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smaller values of N, and in particular for the type of short diblock

copolymers considered here (N < 100). However, the ROL theory

does not provide any information about the ODT and the proper-

ties in the ordered phase.

In the absence of predictive theory, computer simulations

emerge as an attractive approach to study fluctuation effects in

block copolymers.19,20 In particular, lattice Monte Carlo (MC)

simulations are a very efficient means to predict the ODT in

block copolymers,21–24 which are generally more efficient than

off-lattice models.25–27 The savings in computational time be-

comes particularly important when both equilibration and pro-

duction periods are required at numerous temperatures (or val-

ues of χ), and in simulations that require require long tempera-

ture (or χ) sweeps to identify a transition. The efficiency of MC

simulations may be further enhanced by employing advance sam-

pling techniques such as parallel tempering28,29 and reweighting

schemes,30 though we do not employ these techniques here.

Despite much prior work, the accuracy of the ODT predicted

from MC simulations is still not completely understood. This

stems in part from the fact that, in the simulation, the system

is constrained within a finite box of length L. This shifts the tran-

sition away from its true value, i.e., the value that would be ob-

tained in the thermodynamic limit, L → ∞. This finite size effect

is particularly severe for transitions involving spatially periodic

ordered phases, because the finite size of the box can constrain

the domain spacing of the ordered structure to a value that is not

equal to the preferred domain spacing that would be obtained for

an infinite system. This incommensurability between the period-

icity of the simulation box and that of the ordered structure also

prevents the use of standard finite-size scaling techniques that

were designed for phase transitions between spatially homoge-

nous phases.31 In off-lattice models, this incommensurability can

sometimes be avoided by using a deformable box that can auto-

matically adjust to be commensurate with the preferred domain

spacing.32 However, in the case of lattice models, this problem of

incommensurability has not yet been solved.

In this work, we address the issues related to finite size ef-

fects and commensurability in MC simulations with the lattice

model for symmetric diblock copolymers. We estimate the pre-

ferred domain spacing by comparing results of simulations of var-

ied simulation box size L, and use this result to identify nearly-

commensurate systems. Simulation results for a series of nearly

commensurate systems characterized by the same layer spacing

but different numbers of layers are then compared to elucidate

any remaining finite size effects and to estimate physical proper-

ties in the thermodynamic limit.

2 Simulation Method

The simulation methodology and features reported here are based

on the algorithm developed by Matsen and coworkers.24,33,34 The

system consists of n symmetric AB diblock copolymer chains that

are placed on an FCC lattice having V = L3/2 sites. Approxi-

mately 20% of the available sites are left vacant, to allow mobility.

Simulations are implemented using the Metropolis Monte Carlo

method with four different types of move: reptation, crankshaft,

block-exchange, and chain-reversal.24 Only nearest neighbor in-

teractions are considered, with the strength of each interaction

given by εAB > 0 for neighboring sites occupied by dissimilar (AB)

monomer pairs, and no interaction (εAA = εBB = 0) for sites oc-

cupied by similar (AA or BB) monomer pairs, as done in some

recent simulations.32

Throughout this paper, results are discussed and plotted in

terms of a simple “bare” Flory-Huggins parameter, given by χ ≡
zεAB/kBT , where z = 12 is the lattice coordination number. Be-

cause we are interested only in characterizing the behavior of

a simple model, and not in comparing different models to each

other or to experiments, no attempt is made here to define an “ef-

fective” interaction parameter suitable for such comparisons, as

done in some recent simulations.32 Also, the results predicted by

this lattice model recently have been compared with the theoret-

ical predictions,16 which are omitted here for brevity.

To identify the ODT, the system is cooled by increasing χN in

steps of constant size ∆(χN), increasing χN from χN = 0 to values

large enough to induce a transition to an ordered structure. The

resulting ordered structure is then heated (i.e. χN is reduced)

in steps of the same size, until χN = 0. During both the cooling

and the heating runs, the starting configuration at any value of

χN is obtained from the final configuration at the previous value

of χN. At each value of χN, 8× 10
4 Monte Carlo steps (MCS)

per monomer are performed for equilibration, followed by 8×10
4

MCS per monomer as a production period before implementing

the next step of ∆(χN). Samples are taken at an interval of 160

MCS per monomer during the production period to calculate en-

semble averages.

We calculate the number of AB contacts, nAB, which enables us

to compute the internal energy of the system,

〈U〉= εAB〈nAB〉. (1)

We also calculate the heat capacity based on fluctuations in the

internal energy,

CV =
∂U

∂T
=

〈U2〉−〈U〉2

kBT 2
. (2)

In order to find the orientation of the lamella and consequently

the domain spacing, we compute the structure factor,

S(q) =
1

V
∑
i j

[〈σiσ j〉−〈σi〉] exp[iq · ri j], (3)

where, σi = 0,1, or −1 is the lattice occupancy of the site depend-

ing on whether it contains a vacancy, a monomer of type A, or a

monomer of type B, respectively. The vector, ri j(= ri − r j), is the

position vector from site i to site j. The wave vector, q can only

take on values

q =
2π

L
(hkl), (4)

where (hkl) are integers. For each case investigated in this work,

eight statistically independent simulations were conducted.

3 Results and Discussion

All the results presented in this paper were obtained for chains

of length N = 20. However, the approach is general and can be
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Fig. 1 Number of AB contacts per simple cubic site, 〈nAB〉/V , as a func-

tion of segregation strength, χN, for both cooling (blue) and heating (red)

run, where ∆(χN) = 0.5. The insets show snapshots of the disordered

phase (left) and the lamellar structure (right) at χN = 0 and 43, respec-

tively.

easily applied to other chain lengths, and to other models. The

simulation procedure described in the previous section provides

a direct method to identify the ODT. Figure 1 shows the average

number of AB contacts for both cooling and heating runs, which

determines the average internal energy (Eq. (1)). The hysteresis

loop evident in this plot is consistent with the presence of a first-

order phase transition. As expected, the discontinuity at each end

of the hysteresis loop coincides with a spike in the heat capacity

(Fig. S-1 in the Supporting Information).

In order to assess the role of finite size effects, a relevant ther-

modynamic property (e.g. (χN)ODT) or structural features (e.g.

S(q)) must be computed for a range of system sizes. If there were

no commensurability effects, then these properties would be ex-

pected to increase or decrease monotonically with inverse system

size 1/L, allowing the value in the thermodynamic limit to be in-

ferred by extrapolation to L = ∞.

As a first step toward estimating (χN)ODT, we examined the

behavior of the 〈nAB〉 near the ODT for six different system sizes,

ranging from L = 24 to L = 64 with ∆L = 8. As seen in the Sup-

porting Information (Fig. S-2), neither the positions nor widths of

hysteresis loops vary monotonically with L. This non-monotonic

behavior is not limited to the hysteresis loops, but also is clear

from the evolution of the structure factor in the disordered phase

(Fig. S-3) and the structural metrics for the blocks (Fig. S-4). Our

observations agree with the conclusion of Micka and Binder31

that the incommensurability between the lattice periodicity and

the domain spacing prevents the appearance of any simple mono-

tonic variation of physical properties with L. As a result, standard

procedure to study finite size effects upon transitions between ho-

mogeneous phases cannot be applied in this case.

To minimize the effects of incommensurability, we must thus

first estimate the preferred domain spacing, and then design sim-

ulations using nearly-commensurate simulations boxes that are

designed to contain integral number of nearly unstrained lamel-

lar layers. We observe that simulations using boxes of different

size L spontaneously order in different orientations. For each

box size L, the preferred orientation at the ODT appears to be

reproducible. Our analysis is based on the hypothesis that the

orientation in each box is chosen so as to minimize the difference

between the layer spacing and the preferred layer spacing that

would be obtained in an infinite system. Each allowed orienta-

tion can be associated with a primary wavevector q given by Eq.

(4). Because q can only take on discrete values in a finite simu-

lation cell, the corresponding layer spacing d can also only have

discrete values, given by

d =
2π

|q| =
L√

h2 + k2 + l2
, (5)

with integer values of (hkl).

Figure 2 shows our results for the domain spacing d at the ODT

for systems of size L =28-60, for all even L. The red symbols

show the allowed values of d, as given by Eq. (5). The values are

clustered around d ≃ 14 but exhibit jumps between neighboring

values of L that, in the absence of more detailed analysis, might

appear to be erratic. Upon comparison of actual and allowed val-

ues, however, it becomes clear that these data are consistent with

our hypothesis that the system always chooses an orientation that

optimizes d. Wherever there are sudden spikes in the observed d

spacing, as occur at L = 36, 38 and 54, it is because there is no

choice of values for the integers (hkl) for those values of L that

would yield a value of d that is closer to an apparent optimum

value of approximately d ≃ 14. The reproducibility of this behav-

ior suggests that these systems have sufficient freedom during the

process of spontaneous ordering to choose an optimum orienta-

tion.

If we assume that the system always choose an orientation that

minimizes the difference between d and some unknown optimal

value deq, we can also use these data to put upper and lower

bounds on deq. For each L, we obtain a lower bound from the

midpoint between the observed value of d and the next lower

allowed value, and an upper bound from the midpoint between

the actual value and the next higher allowed value. The overall

bounds on our estimate of deq are given by the maximum lower

bound and the minimum upper bound. For these data, the tight-

est lower bound is obtained from L = 60, which yields deq > 13.9,

while the tightest upper bound is provided by L= 50, which yields

deq < 14.2, leaving an uncertainty of approximately 2 %.

In order to estimate the effects of finite size alone on systems

with the same layer spacing, we have compared results of simu-

lation of systems with lattice sizes L = 28, 42, 56, and 70 that

are all found to produce lamellar phases with d = 14. Since these

systems have a common layer spacing d = 14 that lies very close

to the (unknown) optimum value, we refer to these systems as

“nearly commensurate”. Snapshots of the lamellar phase formed

by this series of nearly-commensurate systems are presented in

Fig. 3. As expected, the system sizes L = 28,42,56, and 70 con-

tain 2,3,4 and 5 lamellar layers, respectively. Note that Fig. 3

shows the lamellae oriented along the principal directions only.
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Fig. 4 Hysteresis in the internal energy for the four commensurate sys-

tems. The data correspond to constant cooling and heating steps size of

∆(χN) = 0.5.

However, in the ordered phase, the inverse of the peak height is

lowest for the largest system as shown in the inset of the Fig. 5(b),

in agreement with Fig. 5(a). Taken together, these results confirm

that finite size effects do not appreciably influence the structure

factor in either phase.

4 Conclusion

We have presented a systematic study of finite size effects in lat-

tice Monte Carlo simulations of symmetric diblock copolymers.

Incommensurability between the lamellar domain spacing and

the periodicity of the lattice produces a non-monotonic variation

in the thermodynamic and structural properties with system size.

In order to estimate the preferred domain spacing we conducted

simulations with multiple choices for the system size. The results

are consistent with the hypothesis that the system always chooses

a lamellar orientation that minimizes the difference between the

layer spacing and some preferred equilibrium value, and allow us

to estimate the preferred value.

Our results for the ODT are sensitive to the effects of finite sim-

ulation box size upon the free energies of both the disordered and

ordered phases. In the disordered phase, because there is a finite

correlation length, finite size effects can be made exponentially

small by making the box larger than the correlation length. In

any ordered phase, because there is infinitely long range periodic

order, the boundaries can always “communicate” via the impo-

sition of a strain that propagates through the entire simulation

box. This strain can be completely removed, however, by making

the periodic simulation unit cell commensurate with the preferred

domain spacing of the ordered structure. In a finite but perfectly

commensurate simulation cell, there also would be shorter range

correlations for fluctuations of the composition field about its av-

erage, i.e., for the fluctuations that are measurable experimen-

tally as the diffuse scattering that is superimposed on the Bragg

peaks. In order to suppress such effects in an ordered phase,
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Fig. 5 (a) Structure factor, S(q) as a function of the non-dimensional

wave vector, qb, for the four commensurate systems in the ordered phase

at χN = 43. The inset shows the scaling between the peak in structure

factor, S(q∗) and system volume, L3. (b) Inverse of the peak in the struc-

ture factor, NS−1(q∗), as a function of the segregation strength, χN, for

the complete heating run. The inset shows the variation of inverse of the

peak of the structure factor in the ordered phase.

the simulation cell must both be commensurate and large enough

to suppress finite size effects arising from remaining composition

fluctuations about the average periodic field. Even if the box is

not perfectly commensurate, simulations on boxes with the same

degree of strain (i.e., the same ratio of the imposed layer spacing

to the preferred value) should yield equivalent results if the box

is large enough to avoid finite size effects arising from spatially

correlated fluctuations about the average. The close agreement

that we get for values of the ODT for nearly-commensurate sys-

tems having same layer spacing but different integer numbers of

layers demonstrates that finite size effects arising from spatially

correlated fluctuations are already small in both phases for the

box sizes considered here.

We have also demonstrated that, for nearly-commensurate sys-

tems, the dependence of the width of the hysteresis loop with

changes in system size at constant heating and cooling rate are

primarily the result of increases in the value of χN at which the
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system spontaneously orders upon cooling. The values of χN at

which the system melts at a given heating rate appear to be al-

most independent of system size, when comparing systems with

the same layer spacing. This suggests that the true ODT lies close

to the apparent melting transition.

The approaches described in this paper are general, and can be

applied to other choices of simulation model and chain length.

By performing a few simulations at small L for some value of N

(and, in principle, f ) and obtaining the selected domain spacing

at these values of L, we can quickly estimate the preferred do-

main spacing, and then design nearly commensurate systems for

further investigation, thereby circumventing a potentially expen-

sive, trial-and-error process. Though this strategy can be applied

to either lattice or off-lattice simulations, it is particularly useful

for lattice simulations because of the inapplicability of approaches

that use a deformable unit cell. We thus anticipate that the strat-

egy outlined here will increase the appeal of lattice simulations

of block polymers, and will be useful in quantifying the role of

fluctuations in the phase behavior of diblock copolymers.
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