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requires versatile and computationally efficient mesoscopic algorithms to account for fluctuating
nematohydrodynamic interactions. We present a multi-particle collision dynamics (MPCD) based

algorithm to simulate liquid-crystal hydrodynamic and director fields in two and three dimensions.
The nematic-MPCD method is shown to successfully reproduce the features of a nematic lig-
uid crystal, including a nematic-isotropic phase transition with hysteresis in 3D, defect dynamics,
isotropic Frank elastic coefficients, tumbling and shear alignment regimes and boundary condition
dependent order parameter fields.

1 Introduction

As a state of soft condensed matter with intermediate symmetries
between highly ordered crystals and disordered fluids, nematic
liquid crystals are both phenomenologically fascinating and com-
mercially valuable. No longer are liquid crystals of interest only to
those producing liquid crystal display technology; now scientists
interested in microfabricated systems!, microelectromechanical

2, composite materials 3, biosciences* and active gels® are

devices
exploiting the unique properties of liquid crystals in novel appli-
cations®. Interest in complex geometries (such as confining ge-
ometries nanoconfined geometries’, topological microfluidics®?
and colloidal intrusions'®!!) require versatile mesoscopic al-
gorithms that can account for non-trivial boundary conditions.
Likewise research into “hypercomplex liquid crystals” 12

assembly 13:14 would benefit from efficient methods to simulate

and self-

nematohydrodynamic baths for macromolecular and colloidal so-
lutes.

Such elaborate systems present a considerable challenge for
traditional particle-based numerical methods. Lattice Monte
Carlo simulations have been very successful in simulating ne-
matic liquid crystals !> and continue to be widely employed due to
their computational frugality 1517, However, out-of-equilibrium
dynamics and relaxation mechanisms require more computation-
ally costly methods. Off-lattice simulations of hard anisotropic
particles and soft pair-potentials have played an important role
in understanding generic liquid crystalline phases 19, but are

limited to simple systems. Molecular dynamics simulations can
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account for molecular detail with a range of coarse-graining 2%-2!,

including fully atomistic22, generic molecules?® and the meso-
scopic approach of dissipative particle dynamics242°. Even meso-
scopic simulations can become computationally expensive when
large numbers of constituent particles are required and so are
generally limited to simplified systems.

Investigating hypercomplex fluids or dynamics within demand-
ing geometries calls for the continued development of versatile
and computationally efficient coarse-grained algorithms. One
mesoscopic simulation technique that has shown promising ca-
pabilities in simulating fluctuating hydrodynamics of isotropic
solvents is the multi-particle collision dynamics (MPCD) algo-
rithm26-27, MPCD has been used to simulate hydrodynamic in-

teractions between macromolecules?8:29 colloids30-31

, vesicles32
and swimmers33~33, It has even been extended to simulate vis-
coelastic fluids3® and electrohydrodynamics®’. In this work, we
propose an extension to the MPCD method to efficiently simulate

fluctuating nematohydrodynamics (nematic-MPCD).

2 Method

Multi-particle collision dynamics algorithms forgo simulating
molecular-scale interactions between constituent molecules. In-
stead, the continuum description is discretised into many artifi-
cial, point-like MPCD particles that stochastically exchange mo-
mentum while respecting conservation laws for mass, momen-
tum and energy. This is sufficient to reproduce the hydrodynamic
equations of motion on sufficiently long length and time scales.
Mesoscopic MPCD algorithms can dramatically reduce compu-
tational costs compared to simulations that explicitly calculate
molecular pair-potentials and are well suited to simulating flow-
ing systems involving non-trivial boundary conditions®®:3%, finite
Reynolds numbers#°, and fluctuating hydrodynamics, which are
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ideal for moderate Péclet number systems41:42,

Here, we develop a nematic-MPCD method to efficiently sim-
ulate fluctuating nematohydrodynamics, by assigning an orien-
tation pseudo-vector to each MPCD point-particle and updat-
ing orientations through a local and stochastic nematic multi-
particle orientation dynamics (MPOD) operator. Backflow and
shear-alignment dynamics are ensured by coupling the MPCD and
MPOD operators. In § 3, we demonstrate that nematic-MPCD re-
produces the necessary physical properties to simulate a nematic
liquid crystal when the velocity and director fields are coupled.
In a very recent article, Lee and Mazza introduced an interesting
hybrid, non-local MPCD method for liquid crystals*3. The main
difference to our approach is that their particles carry a director
field that is coupled to the fluid through a discretisation of the
stress terms in a simplified Ericksen-Leslie formalism of nemato-
hydrodynamics.

In this section, we begin by reviewing a traditional Andersen-
thermostatted MPCD algorithm that conserves angular momen-
tum. We go on to describe the implementation of the MPOD op-
erator for nematic fluids and the two-way coupling between the
director and velocity fields. Finally, we describe how potentially
complex boundary conditions can be implemented.

2.1 Traditional MPCD for Isotropic Fluids

The fundamental insight of MPCD algorithms is that continuous
mass and momentum fields can be discretised into MPCD point-
particles (labelled /). Each MPCD particle possesses a position r;,
mass m; and velocity y;, and which interact through multi-particle,
near-equilibrium stochastic collision events within lattice-based
cells (labelled ¢) defined by a size a, population N., centre of

mass velocity centre vep, . = (v;) ~and moment of inertia [, =

ZkN“ my (r,’czi — z}([}() of the point-particles in cell ¢ relative to their
centre of mass rey . Where r; = r; —rem -

The MPCD algorithms consist of two steps. Each MPCD particle
streams ballistically for a time &7 such that its position at time
t+ ¢ becomes

£y (14 8) = 1y (1) +v; (1) 8. (1)

Multiple particles then undergo collision events, in which mo-
mentum is transferred between MPCD particles. To exchange mo-
mentum, the simulation domain is partitioned into cubic cells of
thermally varying number density p. = N./a® in d-dimensions.
Discretising space into MPCD cells breaks Galilean invariance,
though this can be remedied by randomly shifting the cell grid
at each time step#*. The collision operator Z; . is a non-physical
exchange designed to be stochastic and also to conserve the net
momentum within each cell ¢,

Vi (t + 51) =Yem,e (t) + Ei,c~ 2)

Many choices for the collision operator exist, which result in
different versions of MPCD, including the original Stochastic Ro-
tation Dynamics26:*° and a Langevin version of the algorithm°.
In this work, we utilise the Andersen-thermostatted collision op-
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erator46’47

Bie=8,~ <§j>N + (51 ‘5Q> XL 3
where & ;s a random velocity drawn from the Maxwell-
Boltzmann distribution f, (€,kgT) for thermal energy kg7 and

<§ j>N is the average of the N random velocity vectors in the ¢t

cell during the instant of the collision event. Randomly gener-
ating the éi from the equilibrium distribution f, in the moving
reference frame ensures that the algorithm is locally thermostat-
ted4®. The third term in the collision operator is a correction
included to remove the angular momentum introduced by the
collision operator

0L = %mz {K’j x <Xj _§j> } : S
J

Though the nematic-MPCD method does not strictly depend on
this choice for Z; ., coupling the velocity field to the director field
is accomplished by respecting this conservation law (see § 2.3.2).

2.2 Multi-Particle Orientation Dynamics for Nematic Fluids

We now that propose nematic liquid crystals can be simulated via
a nematic-MPCD algorithm by including an orientation field.

Each MPCD particle is assigned an orientation u;, while each
cell acquires a tensor order parameter

0

2. "4 <dﬂzﬂi *QN : )

For a nematic fluid, the largest eigenvalue is the local scalar order
parameter S, of the cell and the local Frank director n,. is parallel
to the corresponding eigenvector.

Orientations interact through a positive, globally specified in-
teraction constant U. In physical liquid crystals, the energy U
represents inter-molecular interactions and will be a non-constant
function of temperature or molecular details such as nematogen
dimensions and density. In this nematic-MPCD algorithm, the in-
teraction constant U is the simulation specified energy that gov-
erns the local evolution of orientations. Taking inspiration from
the Andersen-thermostatted MPCD collision operator, we imple-
ment a stochastic multi-particle orientation dynamics operator for
orientation. The essential requirements are that the MPOD oper-
ator must be local and near equilibrium, with no gradient terms
in the collision operator. Therefore, we propose the orientation
collision event

wi(r+80) = (U.Q (1)), )

where the multi-particle orientation operator ¥, generates a ran-
dom orientation u; (¢ + 0t) drawn from the equilibrium probabil-
ity distribution fy; (U Ny (t)) about the local director n,.(r) cal-
culated from the tensoﬁ)rder parameter. The nematic collision
operation causes the MPCD point-particles to change their orien-
tation by tieq) ; = Otteop ;/0t = [u; (¢t + Ot) — u; (t)] /Ot without alter-
ing the local director n.(t).

This journal is © The Royal Society of Chemistry [year]
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2.2.1 Maier-Saupe Distribution:

As in the traditional Andersen-thermostatted MPCD algorithm,
the multi-particle orientation operator depends on the condition
of local, near-equilibrium statistics. In this work, we assume that
the local equilibrium distribution for the orientation field obeys
the Maier-Saupe self-consistent mean-field theory and so is an ex-
ponential function of u, = u; - n,:

Jori (U Se.n,) = ge™ PromelUSea), 7)

where g is a normalisation constant, § = 1/kgT and each cell’s
mean-field interaction potential is

U
WMFe = —UScu? + — (8= 1). )
The second term does not depend on u, and so the distribution
of uy, is determined by ePUS:#:. When the scaled energy BUS, is
small, all orientations are equally likely but when BUS, is large
the distribution becomes sharply oriented about n,..

2.2.2 Generating the Maier-Saupe Distribution:

When BUS. ~ 1, a Metropolis algorithm for wyg . generates
the random orientations. However, the distribution can be
more efficiently approximated in the limits of BUS, > 1 and
BUS. < 1. In the strong mean field limit BUS, > 1, fo
is sharply centred about n. such that u’ = cos®6, ~ 1 — 62,
which means that the distribution for 6, can be approximated
as Gaussian fo;; ~ ¢ PUSH The Gaussian approximation is
used when BUS. > 5. On the other hand, when BUS, < 1
the exponent can be expanded and the cumulative distribution
function of f,;; can be approximated as W = ffgodueﬁ‘/sc’“z ~
u, + BUScufl/S. Random values of u, can be generated
through the transformation u, = 2~'/3x/BUS. —2'/3 /x, where

12N 1/3
K(r) = (3r(ﬁUSC)2+ [9(BUSC)4r2+4([3USC)3] / ) and r €
[0,1]. This expansion is used when BUS, < 0.5.

2.3 Two-way Coupling

Coupling between the director and fluid flow is crucial for repro-
ducing nematohydrodynamics since flows can rotate the nemato-
gens (§ 2.3.1) and the rotation of nematogens in turn produces
hydrodynamic motion, referred to as backflow (§ 2.3.2). We
model the coupling by treating the nematic-MPCD particles as
a dilute suspension of asymmetric particles rotating through an
non-inertial fluid. The nematogens are implicitly envisioned as
rotating through the viscous fluid that they themselves represent.

2.3.1 Shear Alignment: Velocity—Orientation Coupling:

We treat the nematic-MPCD particles as a dilute suspension of
rods subject to a net torque

Enetﬁi =TIy + Leoli +£ext,i =0, 9

where 'y ; is due to the flow field’s vorticity @ = [@ — (@)T] /2

and shear rate D = {@‘F(&)T] /2 (Fig. 8; insets)*8, Loy, =
YRU; X ticol; is the fluctuating thermal torque due to the MPOD

This journal is © The Royal Society of Chemistry [year]
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collision and I’y ; represents any external torques such as those
due to magnetic or electric fields. In this algorithm, we assume
viscously overdamping such that the net torque is zero.

Solving Eq. 9 for the total rate of rotation of particle i shows
that #; = dyyy; + tie) ;, Where gy ; obeys the discretised Jeffery’s
equation for a slender rod

5ZHL1‘
ot

= XHI [ﬂi'§+l(ﬂi'2—ﬂiﬂiﬂi32)] ) (10)

where A is the bare tumbling parameter and xy is a heuristic
shear coupling coefficient, a simulation parameter that tunes the
alignment relaxation time relative to 6¢. For the rotation of an
individual prolate particle subject to shear flow, yy; = 1. When
the shear coupling coefficient is set to zero (yy; = 0) there is no
coupling of the director to the velocity field. Equation 10 is com-
patible with the torque used in Leslie-Ericksen continuum nema-
tohydrodynamics and has been utilized in molecular Doi theory
to predict the Leslie viscosities of nematic fluids 490,

2.3.2 Backflow: Orientation—Velocity Coupling:

In the nematic-MPCD algorithm, backflow coupling is accounted
for by balancing the hydrodynamic torque Iy ; on each nemato-
gen with an equal and opposite change in angular momentum to
the velocity collision operator 6.£;/8¢. It is simplest to merely use
Eq. 9 to identify Iy ; = —Lop ; — Lexe; in the non-inertial limit.

To balance this torque with the hydrodynamic drag on the fluid,
the opposite of the net change in the angular momentum §.Z,. =
Zf.v‘ 0% = 727" [iy 6t is transferred to the linear momentum
portion of the algorithm. The MPCD collision operator &; . (Eq. 3)
is thus modified to account for liquid crystal backflow becoming

Zie=&—(¢), t (L BLrsz]) <. ap
In this way, the total angular momentum of the system is con-
served and the orientation-velocity coupling is accounted for. By
setting yg =0, the transferred angular momentum of each particle
is zero and this coupling is turned off.

2.4 Boundary Conditions

One of the advantages of particle-based hydrodynamics solvers
is that complex and mobile boundary conditions can be imple-
mented. For this reason, the nematic-MPCD may be well-suited
to nematic fluids confined within microfluidic devices8? and to
simulating colloidal-liquid crystals 1%11 and hypercomplex liquid
crystals12.

The effect of boundaries on positions and velocities are imple-
mented in the standard manner. Periodic boundary conditions
are implemented by wrapping the MPCD particle positions. Lees-
Edwards boundary conditions are used to introduce simple shear
flows across periodic domains>!. No-slip walls are simulated by
implementing bounce-back boundary conditions with phantom
particles 5254,
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Fig. 1 Nematic-isotropic phase transition. Simulation parameters from
§ 2.5 are used with no shear coupling, x4y = 0. Simulations in 3D exhibit
discontinuous isotropic to nematic transitions, regardless of whether the
local S, (solid lines) or global S (dashed lines) order parameter is used.
The transition is second order in 2D when the local S. is used but
becomes discontinuous if S is used. The nematic-isotropic transition
agrees qualitatively with the Maier-Saupe self-consistent mean-field
theory (MS; dotted lines). Inset shows a typical snapshot of the isotropic
disordered state (left) and nematic ordered state (right).

The boundary conditions also set the easy direction describing
the preferred orientation of the liquid crystal director at a sur-
face. During a bounce-back collision event with the surface, the
orientation u; of the impinging nematic-MPCD particle is set par-
allel to the surface’s easy direction. This anchoring is not strong,
as will be seen in § 3.5. For homeotropic boundary conditions,
the easy direction is normal to the surface. For planar boundary
conditions, the easy axis is parallel to the surface. In this case, all
in-plane directions can be equivalent or a single preferred direc-
tion can be specified. If no preferred direction is specified then
the boundary is said to be non-anchoring.

2.5 Units and Chosen Simulation Parameters

Values are expressed in MPCD simulation units — time, mass,
energy and length are given respectively by time step dz, particle
mass m, thermal energy kg7 and cell size a = §7+/kgT /m. The new
MPOD parameters are also stated these units. The interaction
constant U has units kg7, while the rotational friction coefficient
Yz has units kg7 8z. Both the bare tumbling parameter A and the
shear coupling coefficient yy; are dimensionless.

Except when otherwise stated, the simulations presented in this
manuscript vary input parameters about the following set of val-
ues: In this manuscript, simulations are carried out in 2D (d = 2)
for a system of size V = 50¢ with periodic boundary conditions
and a mean number density of p = (N.) = 20. The MPCD parti-
cles are randomly initiated with positions from a uniform distri-
bution, velocities from the Maxwell-Boltzmann distribution and
aligned nematic orientations. Parameter values are chosen to be
m=1,kgT =1,8t=1,a=1,U=15, g =0.01, A =2 and y35; = 1.

4| Journal Name, [year], [vol.],1-10

3 Results

Having described the implementation of the nematic-MPCD al-
gorithm, we now characterise the resulting properties of the lig-
uid crystal. We first consider how the isotropic-to-nematic phase
transition depends on the simulation parameters, particularly the
heuristic shear coupling coefficient and number density of MPCD
particles. We measure the nematic-isotropic hysteresis and ex-
plore the dynamics of the defect annihilation rate as the system
orders. Elastic free energy drives defect annihilation and we mea-
sure the isotropic Frank elastic coefficients to be a linear function
of the interaction constant. The response of the isotropic phase
to an ordering wall is characterised.

3.1 Nematic-isotropic transition

When BU is small, the nematic-MPCD algorithm exists as an
isotropic fluid state with a small global order parameter S (Fig. 1;
inset-left). When BU is large a nematic state is formed (Fig. 1;
inset-right). Maier-Saupe self-consistent theory predicts that the
nematic-isotropic transition is first order (Fig. 1). Although the
nematic-MPCD algorithm assumes near-equilibrium and so uses
the Maier-Saupe distribution on the local cell level, the scalar
order parameter and directors are spatially varying fields rather
than mean-field values.

In 3D systems of large enough size, periodic boundary condi-
tions and no shear coupling, the nematic-MPCD algorithm does
exhibit a strongly first order nematic-isotropic phase transition
(Fig. 1). In these simulations, the nematic fluid is initialised in
the nematic state and resides in a periodic cube of size 50°. The
system discontinuously jumps from zero to a global scalar order
parameter S* = 0.860+0.003 at [BU]|" = 4.20+0.05.

In 2D the nematic-isotropic transition is expected to become a
Kosterlitz-Thouless-type transition®>°®, The present simulations
demonstrate that the transition is no longer first order, increasing
from zero at [BU]* =4.140.1 in a 50” system (Fig. 1). The second
order nature of the nematic-isotropic transition is a direct result
of the nematic-MPCD’s ability to accommodate spatialtemporal
varying fields. Future studies should more fully characterise the
nature of the nematic-isotropic transition in 2D.

3.1.1 Global vs. Local Scalar Order Parameter:

By replacing the local scalar order parameter S, of each cell ¢ with
the system’s globally determined order parameter S in each cell’s
local mean-field interaction potential wyp (Eq. 8), the 2D tran-
sition becomes first order (Fig. 1). The order parameter curve re-
mains relatively unchanged except near the phase transition. The
transition from the isotropically disordered state is retarded com-
pared to the spatially varying case that uses the local order param-
eters but suddenly jumps to $* = 0.51+0.01 at [BU]* = 5.00+0.05.

3.1.2 Variation of Simulation Parameters:

In order to assess the impact of varying simulation parame-
ters on the nematic-isotropic transition, we initially omit the
velocity—orientation coupling by setting yy; = 0in Eq. 10 (Fig. 2;
top row). We consider varying time step 8z, mass m, temperature
kgT, rotational friction coefficient y, bare tumbling parameter 4
and mean number density p. In the zero-coupling limit, Fig. 2

This journal is © The Royal Society of Chemistry [year]
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Fig. 2 Global order parameter as a function of simulation parameters varied about the simulation values from § 2.5 (red squares). The top row shows
simulations in the absence of shear coupling, x4 = 0. The bottom row shows simulations with full coupling, x4 = 1.

(top row) shows that none of the MPCD simulation parameters
have a significant effect on the nematic ordering. Only the mean
number density has an observable affect on the curve. At ex-
tremely low mean number densities, the transition occurs at a
slightly larger interaction constant. It should be noted that when
an individual nematic-MPCD particle is alone in an MPCD cell
neither its velocity nor its orientation are altered.

3.1.3 Impact of Coupling Fluctuating Hydrodynamics:

When the shear coupling coefficient yy; is zero the global scalar
order parameter S rises from zero in the isotropic phase to S=1
in the BU — « ordered limit. This is no longer true when yy; # 0
(Fig. 2; bottom row). As the hydrodynamic coupling is restored
by increasing ypi, the value of the scalar order parameter de-
creases for a given interaction constant. This occurs because fluc-
tuations in the velocity field introduce an additional source of
noise through Eq. 10 when yy; # 0. These fluctuations reduce
the order in the director field and move the system away from
the fully ordered state of § = 1. With full coupling, only the ro-
tational friction coefficient yz is seen to have no impact on the §
curve (Fig. 2; bottom row). This is because y; controls the rota-
tional relaxation dynamics and does not influence the equilibrium
state.

When yy; = 0, the mean number density is the only simulation
parameter seen to have any observable effect on the isotropic to
nematic transition and then only at extremely low values (Fig. 2;
top row). At the lowest number density the transition is less sharp
and occurs at a slightly higher interaction constant SU/. While §
depends weakly on p when yq; =0 (Fig. 3), it is a strong function
of number density when yy; = 1. Fig. 3 shows the global scalar
order parameter as a function of density for U = 15. When the
shear coupling parameter yy is set to zero, the system remains
in the nematic state even at quite low densities. On the other
hand, when coupling is included, S increases from zero with mean
number density. In fact, the order parameter in Fig. 3 exhibits a
continuous transition and the nematic-MPCD algorithm possesses
a nematic-isotropic transition as a function of density when yp; =
1.

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Nematic-isotropic phase transition as a function of average
number density for U = 15. Simulation parameters from § 2.5 are used.
Without shear coupling (xH = 0), the global order parameter S is
relatively constant but when xp; = 1 the system exhibits a density
dependent second order phase transition.

Since there is a nematic-isotropic transition as a function of
density (Fig. 3), it is clear that the shear coupling coefficient has
a larger effect at lower number densities than it does at larger
densities. Fig. 4 shows the strong interaction limit of § (mea-
sured at U = 100 and 500) for various densities as a function of
coupling. For a low mean number density of p =5, Fig. 4 shows
that the strong limit drops from limgy_,..§ = 1 when y =0 to
only 0.038 4+ 0.003 when the algorithm is fully coupled. Fluctu-
ations are pronounced because of the small number fluctuations
of particles in each MPCD cell. By increasing the mean number
density p, the continuum limit is approached and fluctuations be-
come less severe. When p = 20 and the algorithm is fully coupled
(¥ = 1), the strong interaction limit is S = 0.80+0.01 (Fig. 4).
Throughout this work, we set the mean number density p = 20,
though a lower density may suffice in many situations.
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When the algorithm is fully coupled with y; = 1, the tumbling
parameter can also increase the susceptibility of the order field to
velocity fluctuations through Eq. 10. This can be seen in Fig. 2
(bottom row). When A = 5, fluctuations in the shear rate D fully
disorder the system.

3.1.4 Hysteresis:

Hysteresis is expected in 3D due to the first order nature of the
nematic-isotropic transition. By comparing 3D nematic-MPCD
simulations initialised with the director field in the isotropic state
(as in in § 3.1) to those initialised in the nematic state, a striking
hysteresis loop is observed in Fig. 5. The interaction constant,
BU, is fixed throughout the duration of individual simulations. At
these system sizes, the width of the hysteresis is measured from
Fig. 5 to be BAU* = 0.70 +0.03 and the difference in order pa-
rameters at the transition points is AS* = 0.20+0.04.

3.2 Defect Annihilation Dynamics

The process of transitioning from the isotropic to nematic phase
discussed in § 3.1 is controlled by the dynamics of topological de-
fects. Though the increasing interaction constant U generates lo-
cal order along a spontaneous direction n,, neighbouring regions
may break symmetry along any other direction. Therefore, many
+1/2 topological defects rapidly emerge from the disordered di-
rector field. Pairs of oppositely charged defects must approach
each other and annihilate for global ordering.

Since the 2D number density pp = 0.0080 +0.0005 of defects is
initially quite high, the annihilation rate Rp = —pp is large but
falls rapidly (Fig. 6; inset a). As the density decreases, the aver-
age separation between topological defects increases and annihi-
lation events become less frequent (compare Fig. 6a showing an
example system at r = 40 to Fig. 6b showing the same system at
t = 400). A variety of scaling relations for the annihilation rate
Rp (t) ~ V1 have been put forward. Mean-field arguments
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Simulation parameters from § 2.5 are used in 3D.

predict v = 1, purely diffusive kinetics suggest v = 0.5 and scaling
arguments give v = 6/7°7. Furthermore, the scaling law possesses
short-time logarithmic corrections®8>?. When measured on short
times between ¢ € [10,10%], the nematic-MPCD annihilation rate
appears to decay as v = 0.74 +0.02 (Fig. 6) but the exponent
increases to v = 0.83 - 0.04 when evaluated over ¢ € [10%,10%]
(Fig. 6), which is in agreement with the v = 6/7 scaling predic-
tion.

3.3 Frank Elastic Coefficients
We have considered how the nematic state arises from the
isotropic state. Let us now consider the nematic response to dis-
tortions in the director field. Gradients in the director field n lead
to the free energy density per unit volume f = Kgyjay (V- n)*/2+
Kiwist (- V % ﬂ)z /24 Kpend (2 x (¥ x ﬂ))z /2. Splay, bend and twist
deformations are illustrate in Fig. 7; insets. Since distortion are
typically large compared to molecular length scales, the Frank
elastic coefficients Kj Kiwist and Kpenpq are macroscopic mate-
rial properties.

One technique for obtaining the Frank coefficients from

particle-based simulations is to measure the equilibrium, ori-
60-63

play>

entational fluctuation spectrum
the tensor order parameter for each wave vector is Q(k) =

In reciprocal space,

p 1YY L (du; — 1) exp(ik - r;). We work in a varying director-
based coordinate system, in which n, = [0,0,1] and the wave vec-
tor is in the 13-plane, i.e. k = [ky,0,k;]. In this coordinate system,
the equipartition theorem®® relates the the low |k| limit of the

orientational fluctuations to the Frank coefficients

9  SVkgT

= 5 (12)
4 Kok? + Kpendks

<Qa3 (k) Qa3 (*]S»

for a = 1,2 (splay, twist). Through Eq. 12, the Frank coefficients
may be determined as fitting parameters of the fluctuation spec-
trum in reciprocal space. A large system size of V =30 x 30 x 30
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(a) Director field at r = 4006¢. {b) Director field at ¢ = 4006¢.
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Fig. 6 Number density of topological defects as a function of time with
and without shear coupling. Inset (a): Annihilation rate of defects Rp.
Simulation parameters from § 2.5 are used with a 2D system size of
500 x 500. In the defect maps, colour denotes local scalar order
parameter and defects are mapped with red circles marking —1/2
defects and blue pentagons marking +1/2 defects.

and N = 5.4 x 10°> MPCD particles are used in the following simu-
lations to ensure sufficient statistics for many near-zero || values
and accurate fits.

The resulting Frank coefficients of the nematic-MPCD fluid are
shown in Fig. 7. Although splay, twist and bend deformations
may possess differing coefficients in some physical systems, sim-
ple scaling suggests that all three elastic constants are of or-
der ~ U/a and theoretical considerations of the Maier-Saupe
self-consistent model ®* predict K; = £2pUS?[1+C;] /6, where i =
{splay,twist,bend} and ¢ is a characteristic interaction distance.
The different constants C; depend on the molecular details and
higher moments of the orientation distribution®*. The nematic-
MPCD simulations ostensibly exhibit isotropic elasticity. This is
expected because, in the limit that the rod length is small com-
pared to the interaction length, the constants C; are safely ne-
glected and the Frank coefficients are predicted to converge®*.
Since the nematic-MPCD algorithm simulates point-like nemato-
gens with a characteristic interaction length equal to the finite cell
size, the one-constant approximation applies.

In agreement with simple scaling and the Maier-Saupe self-
consistent predictions, the measured elastic coefficients for the
nematic-MPCD algorithm are linear with respect to the interac-
tion constant U and number density p (Fig. 7). Together, they

This journal is © The Royal Society of Chemistry [year]
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Fig. 7 Frank elastic coefficients for splay, twist and bend as a function of
interaction constant U. Simulation parameters from § 2.5 are used for a
system of size 50 x 50 x 50 and number densities p = {15,20,25}

(N ={1.875,2.5,3.125} x 10° nematogens) with y = 0. Insets a,b,c
respectively depict splay, twist and bend.

are fit to K; = {84+4,113+6,142+7}U for p = {15,20,25}, re-
spectively, in Fig. 7.

3.4 Tumbling and Shear Alignment
Thus far, we have considered quiescent nematic fluids. We now
turn our attention to flowing systems. Microscopically, the direc-
tor field is influenced by shearing flows through Eq. 10 and as
described schematically in Fig. 8; inset.

In the infinitely dilute limit of a suspension of spheroidal par-
ticles, the bare tumbling parameter is a geometrical entity that
can be cleanly related to the particle aspect ratio p by A =
(P> —1)/(p*+1), which goes to unity as p — « and is zero for
spheres (p = 1). However, interactions between nematogens in a
nematic fluid allow the actual tumbling parameter to deviate from
the isolated-slender-rod value and distributions of molecules can
exhibit effective tumbling parameters that are larger than unity.
Such fluids are referred to as aligning-nematics because there is a
stable alignment angle, the Leslie angle 6;, between the director
and shear field.

By considering a Fokker-Planck equation for the probability
distribution of orientations, Archer and Larson® found that
the flow tumbling behaviour of ellipsoidal particles with A =
(p* 1)/ (p*+1) is determined by the tumbling parameter

155+ 4884 +42

I __
A=A 1058

(13)
In the nematic-MPCD algorithm, A is the specified simulation pa-
rameter for the bare tumbling parameter, the magnitude of which
can be set larger than unity. We shall see that A’ as given by
Eq. 13 is the resulting tumbling parameter of the nematic-MPCD
algorithm. In Eq. 13, S, is the fourth moment of the Maier-Saupe
probability distribution. The distribution can be written as an
expansion of orthogonal Gegenbauer polynomials C,(,Y) (x) in d-
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Fig. 8 Jeffery periods corrected for the tumbling parameter and
non-unity shear coupling coefficient. Simulation parameters from § 2.5
are used with U =20 and orientations initialized in the nematic state.
The insets show the rotational and extensional components of Eq. 10.

dimensions as

= 40+1 =2
fori (U, S) = Y Z5= Sy (), (14)
=0
-2
where the moments are %y = Cé/ ) . In 3D, the polynomials

are Legendre polynomials, while they are Chebyshev polynomials
in 2D. The first even moment is the scalar order parameter S =
SH = % <u% — %) representing the variance of the alignments
about the director, while S, = .% is the next non-zero moment.

3.4.1 Tumbling Nematic:

When A’ < 1, the nematogens continuously revolve or tumble.
The tumbling period is set by the Jeffery orbits to be

2r

p=— T
X 7vV1— A2

where 7 is the shear rate.
Using Lees-Edwards boundary conditions®! to establish a shear

(15)

rate 7= 0.01 across a periodic channel of height L = 50, we mea-
sure the tumbling period as a function of tumbling parameter A’
(Fig. 8). The period is relatively small when A’ is small and varies
very little as a function of tumbling parameter. However, as the
tumbling parameter increases, the period increases rapidly and
diverges as A’ — 1. The simulated tumbling periods are found to
be in good agreement with Eq. 15.

The tumbling period does not depend on the rotational friction
coefficient yz (Fig. 8). This is expected both from inspection of
Eq. 10 and from the realisation that the differential drag by the
shearing flow is what rotates the rod.

3.4.2 Shear-Aligning Nematic:

When the magnitude of the bare tumbling parameter A is set so
that |A’| is larger than unity, the nematogens do not tumble but
rather align with the shear. For these tumbling parameters, Eq. 10
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unstable orientations for 6.

has the solution

!

tanOL:iH :i/:+1 (16)
Good agreement is found between Eq. 16 and the simulations
using Lees-Edwards boundary conditions when the tumbling pa-
rameter (Eq. 13) is greater than unity. As the tumbling parameter
tends to 17, the Leslie angle approaches zero. In this limit, the ne-
matogens orient along the flow direction. When A’ >> 1, the Leslie
angle of the nematic-MPCD fluid approaches /4 as predicted by
Eq. 16.

3.5 Wall-Induced Ordering

Confining walls affect the nematic ordering. In the isotropic state,
anchoring can cause ordering in the vicinity of the walls. We
consider a 2D nematic-MPCD fluid confined between two no-slip
plates separated by Z = 100. The plate at y = 0 enacts homeotropic
boundary conditions, which order the nematic fluid. The plate at
y = L is a non-anchoring boundary, which does not set a condition
for ;.

When the interaction constant is much less than the nematic-
isotropic transition value [BU]* (§ 3.1), the order decreases to
the isotropic state far from the wall. As the interaction constant
is increased, the value of the scalar order parameter Sy (U) =
S(U,y=0) at the wall increases (Fig. 10; inset). This signifies
that the anchoring is not infinitely strong and is strongly effected
by the value of U.

Additionally, the order extends further into the bulk fluid as
U increases. The characteristic distance the order extends from
the wall is a coherence length & (Fig. 10). One can predict that
the order decays as S (U,y) = S, (U)e >/ by considering the total
free energy functional to be the highest order term in the Landua-
De Gennes free energy and the deformation free energy. The co-

This journal is © The Royal Society of Chemistry [year]

Page 8 of 11



Page 9 of 11

20

10° T T

—
52
T

—
=)
T

Order Parameter, S
g

107!

Correlation Length, &2

. U (1 -y~
o+ 1fU (1 — Uy~

1 2 3 4
Interaction Constant, U

Fig. 10 Wall-induced ordering. Inset shows exponential decay of order
from homeotropic wall towards the isotropic bulk, as characterised by
the coherence length &. Coherence length diverges as the
nematic-isotropic transition is approached. Simulation parameters from
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herence length is a function of the elastic constant and the dis-
3K gptay + 2Kiwict \ I/

T-T*
isotropic transition is approached, the coherence length diverges.
The nematic-MPCD simulations accurately reproduce the expo-
nential decay far below the transition point (Fig. 10; inset).

It was seen in § 3.3 that K; ~ U so the coherence length takes
the form

2
tance from the transition, & o ( . As the nematic-

1/2
By ) . (17)

e (70

The theory captures the rapid growth of the coherence length
near the nematic-isotropic transition but goes to zero as U — 0,
while the simulations do not (Fig. 10). The coherence length
of the nematic-MPCD does not go to zero because MPCD al-
gorithms are not able to resolve material properties on length
scales comparable to the cell size a. If a second fitting parameter
¢y = (1.505 +0.005) a is included as in Fig. 10 to account for this
discretisation effect, then Eq. 17 well-represents the divergence
of the coherence length in the isotropic phase.

In the nematic phase, the order still decreases exponentially
from Sy but decays to a non-zero bulk value (Fig. 10; inset). Ex-
cept near the nematic-isotropic transition, the order parameter
falls steeply to its bulk value over a length scale comparable to a
single MPCD cell.

4 Conclusions

We have proposed a nematic-MPCD algorithm for simulating fluc-
tuating nematohydrodynamics. Nematic-MPCD uses traditional
Andersen-thermostatted MPCD with conservation of angular mo-
mentum to integrate the velocity field and a novel multi-particle
orientation dynamics (MPOD) collision operator to progress the
director field. By stochastically drawing orientations from the
local Maier-Saupe equilibrium distribution, the MPOD operator

This journal is © The Royal Society of Chemistry [year]
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updates the orientations without numerically evaluating gradi-
ents. In addition, the two-way coupling between the MPCD and
MPOD operators represents backflow and shear-alignment. We
have shown that this nematic-MPCD algorithm reproduces the
essential physical properties of a simple nematic fluid, such as
the nematic-isotropic phase transition, topological defects, Frank
elasticity and shear alignment.

The nematic-MPCD algorithm holds much promise as a tool
for simulating nematohydrodynamics, but future studies should
carefully investigate the anchoring strength (since modifications
to the no-slip conditions were required in traditional MPCD 52-54)
and work towards kinetic theories to quantitatively predict the ne-
matic material properties , such as the Frank elastic and Leslie vis-
cosity coefficients, as functions of simulation parameters. Though
simple, the algorithm holds exciting potential for simulating a
wide variety of soft matter systems. For example defect dynam-
ics within topological microfluidic devices® or porous media®®
could be modelled, exploiting the ease with which the algorithm
can handle complicated confining geometries. It would also be
of interest to consider dispersed nanoparticles, carbon fibres®7 or
68 within a liquid crystal host, and it is relatively easy to
imagine that generalized Maier-Saupe theories®® could be imple-
mented to in the MPOD collision operator to simulate cholesteric
or biaxial liquid crystals.
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2D nematic-MPCD simulation snapshot of instantaneous director and order parameter fields.



