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ideal for moderate Péclet number systems41,42.

Here, we develop a nematic-MPCD method to efficiently sim-

ulate fluctuating nematohydrodynamics, by assigning an orien-

tation pseudo-vector to each MPCD point-particle and updat-

ing orientations through a local and stochastic nematic multi-

particle orientation dynamics (MPOD) operator. Backflow and

shear-alignment dynamics are ensured by coupling the MPCD and

MPOD operators. In § 3, we demonstrate that nematic-MPCD re-

produces the necessary physical properties to simulate a nematic

liquid crystal when the velocity and director fields are coupled.

In a very recent article, Lee and Mazza introduced an interesting

hybrid, non-local MPCD method for liquid crystals43. The main

difference to our approach is that their particles carry a director

field that is coupled to the fluid through a discretisation of the

stress terms in a simplified Ericksen-Leslie formalism of nemato-

hydrodynamics.

In this section, we begin by reviewing a traditional Andersen-

thermostatted MPCD algorithm that conserves angular momen-

tum. We go on to describe the implementation of the MPOD op-

erator for nematic fluids and the two-way coupling between the

director and velocity fields. Finally, we describe how potentially

complex boundary conditions can be implemented.

2.1 Traditional MPCD for Isotropic Fluids

The fundamental insight of MPCD algorithms is that continuous

mass and momentum fields can be discretised into MPCD point-

particles (labelled i). Each MPCD particle possesses a position ri,

mass mi and velocity vi, and which interact through multi-particle,

near-equilibrium stochastic collision events within lattice-based

cells (labelled c) defined by a size a, population Nc, centre of

mass velocity centre vcm,c =
〈

v j

〉

Nc

and moment of inertia I
c
=

∑
Nc

k
mk

(

r′k
2
1̂− r′kr′k

)

of the point-particles in cell c relative to their

centre of mass rcm,c where r′i = ri − rcm,c.

The MPCD algorithms consist of two steps. Each MPCD particle

streams ballistically for a time δ t such that its position at time

t +δ t becomes

ri (t +δ t) = ri (t)+ vi (t)δ t. (1)

Multiple particles then undergo collision events, in which mo-

mentum is transferred between MPCD particles. To exchange mo-

mentum, the simulation domain is partitioned into cubic cells of

thermally varying number density ρc = Nc/ad in d-dimensions.

Discretising space into MPCD cells breaks Galilean invariance,

though this can be remedied by randomly shifting the cell grid

at each time step44. The collision operator Ξi,c is a non-physical

exchange designed to be stochastic and also to conserve the net

momentum within each cell c,

vi (t +δ t) = vcm,c (t)+Ξi,c. (2)

Many choices for the collision operator exist, which result in

different versions of MPCD, including the original Stochastic Ro-

tation Dynamics26,45 and a Langevin version of the algorithm46.

In this work, we utilise the Andersen-thermostatted collision op-

erator46,47

Ξi,c = ξ
i
−

〈

ξ
j

〉

Nc

+
(

I−1

c
·δLc

)

× r′i, (3)

where ξ
i

is a random velocity drawn from the Maxwell-

Boltzmann distribution fvel (ξ ,kBT ) for thermal energy kBT and
〈

ξ
j

〉

Nc

is the average of the Nc random velocity vectors in the cth

cell during the instant of the collision event. Randomly gener-

ating the ξ
i

from the equilibrium distribution fvel in the moving

reference frame ensures that the algorithm is locally thermostat-

ted46. The third term in the collision operator is a correction

included to remove the angular momentum introduced by the

collision operator

δLc =
Nc

∑
j

m j

{

r′j ×
(

v j −ξ
j

)}

. (4)

Though the nematic-MPCD method does not strictly depend on

this choice for Ξi,c, coupling the velocity field to the director field

is accomplished by respecting this conservation law (see § 2.3.2).

2.2 Multi-Particle Orientation Dynamics for Nematic Fluids

We now that propose nematic liquid crystals can be simulated via

a nematic-MPCD algorithm by including an orientation field.

Each MPCD particle is assigned an orientation ui, while each

cell acquires a tensor order parameter

Q
c
=

1

d −1

〈

duiui − 1̂
〉

Nc
. (5)

For a nematic fluid, the largest eigenvalue is the local scalar order

parameter Sc of the cell and the local Frank director nc is parallel

to the corresponding eigenvector.

Orientations interact through a positive, globally specified in-

teraction constant U . In physical liquid crystals, the energy U

represents inter-molecular interactions and will be a non-constant

function of temperature or molecular details such as nematogen

dimensions and density. In this nematic-MPCD algorithm, the in-

teraction constant U is the simulation specified energy that gov-

erns the local evolution of orientations. Taking inspiration from

the Andersen-thermostatted MPCD collision operator, we imple-

ment a stochastic multi-particle orientation dynamics operator for

orientation. The essential requirements are that the MPOD oper-

ator must be local and near equilibrium, with no gradient terms

in the collision operator. Therefore, we propose the orientation

collision event

ui (t +δ t) = Ψc

(

U,Q
c
(t)

)

, (6)

where the multi-particle orientation operator Ψc generates a ran-

dom orientation ui (t +δ t) drawn from the equilibrium probabil-

ity distribution fori

(

U,Q
c
(t)

)

about the local director nc (t) cal-

culated from the tensor order parameter. The nematic collision

operation causes the MPCD point-particles to change their orien-

tation by u̇col,i = δucol,i/δ t = [ui (t +δ t)−ui (t)]/δ t without alter-

ing the local director nc (t).
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2.2.1 Maier-Saupe Distribution:

As in the traditional Andersen-thermostatted MPCD algorithm,

the multi-particle orientation operator depends on the condition

of local, near-equilibrium statistics. In this work, we assume that

the local equilibrium distribution for the orientation field obeys

the Maier-Saupe self-consistent mean-field theory and so is an ex-

ponential function of un ≡ ui ·nc:

fori (U,Sc,nc) = ge−βwMF,c(U,Sc,un), (7)

where g is a normalisation constant, β ≡ 1/kBT and each cell’s

mean-field interaction potential is

wMF,c =−UScu2
n +

U

d
(Sc −1) . (8)

The second term does not depend on un and so the distribution

of un is determined by eβUScu2
n . When the scaled energy βUSc is

small, all orientations are equally likely but when βUSc is large

the distribution becomes sharply oriented about nc.

2.2.2 Generating the Maier-Saupe Distribution:

When βUSc ≈ 1, a Metropolis algorithm for wMF,c generates

the random orientations. However, the distribution can be

more efficiently approximated in the limits of βUSc ≫ 1 and

βUSc ≪ 1. In the strong mean field limit βUSc ≫ 1, fori

is sharply centred about nc such that u2
n = cos

2 θn ≈ 1 − θ 2
n ,

which means that the distribution for θn can be approximated

as Gaussian fori ∼ e−βUScθ 2
n . The Gaussian approximation is

used when βUSc > 5. On the other hand, when βUSc ≪ 1

the exponent can be expanded and the cumulative distribution

function of fori can be approximated as W =
∫ un

−∞ dµeβUScµ2

≈

un + βUScu3
n/3. Random values of un can be generated

through the transformation un = 2
−1/3κ/βUSc − 2

1/3/κ, where

κ (r) =

(

3r (βUSc)
2 +

[

9(βUSc)
4

r2 +4(βUSc)
3
]1/2

)1/3

and r ∈

[0,1]. This expansion is used when βUSc < 0.5.

2.3 Two-way Coupling

Coupling between the director and fluid flow is crucial for repro-

ducing nematohydrodynamics since flows can rotate the nemato-

gens (§ 2.3.1) and the rotation of nematogens in turn produces

hydrodynamic motion, referred to as backflow (§ 2.3.2). We

model the coupling by treating the nematic-MPCD particles as

a dilute suspension of asymmetric particles rotating through an

non-inertial fluid. The nematogens are implicitly envisioned as

rotating through the viscous fluid that they themselves represent.

2.3.1 Shear Alignment: Velocity→Orientation Coupling:

We treat the nematic-MPCD particles as a dilute suspension of

rods subject to a net torque

Γnet,i = ΓHI,i +Γcol,i +Γext,i = 0, (9)

where ΓHI,i is due to the flow field’s vorticity ω =
[

∇v− (∇v)T
]

/2

and shear rate D =
[

∇v+(∇v)T
]

/2 (Fig. 8; insets)48, Γcol,i =

γRui × u̇col,i is the fluctuating thermal torque due to the MPOD

collision and Γext,i represents any external torques such as those

due to magnetic or electric fields. In this algorithm, we assume

viscously overdamping such that the net torque is zero.

Solving Eq. 9 for the total rate of rotation of particle i shows

that u̇i = u̇HI,i + u̇col,i, where u̇HI,i obeys the discretised Jeffery’s

equation for a slender rod

δuHI,i

δ t
= χHI

[

ui ·ω +λ
(

ui ·D−uiuiui : D
)

]

, (10)

where λ is the bare tumbling parameter and χHI is a heuristic

shear coupling coefficient, a simulation parameter that tunes the

alignment relaxation time relative to δ t. For the rotation of an

individual prolate particle subject to shear flow, χHI = 1. When

the shear coupling coefficient is set to zero (χHI = 0) there is no

coupling of the director to the velocity field. Equation 10 is com-

patible with the torque used in Leslie-Ericksen continuum nema-

tohydrodynamics and has been utilized in molecular Doi theory

to predict the Leslie viscosities of nematic fluids49,50.

2.3.2 Backflow: Orientation→Velocity Coupling:

In the nematic-MPCD algorithm, backflow coupling is accounted

for by balancing the hydrodynamic torque ΓHI,i on each nemato-

gen with an equal and opposite change in angular momentum to

the velocity collision operator δL i/δ t. It is simplest to merely use

Eq. 9 to identify ΓHI,i =−Γcol,i −Γext,i in the non-inertial limit.

To balance this torque with the hydrodynamic drag on the fluid,

the opposite of the net change in the angular momentum δL c =

∑
Nc

i δL i = −∑
Nc

i ΓHI,iδ t is transferred to the linear momentum

portion of the algorithm. The MPCD collision operator Ξi,c (Eq. 3)

is thus modified to account for liquid crystal backflow becoming

Ξi,c = ξ
i
−

〈

ξ
j

〉

Nc

+
(

I−1

c
· [δLc +δL c]

)

× r′i. (11)

In this way, the total angular momentum of the system is con-

served and the orientation-velocity coupling is accounted for. By

setting γR = 0, the transferred angular momentum of each particle

is zero and this coupling is turned off.

2.4 Boundary Conditions

One of the advantages of particle-based hydrodynamics solvers

is that complex and mobile boundary conditions can be imple-

mented. For this reason, the nematic-MPCD may be well-suited

to nematic fluids confined within microfluidic devices8,9 and to

simulating colloidal-liquid crystals10,11 and hypercomplex liquid

crystals12.

The effect of boundaries on positions and velocities are imple-

mented in the standard manner. Periodic boundary conditions

are implemented by wrapping the MPCD particle positions. Lees-

Edwards boundary conditions are used to introduce simple shear

flows across periodic domains51. No-slip walls are simulated by

implementing bounce-back boundary conditions with phantom

particles52–54.
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2D nematic-MPCD simulation snapshot of instantaneous director and order parameter fields.  
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