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We show that the universal behavior of the Rouse-modes relaxation in polymer

systems –which has been recently reported from experimental data [S. Arrese-Igor

et al., Phys. Rev. Lett. 113, 078302 (2014)]– can be quantitatively explained

in the framework of a theoretical approach based on: (i) a generalized Langevin

equation formalism and (ii) a memory function which takes into account the coupling

between intra-chain dynamics and collective dynamics. This approach opens the way

of generalizing the magnitudes probing chain dynamics in polymer systems.
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Large-scale motions of macromolecular chains are unique dynamic processes of melts of

polymer systems, which drive the viscoelastic properties of such materials. The theoretical

description of chain dynamics is usually carried out in terms of the so-called Rouse modes

and the Rouse-modes correlation functions1. If we consider a macromolecular chain com-

posed by N beads of equal mass, the Rouse mode X⃗p(t) of index p = 1, ...,N − 1 is defined

as X⃗p(t) = ∑N
j=1 r⃗j(t) cos[(j − 1/2)pπ/N] with r⃗j being the vector giving the position of the

j-bead in the chain. The wavelength of this mode is given by N/p. On the other hand, the

Rouse-mode correlator Cp,q(t) is defined in the usual way as Cp,q(t) = ⟨X⃗p(t)X⃗q(0)⟩. The

Rouse model is nowadays the accepted theoretical framework for chain dynamics of unentan-

gled polymers and also for the short-time regime (times shorter than the so-called entangle-

ment time) of entangled polymers. This model fully neglects spatial and time correlations of

the stochastic forces1. These approximations yield, respectively, orthogonality of the Rouse

modes (Cp,q(t) ≡ 0 for p ≠ q) and exponential relaxation of Cp(t) = ⟨X⃗p(t)X⃗p(0)⟩. As con-
sequence, the magnitudes probing chain dynamics as, for instance, the correlation function

of the chain end-to-end vector or the neutron scattering functions are constructed in terms

of exponential Rouse mode correlators Cp(t)1. However, molecular dynamics simulations

use to show deviations from the exponential behavior of Cp(t), even in the long wavelength

(N/p) limit (p → 1) where local intrachain potentials and chain stiffness obviously do not

play any role2–5. These deviations are of particular relevance in the case of the so-called

dynamically asymmetric polymer blends, when the chain dynamics of the fast component is

monitored in the presence of the slow component (’matrix’)3,5. In a recent work6 the relax-

ation of the Cp=1(t) was experimentally isolated and observed for the first time by means of

the thermally stimulated depolarization current (TSDC) technique in different unentangled

polymer systems, including homopolymers and blends (see Ref.6 for information about the

2
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molecular mass). It was shown that Cp=1(t) deviates from the exponential behavior in all

systems as soon as the characteristic time of the relevant density fluctuations in the system

(τα) approaches the relaxation time of Cp=1(t) (τp=1). The deviations from the exponential

behavior were quantified in the usual way, by fitting Cp=1(t) by means of a stretched expo-

nential function Cp=1(t) ∝ exp[−(t/τp=1)β] with β < 1. The obtained values of β for the

different systems and the different temperatures showed a ’universal’ trend when they were

represented as a function of the ratio (τp=1/τα). These data are reproduced here in Fig. 1.

We remind that, as it was discussed in Ref.6, the range of log(τp=1/τα) ≤ 0 is only accessible

in the case of asymmetric polymer blends where τp=1 corresponds to the fast component in

the blend and τα to the slow component (matrix). Obviously this range is not accessible in

the case of a pure polymer where τα can never be longer than τp=1. In this communication

we show that this ’universal’ behavior can be quantitatively explained (see Fig. 1) in terms

of a theoretical approach based on the generalized Langevin equation (GLE) formalism and

a memory function which takes into account at microscopic level the effect of the coupling

between the collective dynamics of the system (’matrix’) and the dynamics of the tagged

chain (’probe’) for unentangled polymer systems.

In Ref.7 Schweizer proposed an approximated GLE treatment for a tagged chain in a

polymer melt, which included the approximation of isotropy. In the framework of this

simplified formalism, an integro-differential equation for the time evolution of the Rouse

correlator Cp(t) can be obtained7:

dCp(t)
dt

+ 1

ξ0
∫

t

0
dt′Γp(t − t′)dCp(t′)

dt′
= −Cp(t)

τ 0p
. (1)

ξ0 and τ 0p are respectively the ’bare’ constant friction coefficient and the relaxation time of

the p-Rouse correlator corresponding to pure Rouse behavior (exponential decay of Cp(t)).
3
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Then the memory function Γp(t) in Eq. 1 only contains the non-Rouse contributions, which

are related to the correlation function of the intermolecular forces acting on the tagged

polymer segment. In the long wavelength (N/p) limit (p → 1) and in the framework of a

’pseudo-Markov’ approximation7–9 the solution of Eq. 1 can be expressed as:

φp→1(t) = Cp→1(t)
Cp→1(0) = exp [−

ξ0

τ 0p
∫

t

0

dt′

ξ0 + ξ(t′)] , (2)

where ξ(t) = ∫ t

0
Γp(t′)dt′ is a time-dependent effective friction coefficient which does not

depend on N . The validity of this non-rigorous approximation10 in the framework of this

work will be discussed at the end of this paper. On the other hand, we note that Eq. 2 is only

a formal expression, which is a consequence of the approximations made but independent of

the particular form of Γp(t). Equations 1 and 2 define the formal framework of this work.

To solve Eq. 2 we would need to construct a microscopic model for the memory function

Γp(t) suitable for the problem we are considering. The starting point is the general expression

of the memory matrix elements Γm,n(t) ∝ ⟨FQ
m(0)FQ

n (t)⟩, which describes the dynamic

correlation of the intermolecular forces acting on segments m,n of the tagged chain at times

0 and t. Here, the upper index Q indicates that the time evolution of these magnitudes is

controlled by the so-called ’projected’ dynamics, i. e., by the propagator eiQLt, where L is a

Liouvillian taking into account all interactions and determining the real dynamics through

the propagator eiLt (see, e. g.7,12). Based on different assumptions, Schweizer7 proposed a

general memory function that, in principle, captures the effect of collective dynamics of the

matrix around the tagged chain:

Γp(t) = A∫ N

0
dλ cos(pπλ

N
)∫ σ−1

0
dkk4ω

Q

λ (k, t)SQ(k, t) . (3)

Here λ = ∣m − n∣; A ≡ kBTρmd6g2(d), where kB is the Boltzmann constant; ρm the matrix

segmental number density; d is the segmental hard core diameter defining the chain thickness;

4
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and g(d) the radial intermolecular distribution function averaged over all segments and

calculated at d. Moreover, σ is the statistical polymer segment length and N the number

of statistical segments (beads) in the chain. On the other hand, SQ(k, t) is the ’projected’

collective dynamic structure factor and ω
Q

λ (k, t) the ’projected’ intrachain dynamic structure

factor of the tagged chain. Here k is the momentum transfer (wavevector). Equation 3

reflects the fact that the above defined force time correlation function decays via both tagged

polymer and collective matrix projected dynamical motions. This general equation is our

starting point for evaluating Γp→1(t). For intermediate wavevectors R−1g << k << σ−1 (Rg

being the radius of gyration of the polymer chain) and times t < τR (τR being the Rouse

time), ωQ

λ (k, t) can be approximately expressed13 as ω
Q

λ (k, t) ≈ ω
Q

λ (k) exp [−k2

6
⟨r2(t)⟩Q],

where ⟨r2(t)⟩Q is the ’projected’ mean squared displacement of a polymer segment and

ω
Q

λ (k) for a Gaussian coil is given by ω
Q

λ (k) = exp (−k2σ2

6
λ). Taking into account that for

N >> 1, ∫ N

0
dλ cos (pπλ

N
) exp (k2σ2

6
λ) ≃ k2σ2/6

(k2σ2/6)2+(pπ/N)2 , in the long wavelength (N/p) limit

(p→ 1) and in the k-range of interest, Eq. 3 can be simplified as:

Γp→1(t) = 6Aσ−5∫ 1

0
dk̄k̄2 exp [− k̄2

6σ2
⟨r2(t)⟩Q]SQ(k̄, t) (4)

where k̄ is a dimensionless integration variable defined as k̄ = kσ. This equation for the

memory function is still ill-defined because, as it has been mentioned, it contains ’projected’

dynamic magnitudes instead of real ones. Thereby, in order to further evaluate Eq. 4,

we need to postulate a plausible (and mathematically tractable) approximation for these

magnitudes. To do that, first of all we will follow the essence of the so-called renormalization

Rouse model (RRM), which was proposed by Schweizer7 and later extended by Fatkullin

and coworkers (see, e. e., the review14). In that framework, the matrix polymer motions

are considered to be unaffected on relatively large length scales by the projection operation

5
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and thereby they follow their ’real’ dynamics. Thus, SQ(k̄, t) in Eq. 4 should be replaced

by the actual collective dynamic structure factor S(k̄, t). On the other hand, in the first

formulation of Schweizer, it was assumed that the ’projected’ mean squared displacement

of the probe segment ⟨r2(t)⟩Q evolves following the actual Rouse behavior. Later, Fatkullin

and coworkers introduced the concept of n-RRM, in which ⟨r2(t)⟩Q is replaced by the actual

mean squared displacement obtained in the (n − 1)-RRM. As it is widely discussed in14,

there are some technical limitations how far one can go with this, in principle, iteration

strategy. This fact limits in practice the renormalization procedure to n ∈ [1,2,3]. In any

case, it is worthy of remark that, as it is recognized in14, ’the renormalization procedure in

general is nothing more than a heuristic way of closure the equations of motion’ –a general

and extremely difficult problem for systems with strong interactions. Then, the use of a

renormalization ansatz with a given value of n, should be considered as a type of modeling,

which, at the end, is only justified at phenomenological level, i. e., by the success of describing

experimental findings. Schweizer7 and Fatkullin and coworkers14 applied this formalism

trying to understand from a microscopic point of view the effect of entanglements in the

long-time behavior of chain dynamics of high-molecular weight polymers –a problem different

from that we are discussing here. In such an application, they assumed the same ’projected’

dynamics for both, intra-chain motions of the probe and collective dynamics of the matrix.

This approximation seems to be not suitable, at least for the problem discussed in this work

(see, e. g.,15 for a general critical discussion of such a procedure). Then, here, keeping in

mind the essence of the RRM, we will also replace the ’projected’ collective dynamics by the

actual one but without the approximation above mentioned. Instead of we will use the ansatz

recently proposed for describing the collective dynamics at ’intermediate length scales’ [i. e.,

k-values lower than that at the first maximum of S(k)] of glasses16 and polymers17,18. We

6
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note that in the case of polyisobutylene (PIB)17,18, this ansatz was able to describe not only

neutron scattering data (k ≳ 0.2 Å
−1
), but also light scattering results (k ∼ 10−3 Å

−1
). In

the case of polymers and in the k-range of interest here (R−1g < k < σ−1) the collective

dynamic structure factor S(k, t) in the framework of this ansatz can be approximated by

S(k, t) ≃ S(0) exp[−(t/τc)0.5] where the collective time, τc, results to be approximately

k-independent and given by τc = (ML/Kbulk)τα16–18. Here Kbulk is the bulk modulus and

ML the longitudinal elastic modulus. The time τα is an alpha (structural) relaxation time

corresponding to a k ≈ 0 correlation function. In Refs.17,18 it has been shown that this

time can be identified with the α-relaxation time associated to a dielectric or viscoelastic

response. We note that the time τα used in ref.6 for calculating the ratio τp=1/τα (see Fig. 1)

was just the α-dielectric time. On the other hand, the factor ML/Kbulk should be of the

order of 1 for most unentangled polymer melts. Here, following the work reported in Ref.18

for PIB, we will assume τc ≈ 2τα. Then, in Eq. 4 SQ(k̄, t) will be approximated by

SQ(k̄, t) ≃ S(0) exp{−[t/(2τα)]0.5}. As τα is k̄-independent, Eq. 4 can be written as:

Γp→1(t) = 6Aσ−5S(0) exp [−( t

2τα
)0.5]∫ 1

0
dk̄k̄2 exp [− k̄2

6σ2
⟨r2(t)⟩Q] . (5)

Now, concerning ⟨r2(t)⟩Q, we can first consider what we will call the static limit, i. e., the

range where τα is very large and thereby S(k̄, t) ≈ S(0). In Fig. 1, this limit corresponds

to the lower values of log(τp=1/τα) where the β-values corresponding to φp→1(t) are of the

order of 0.4. For the static limit, the time dependence of Eq. 5 only enters via ⟨r2(t)⟩Q.
Then this is formally equivalent to the situation described by Schweizer7 and Fatkullin and

coworkers14 in the framework of the n-RRM approach above mentioned. Therefore we will

calculate Γp→1(t) in the static limit (Γs
p→1) by the n-RRM methods but in the framework of

7
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our approximations. ΓnRR
p→1 (t) can be expressed (see Supplemental Material) as:

ΓnRR
p→1 (t) ≃ C

⎡⎢⎢⎢⎢⎣
τ
(n−1)RR

p=1

t

⎤⎥⎥⎥⎥⎦
(3/4)n

(6)

with C = (3/2)9(3/4)π(11/4)AS(0)σ−5N−3/2 and n ∈ [1,2,3]. In this expression, τ
(n−1)RR

p=1

means the characteristic time corresponding to p = 1 (i. e., the Rouse time) for the (n − 1)-
RRM. We note that ΓnRR

p→1 (t) is an inverse power law of time ΓnRR
p→1 (t) ∝ (1/t)β with β =

(3/4)n. For such a case, we know7–9 that the solution of Eq. 2 for t >> tc (tc being a

crossover time defined by the condition ξ(tc) ∼ ξ0) is a stretched exponential function φp→1 =
exp[−(t/τp=1)β]. As in the static limit β ∼ 0.4 (see Fig. 1), it seems that the suitable n-RRM

memory function for modeling such a limit should be that corresponding to n=3, Γ3RR
p→1 (t)

(β=27/64∼0.42). Then we will consider that in the static limit Γs
p→1(t) ≡ Γ3RR

p→1 (t). According
to Eq. 6, the characteristic time that enters in Γ3RR

p→1 (t) is τ 2RR
p=1 . This time can be expressed in

terms of τ 0p=1 (see Supplemental Material) as τ 2RR
p=1 = τ 0p=1(3/7)16/9a7/3, where a is a structural

parameter given by a = (93/4π3/4ΨN1/2/4)4/3. Here Ψ is a dimensionless parameter defined

as Ψ ≡ 6ρmd6σ−3g2(d)S(0), which –according to numerical RISM calculations for Gaussian

chains with d = σ19– results to be Ψ ∼ 0.72. Then, taking into account Eq. 6 for n = 3,
Γs
p→1(t) ≡ Γ3RR

p→ (t) can be written as: Γs
p→1 ≃ b(τ 0s t−1)27/64 where b = (3/7)3/4Ca63/64N27/32

and τ 0s ≡ τ 0p=1N−2 is the shortest time corresponding to pure Rouse behavior of the tagged

chain (τ 0s is usually known as the ’segmental time’). Now, according to Eq. 5 the memory

function for the general case would be Γp→1(t) ≃ exp{−[t/(2τα)]0.5}Γs
p→1(t) which can be

written as

Γp→1(t) ≃ b(τ 0s
t
)27/64 exp [−( t

2τα
)0.5] (7)

Taking into account the N -dependence of C and a, it can be shown that b results to be

8
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N -independent. Thereby, Γp→1(t) only depends –apart from structural parameters– on two

relaxation times: τ 0s and τα. We note in passing that, although τ 0s is in some way a local

(segmental) time, it corresponds by definition to pure Rouse behavior. Then, its temperature

(T ) dependence is determined by the same intermoleculaer interactions (friction) driving

τ 0p=1(T ). This is not necessarily the case of τα(T ), where local intra-chain potentials can

also play a role. Moreover, for the case of dynamically asymmetric blends, τ 0s corresponds

to the chain dynamics of the fast component and τα to the collective dynamics of the slow

component (matrix). Now, by using Γp→1(t) given by Eq. 7 in Eq. 2 we can finally calculate

φp→1(t) in the time range t >> tc. It is straightforward to show that in this range Eq. 2 can

be approximated by

φp→1(t) ≃ exp [−Ξ∫ t

0

dt′

ξ̃(t′)] . (8)

with Ξ ≈ 3π−7/4Ψ−7/3N−2 and

ξ̃(t) = ∫ t

0
dt′ (τ 0s

t′
)27/64 exp [−( t′

2τα
)0.5]. (9)

Equations 8 and 9 allow numerically computing φp→1(t) for a generic case. This can be

defined for instance by the following values of the parameters involved in Ξ and ξ̃(t):
τ 0s=3.75×10−2 ns; τα ranging from 1.2×10−3 ns to 5×108 ns; N=20; and Ψ=0.72 (see above).

Some representative results obtained for φp→1(t) are displayed in Fig. 2. This figure also

includes the fitting curves obtained by fitting φp→1(t) by a stretched exponential function

φp→1(t)) = exp[−(t/(τp=1)β] as it was done for the experimental data of φp→1(t) reported in6.

Figure 2 shows that, for fixed N , the shape and the time scale of φp→1(t) depend on the

values of τα with respect to that of τ 0s .

From the fitting of the φp→1(t) curves of Fig. 2 (and others not shown in the figure) we

have obtained the values of the two fitting parameters τp=1 and β. Taking into account the

9

Page 9 of 18 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



values of the input parameter τα, we can now check whether our theoretical results reproduce

the ’universal’ trend of β as a function of τp=1/τα shown in Ref.6 and reproduced here in

Fig. 1. This figure shows that our theoretical curve (continuous line) almost quantitatively

describes the ’universal’ behavior’ displayed by both experimental and simulated data. We

note that changing the input parameters of the generic case (i. e., the values of τ 0s , τα and

N) we change the time scale and shape of φp→1(t) but we always find the same curve of β

as a function of τp=1/τα reproduced in Fig. 1. For instance, the behavior of the experimental

data shown in Fig. 1 suggests that even for fixed τ 0s and τα, the β-value obtained should

strongly depend on N because larger N -values would imply larger values of τ 0p=1 and τp=1 and

thereby larger values of τp=1/τα as well. This behavior is nicely reproduced by our theoretical

approach. By means of Eqs. 8 and 9 we have calculated φp→1(t), fixing the values of τ 0s and

τα (τ 0s=0.0375 ns; τα=1×103 ns) and changing the value of N in the range 5 ≤ N ≤ 200. The
obtained φp→1(t) are shown in Fig. 3 together with the corresponding stretched exponential

fitting curves. Not only the time scale (τp=1) but also the shape (β) clearly depend on N .

The values obtained for β are plotted in Fig. 1 as a function of the corresponding τp=1/τα.
These points nicely follow the theoretical curve above described. These results not only

mean a robust test of our theoretical approach but they also indicate that the relevant

parameter determining the value of β is the ratio τp=1/τα as it was suggested in Ref.6. In

the limit of (τp=1/τα) << 1 (only experimentally realizable in the case of dynamically

asymmetric blends) the density fluctuations of the matrix (slow component) are frozen in

the time scale τp=1. Then a tagged chain of the fast component is moving in a frozen

matrix. From the perspective of the memory function, this implies that in the relevant

timescale for tagged chain dynamics, Γp=1(t) reduces to an inverse power law function,

Γp=1(t) ∝ t−27/64 and thereby Cp→1(t) becomes a stretched exponential function with β

10
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= 27/64. As soon as the matrix density fluctuations start to relax in a shorter time scale

(τα), the forces on the tagged chain relax faster as well and thereby Cp→1(t) is getting less

and less non-exponential (β increases). In the limit (τp=1/τα) >> 1, we recover the Rouse

assumption of uncorrelation between forces and Cp→1(t) becomes purely exponential. It is

noteworthy that the experimental behavior of β as a function of (τp=1/τα) shown in Fig. 1

is a universal trend, which contains –encoded in the relevant parameter (τp=1/τα)– many

different experimental situations (different polymers, temperature, blend composition, etc).

The theoretical approach here proposed gives an explanation of this universal behavior in

terms of the physical picture described above and captures the relevance of the parameter

(τp=1/τα).
As it has been mentioned at the beginning, the theoretical approach proposed in his

work involves the use of the so-called pseudo-Markov approximation for obtaining Eq. 2

from Eq. 1. Although this procedure cannot be considered as rigorous, the results included

in the Supplemental Material (section III) show that it is a plausible approximation in the

framework of our assumptions: (i) long wavelength (N/p) limit; (ii) Γp=1(t) given by Eq. 7

and (iii) stretched exponential form for Cp→1(t). On the other hand, we can argue that the

ansazt used (RRM with n=3) to model the so-called static limit [(τp=1/τα) << 1] is only based

on phenomenological grounds. However, the question is that as far as to our knowledge,

there is not any other model that can address the rich phenomenology found in this regime.

This phenomenology is nowadays well-established thanks to the results obtained by exploring

the dynamics of the so-called dynamically asymmetric polymer blends (see e. g.3,5,6,20) and

references therein). In any case, we would like to emphasize that the essence of our approach

is the physical mechanism mentioned above and not the particular model used to describe

the static limit. For instance, if we use the 2-RRM instead of the 3-RRM, to fix the static

11
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limit we obtain a different value of β for this limit (β ≈ 0.56) but qualitatively a similar

β(τp=1/τα) behavior from this value towards 1 (see Fig. 1).
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FIGURE CAPTIONS

Figure 1: β-parameter corresponding to φp→1(t) as function of τp=1/τα. Symbols are

data from Ref.6: (∎) polyisoprene (PI), (⧫) polypropylene glycol (PPG), and (▼) polyethy-
lene oxide (PEO) homopolymers; (⊠) PI in PI-polyvinylethylene blends, (⊞) PI in PI-

polyterbutylstyrene blends, and (▲) PEO in PEO-poly(methyl methacrylate) blends. Con-

tinuous line is the theoretical curve for a generic case obtained in this work. The dotted

points along the line correspond to calculations with τ 0s and τα fixed and N variable (see

the text and Fig. 3). The dashed line also corresponds to this work but with a different

approach for the memory function in the ’static’ limit (see the text).

Figure 2: φp→1(t) obtained by solving numerically Eqs. 8 and 9 for a generic case (see the

text). The values of τα are indicated in the figure and follow the arrow. The value of τ 0s was

3.75×10−2 ns and N=20. The continuous lines are fitting curves by a stretched exponential

function.

Figure 3: φp→1(t) obtained by means of Eqs. 8 and 9 with fixed values of τ 0s (0.0375 ns)

and τα (1×103 ns) and the different values of N indicated in the figure (they follow the

arrow). The continuous lines are fitting curves by a stretched exponential function.
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