT materials.

Unfortunately, there are no reliable models of the structure

factor of complex polymer structures such as these that can be

used to assess the geometry of these structures by neutrons,

light and x–ray scattering measurements. Recent studies of

CNT domains in polymer matrices by scattering have invoked

multiple–parameter (as many as eight) models where the inter-

pretation of the fit parameters is subject to rather large degree

of uncertainty9. This situation is understandable since there

is no reliable analytically–derived function for the structure

factor for even randomly branched polymers (i.e., lattice an-

imals or percolation clusters in three dimensions). The CNT

domains are more complicated in that they do not have the

simplifying feature of being fractal, which makes the problem

of calculating their structure factor even more difficult from

an analytic perspective.

We address this problem through a combination of model

building and molecular dynamic simulations. In particular,

we develop a numerical model for the static structure factor

S(q) for our tumbleweed structures where all the parameters

of the model have a validated interpretation in terms of the

real space structures generated by MD simulations. In this

way, we quantify S(q) of the tumbleweed domains in terms

of physically meaningful parameters. This model seems to be

applicable to a broad array of “fuzzy ball” polymer structures

morphologically rather similar to our tumbleweed domains.

We thus anticipate that our investigation of tumbleweed struc-

tures should find broad application in other areas.

We first explore how the CNT are distributed inside of the

spherical shell by calculating the normalized density ρn (r)
along the radial axis r, where

∫

4πr2ρn (r) dr = 1. Fig-

ure 4 (a) shows ρn (r) for tumbleweeds formed by a different

number of CNTs (N ). We find that the concavity of the den-

sity profiles ρn changes for tumbleweeds having N ∼ O(10)
CNTs. A mathematical relation for ρn that describes all data

from Figure 4 (a) to uncertainties ranging from 0.1 % to

6.5 % can be found in the electronic supplementary informa-

tion (ESI).

We next compute the normalized static structure factor

Sn(~q) = S(~q)/n for tumbleweeds formed by a different num-

ber of CNTs (Figure 4 (b)). We compute S(q) via the defining

relation,

Sn(~q) =
1

n2

〈

n
∑

j=1

n
∑

k=1

exp [i~q. (~rj − ~rk)]

〉

. (13)

Here, ~rj and ~rk are the instantaneous coordinates of the beads,

~q the wave vector, and i is the imaginary number. For tumble-

weeds domains containing more than 5 CNTs, Sn(~q) begins to
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Figure 4: In a), the normalized density for tumbleweeds formed by

a different number of CNTs (N ). We find that the concavity of the

density profiles ρn changes for tumbleweeds having N > 5, as in our

observations of C and [σ]inf presented above. In b), the normalized

structure factor Sn(~q) of tumbleweeds formed by different number

of CNTs. The Sn(~q) profiles for tumbleweeds formed by more than

5 CNTs presents some shoulder formations which intensity increases

with N . These features represent the transition from an elongated

object to a more spherically symmetric one.

exhibit a shoulder, signaling the first emergence of a ’particle–

like’ structure. These features in Sn(~q) also reflect a progres-

sive transition shape from an anisotropic and diffuse structure

to a compact roughly spherical structure.

Although we find that we cannot quantitatively compare

our simulation estimates of S(q) to existing scattering mea-

surements on CNT polymer nanocomposites because of rela-

tively limited structural characterization of this material and

the length scales investigated in most of these measurements,

the qualitative shape of S(q) certainty accords qualitatively

with observations on this class of materials. In particular, scat-

tering measurements on single–walled CNT (SWCNT) mate-

rials normally indicate no evidence for the existence of rod

structures in the material56, even at high scattering wave–

vector values q corresponding where one would expect a scal-

ing of S(q) inversely to q for rod–like particle additives. Chat-

terjee et al.9 have further shown that suspensions of SWCNTs

are also composed of order micron sized nodular domains with

an internal structure that can be idealized as being “fractal”

over a limited range of spatial scales with a fractal dimen-

sion (defined by the scaling S(q) ∝ q−df ) in the range be-

tween 2.2±0.2 and 2.9±0.1. Ultra–small angle neutron scat-

tering (USANS) measurements should allow for the a prob-

ing of the SWCNT domains at larger length scales, but these

measurements are yet not available for SWCNT composites.

We conclude that a large body of scattering data on SWCNT

materials9,56–59 indicates that the primary structures of these

SWCNT nanocomposites are normally more akin to random

coil, or branched polymers having a fractal dimension df in a

range between 2 to 3, rather than rod–like tubular structures

having a fractal dimension near 1. This conclusion broadly

accords with the basic physical picture of CNT materials ad-

vances for in the present work.

On the other hand, we focus in the present paper on com-

mercially available multi–walled CNT (MWCNT) materials

whose scattering properties are not obviously equivalent to

those of SWCNT materials. Scattering studies of MWCNT

materials are much more limited, but there is one study on this

type of material by Sen et al.60 that allows for a comparison

of our predicted form of S(q) to measurement. In the neutron

measurements of Sen et al.60, the MWCNTs were prepared by

chemical vapor deposition of acetylene under different syn-

thesis conditions such as variation catalysis type e.g., Ni, Co,

Fe, catalysis concentration, synthesis temperature, etc. The

MWCNT morphologies obtained in this study were also ob-

served by using scanning electron microscope and these struc-

tures show a strong similarity to the experimental and simula-

tion images shown in Fig. 1. SANS measurements were per-

formed on these CNT samples over a relatively wide q range

(10−3 ≤ q ≤ 10−1 nm−1) where there is no polymer ma-

trix so that no background subtraction in the neutron scatter-

ing measurements is required for this data. A comparison of

these observation with our S(q) profiles is given in Fig. 5 (b),

for representative diffuse tumbleweeds having N = 10, 20 or

32 CNTs. In both the experiments and simulations we see a

Guinier–like decay of S(q) at small q, whose decay length de-

scribes the average cluster size, followed by a limited q range

over which an effective power–scaling is observed with an ex-

ponent between 2 to 3. At still higher q, S(q) exhibits a shoul-

der feature in both the measurements and simulations, but the

measurement uncertainties are larger in this high–q regime so

we do not over interpret this feature. As a general observa-

tion, the approximate power–law scaling of S(q) occurs over

a much more limited range of q in the MWCNT materials, but

otherwise the scattering data appears rather similar to obser-
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vations on SWCNT materials. We look forward to compar-

ing our model to neutron scattering measurements on mate-

rials that have been independently characterized by imaging

studies to allow for more than a qualitatively validation of our

model. In these future measurements, it will be important to

determine, by direct imaging, that the tumbleweed domains

have been dispersed in the polymer matrix since the overlap of

these structures makes the interpretation of the scattering data

somewhat complicated. We briefly discuss this more concen-

trated regime in Section 4.
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Figure 5: Small angle neutron scattering (SANS) measurements per-

formed on multi–walled carbon nanotubes prepared by chemical va-

por deposition of acetylene using different synthesis conditions (dif-

ferent colors) 60. For comparison purpose, we include the structure

factor obtained in this work for tumbleweeds having N = 10, 20 or

32 CNTs from Fig. 4 (b) as being representative. In both sets of data,

we find qualitative similarities. A roughly Guinier decay of S(q) at

low q that defines the average cluster size, followed by a small effec-

tive power–law scaling over a limited q range with an effective power

between 2 to 3. At high–q, S(q) exhibits a shoulder feature, but data

uncertainties are large in this q range.

We can alternatively characterize the tumbleweed domains

in terms of other readily measurable properties, the hydro-

dynamic radius RH = f/(6πη) and the radius of gyration

Rg =
√

1
2n2

∑

i,j

r2ij of the tumbleweeds (Figure 6), where f

is the friction coefficient of the tumbleweed, and η is the vis-

cosity of the pure polymer fluid in which the tumbleweed are

dispersed. The distance between particle i and j is labeled

rij . Rg and RH are perhaps the most basic measures of the

size of polymeric structures from a measurement standpoint,

based on static and dynamic scattering measurements.

The primary significance of ratio RH/Rg is as a descriptor
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Figure 6: The ratio between the hydrodynamic radius RH and the

radius of gyration Rg for the tumbleweeds as a function of the num-

ber N of CNTs formed by L ≈ 2 µm (in black) or L ≈ 4 µm (in

red). The symbols are the data and the solid lines correspond to fits

to Eq. (14). The inset shows there is an strong correlation between

Sn(qpeak) vs. Rg/RH, where Sn(qpeak) represents the value of the

structure factor at its first peak (See black arrow at Figure 4 (b)).

of molecular shape61 and we can expect this ratio of properties

to be useful for characterizing the CNT tumbleweeds since the

shapes, and fluctuation in shapes of these structures, can be ex-

pected to change with the number of CNT within the domains,

as in the case of star polymers where we have a transforma-

tion from anisotropic polymer shapes, as in the case of linear

polymers, to a symmetric ball–like structure with an increase

in number of arms. We expect, and indeed find, exactly this

kind of shape transition in our simulated CNT tumbleweeds.

For spherical objects, RH/Rg = 1.291, and for non–

spherical ones, such as flexible polymer chains, we normally

have RH/Rg < 1. From Figure 6, we see that ratio saturates to

value close to a sphere for N ∼ O(10), which agrees with the

trend found in the Sn(~q) data shown in Figure 4 (b). The inset

in Figure 6 shows (RH/Rg) vs. Sn(qpeak), where Sn(qpeak)
represents the value of the structure factor at its first peak (See

black arrow at Figure 4 (b)). There is evidently a strong corre-

lation between Sn(qpeak) and (Rg/RH). In this figure, the

black circles represent tumbleweeds formed by CNTs with

L ≈ 2 µm and the red squares with L ≈ 4 µm. The data

has been fitted to the crossover equation,

RH

Rg

=

(

RH

Rg

)

Sphere

(

1−
1/2

1 + ξN3/2

)

, (14)

where ξ is a fitting parameter, and ξ = 0.03 ± 0.02 (R2 =
0.995) or ξ = 0.09 ± 0.02 (R2 = 0.999) for L ≈ 2 µm or
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L ≈ 4 µm, respectively. We should then be able to charac-

terize the CNT tumbleweeds though the measurement of RH

and Rg, although the large size of these domains will require

the estimation of these properties through particle tracking and

imaging since the CNT domains are too large for routine scat-

tering measurements.

4 Conclusions

We use MD simulations and path–integral methods to

study the conductive properties of individual CNTs forming

tumbleweed–like aggregates. We show that the capacitance C
for these CNT rich domains rapidly approaches that of a con-

ducting sphere due a screening transition so that the geome-

try and dispersion of the individual carbon nanotubes within

the tumbleweed domains becomes essentially irrelevant after

a relatively small number of tubes are within them. A simple

mean field theory describes this transition in the scaling of C
with the number N of CNTs within the tumbleweed domain.

Additionally, we find the electric polarizabilty tensor 〈αe〉 of

the tumbleweeds exhibits a similar screening transition, while

their intrinsic conductivity [σ]
∞

peaks at low concentrations

of CNTs within the tumbleweed domains since this particle

property corresponds to polarizability per unit volume. Ev-

idently, there is an optimal number of CNTs to achieve the

lowest percolation threshold for a fixed domain size, and this

number corresponds to the N range in which we observe a

screening transition in both C and 〈αe〉. We argue that dis-

persed rod–like CNTs are not necessary the optimal form of

CNT additive for enhancing the conductivity of polymer ma-

terials if a low percolation threshold is not the only criterion

for the utility of these materials. In particular, the high 〈αe〉 of

the CNT domains makes the conductivity percolation thresh-

old φc low and their relatively symmetric geometrical form

also makes them less susceptible to field–induced orientation.

Thus, this relatively inexpensive CNT material is attractive in

applications where property stability under high fields is re-

quired. We relate the change in the electric properties of the

tumbleweeds to the static structure and experimentally acces-

sible structural parameters such as RH/Rg. We see that the

screening transition in the tumbleweeds nearly coincides with

a shape transition signaled by the condition, RH/Rg ≈ 1.

Near this transition in geometry, the tumbleweed domains are

geometrically diffuse, but relatively symmetric objects of high

polarizability, ideal structures for certain applications.

Our investigation of CNT composites has mainly focused

on the “dilute” regime, where the tumbleweed domains exist

in relative isolation, a limit that simplifies the characteriza-

tion of these structures from imaging and scattering measure-

ments. As a tentative assumption, we took the tumbleweed

to have a fixed domain size based on observational data sug-

gested, but that assumption should be carefully assessed as

the model is refined in the future. At higher concentrations

of these complex–shaped particles, we expect these branched

polymeric structures to interpenetrate and lose their identity,

i.e., the individual tumbleweeds are no longer visually dis-

cernible because of their interpenetration. In solutions of flexi-

ble linear polymers, this “disappearing act” makes the osmotic

pressure, and other properties such as the collective diffusion

coefficient and Soret coefficient insensitive to polymer chain

mass, a physical effect that implies a non–trivial scaling of

these properties with polymer concentration by virtue of di-

mensional consistency with the property virial expansion62,63.

We show an example of a “gel” of equilibrated tumbleweed

domains in Figure 1 (d) where we see that individual tumble-

weed domains, such as the highlighted one, become “invisi-

ble” once they start overlapping appreciably. (The same phe-

nomena is apparent in heaps of real tumbleweeds25). As one

interesting effect, we can expect the impingement of these de-

formable domains to lead to a kind of gel formation64, as ob-

served in recent studies of soft colloidal particles65 and poly-

mer melts containing star–like polymers66,67. Such gels, com-

posed of tough but highly deformable domains, should lead

to interesting applications and, indeed, polymer composites

formed by multi–walled CNTs have already been shown to

exhibit extremely promising material properties such as the

flammability reduction of polymeric materials68 and suppres-

sion of die–swell in extruded polymer materials69, both ef-

fects deriving from CNT network formation within the poly-

mer matrix, imparting a gel–like rheology to the material as

a whole69. It would clearly be interesting to investigate these

properties from a soft colloidal particle perspective rather than

the dispersed rod paradigm that has formerly been emphasized

in modeling CNT materials. By adopting more realistic mod-

els of CNT materials, it should then be possible to better re-

alize, understand, and control the properties of this promising

class of composite materials.

Although we have assumed a constancy of the CNT tumble-

weed radius in our model calculations based on experimental

observations, it would also be natural to assume a CNT tum-

bleweed model in which these structures continue growing by

a random branching process as in true tumbleweeds, leading

to a natural carbon nanotube growth structure having a den-

drimer or hyperbranched polymer architecture. Such struc-

tures should also resemble the observed CNT morphologies

rather well and lead to low conductivity percolation thresh-

olds, screenings, etc., but we expect this type of morphologies

to exhibit different mass scaling relationships for the intrinsic

viscosity, chain radius of gyration, etc. Consistent with this

possibility, there is some evidence from size exclusion chro-

matography 70 that nominal single wall carbon nanotube ma-

terials exhibit and intrinsic viscosity scaling with CNT particle

mass consistent with compacts branched polymers. Further

work is needed to understand the physical factors governing
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the growth of these interesting carbonaceous particles, so that,

the tumbleweed model can refined based on a firm observa-

tional data. X–ray, tomography imaging and neutron scatter-

ing over a large wavevector (length scale) range should be very

helpful in resolving their internal structure.
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G. Heinrich, Polymer, 2010, 51, 2708–2720.

11 N. Grobert, Mater. Today, 2007, 10, 28 – 35.

12 R. Schueler and J. Petermann, J. Appl. Polym. Sci., 1997,

1741–1746.

13 S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi,

C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-

Sodi, A. C. Ferrari, R. Dunin-Borkowski, S. Lizzit,

L. Petaccia, A. Goldoni and J. Robertson, Nano Lett.,

2007, 7, 602–608.

14 F. Garcia-Vidal, J. Pitarke and J. Pendry, Phys. Rev. Lett.,

1997, 4289–4292.

15 W.-S. Tung, V. Bird, R. J. Composto, N. Clarke and K. I.

Winey, Macromolecules, 2013, 46, 5345–5354.

16 R. M. Mutiso and K. I. Winey, Prog. Polym. Sci., 2015, 40,

63 – 84.

17 A. Einstein, Annalen der Physik, 1911, 34, 591–592.

18 J. Maxwell, A treatise on electricity and magnetism, Dover

Publications, 1954.

19 J. F. Douglas and E. J. Garboczi, Intrinsic viscosity and the

polarizability of particles having a wide range of shapes,

John Wiley & Sons, Inc., 2007, pp. 85–153.

20 E. J. Garboczi and J. F. Douglas, Phys. Rev. E., 1996, 53,

6169–6180.

21 M. Mansfield and J. Douglas, Phys. Rev. E, 2008, 78,

046712.

22 ZENO, http://web.stevens.edu/zeno/.

23 A. Friedman and J. F. Douglas, Mathematics in Industrial

Problems, Springer New York, 1995, vol. 67, pp. 166–185.
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