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Felix Verbücheln, Eric J. R. Parteli, and Thorsten P̈oschel∗

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the
transport direction. By means of particle-based numericalsimulations of gravity-driven flows in vertical pipes, we show that
it is possible to obtain steady material transport by addinga helical texture to the pipe’s inner-wall. The helical texture leads
to more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the
probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass fluxQ through a
pipe diameterD with an helical texture of wavelengthλ follows the equationQ= Q0 · {1−Bsin[arctan(2πD/λ )]}, whereQ0

is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of
the Beverloo equation with only one additional fit parameter, B, and describes the particle mass flux with the helical texture with
excellent quantitative agreement with simulation results. The future application of the method proposed here has the potential to
improve granular pipe flows in a broad range of processes without the need of energy input from any external source.

1 Introduction

The transport of a granular material in flow through a pipe is a
process of relevance for a broad range of scientific and techno-
logical areas1,2. One fundamental problem in such transport
is that the material flow is intrinsically unstable and character-
ized by large variations in solid fraction (density waves) along
the pipe3,4. These waves induce potentially destructive pres-
sure transients on the pipe’s inner-wall and provide the mech-
anism responsible for the intermittent behavior of the flow.

Although the dynamics of density waves in granular pipe
flows have been studied extensively in the past both exper-
imentally5–10 and through different types of models3,4,11–19,
it is still a challenging problem to control the mass flux of
the granular material flowing through a pipe. For example,
Zuriguel et al.20 showed how insertion of an obstacle just
above the outlet of a silo can significantly reduce the proba-
bility that the granular flow is arrested due to the formationof
an arch blocking the silo’s outlet20. However, most of the pro-
posed strategies to control the transport along the pipe involve
energy input from an external source, e.g. through application
of electric fields21 or mechanical perturbations1,22.

Here we demonstrate a method to homogeneize the mass
flux and avoid flow blockage in granular pipe flows without
necessity of applying any external source of energy to the sys-
tem. Our method consists of adding to the inner-wall of the
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pipe a helical texture, which leads to a more homogeneous
distribution of the particles within the pipe thus avoidingthe
formation of stable plugs. By means of particle-based numer-
ical experiments, we will show that it is possible to achieve
flows with prescribed characteristics regarding the particle dis-
tribution within the pipe and the mass flow rate of the granular
material by adjusting the geometric properties of the helix-
shaped texture.

2 Numerical experiments

We simulate the process using the Discrete Element Method
(DEM), that is, simultaneously solving Newton’s equationsof
translational and rotational motion for all particles. There is a
variety of models to describe the contact forces in DEM simu-
lations, which are suitable for different particle geometry and
material behavior23–26. In the present paper, we assume vis-
coelastic interaction in normal direction27 and apply a mod-
ified Cundall-Strack model28 for the tangential direction29.
The corresponding forces read

~Fn = min

(

0,−ρξ 3/2− 3
2

Anρ
√

ξ ξ̇
)

~en , (1)

where
ξ = R1+R2−|~r1−~r2| (2)

is the compression of particles of radiiR1 andR2 at positions
~r1 and~r2, and~en ≡ (~r1−~r2)/ |~r1−~r2| is the normal unit vec-
tor. The elastic parameter of Eq. (1),ρ , is a function of the
Young’s modulus,Y, the Poisson’s ratioν , and the effective
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radiusReff ≡ R1R2/(R1+R2),

ρ ≡ 2Y
3(1−ν2)

√

Reff, (3)

while the dissipative parameter,An further depends on the ma-
terial viscosities27. While ρ can be computed directly from
material properties which are easily available for a variety of
materials, the viscosities needed forAn are not directly avail-
able. To determineAn, therefore, we use a relation between
the coefficient of restitution,ε, for the collision of two iso-
lated particles, the pre-collisional velocity of these particles,
vimp, andAn

30–32, where the Pad́e approximation is employed
as described elsewhere33.

The tangential force reads29

~Ft =−min



µ
∣

∣

∣

~Fn

∣

∣

∣
,
∫

path

4G
2−ν

√

Reffξ ds+At

√

Reffξvt



~et , (4)

whereµ is the Coulomb friction coefficient andG is the shear
modulus, which is given by the equation, 2G = Y/(1+ ν).
The integral in Eq. (4) is performed over the displacement of
the particles at the point of contact for the duration of the con-
tact28. Moreover,~vt = vt~et stands for the relative tangential
velocity at the point of contact, where~et is the correspond-
ing unit vector. The tangential dissipative parameter,At , char-
acterizes the surface roughness and is chosen such that the
prefactors of the normal and tangential deformation rates (ξ̇
andvt) in Eqs. (1) and (4), respectively, are of the same order
of magnitude34. Using this assumption, previous authors35

found excellent agreement between simulation results and ex-
perimental values of particle velocity profiles in a gravity-
driven shearing experiment. By comparing Eqs. (1) and (4),
we obtainAt ≈ AnY/(1−ν2).

The integration was performed using LIGGGHTS29, while
the values of the model parameters are listed in Tab. 1. The
equations used for computing the forces between particles and
the internal (frictional) wall of the cylinder are the same used
for modeling particle-particle collisions where one of thecon-
tact partners is of infinite mass and radius. Moreover, in order
to compute the viscoelastic constantAn using an analytical
model33, we assume a coefficient of restitutionε ≈ 0.5 as-
sociated with a pre-collisional velocityvimp ≈ 1.0m/s, which
is of the same order of the average axial particle velocities
found in our simulations as discussed below. Using these pa-
rameters and the material properties specified in Tab. 1, we
obtain An ≈ 7.3× 10−6 and At ≈ 775.9 for particle-particle
collisions, while for particle-wall collisions these values are
An ≈ 8.4×10−6 andAt ≈ 891.3.

The integration time step∆t must be small enough to ac-
curately solve Newton’s equations for the particle interaction.
For undamped collisions, the durationTcol of the collision can

Table 1Numerical values of the parameters used in the simulations.

parameter symbol value
particle material density ρp 2650 kg/m3

particle diameter d 1.2mm
Young’s modulus Y 108 Pa
Poisson’s ratio ν 0.24
Coulomb’s friction coefficient µ 0.5
pipe length L 1m
timestep ∆t 6×10−7s

be estimated using the equation23,

Tcol ≈ 3.21(Meff/ρ)2/5 ·v−1/5
imp , (5)

whereMeff = m1m2/(m1+m2) with m1 andm2 standing for
the masses of the interacting particles. Typically a timestep
smaller than aboutTcol/50 is recommended36. Since the col-
lision time Tcol computed using Eq. (5) with the material
properties specified above is about 50µs, we use here∆t ≈
6×10−7s, which is below the recommended upper bound for
∆t mentioned above.

The pipe has a circular cross-section of diameterDmm and
its length isL = 1m. At timet = 0, N particles are placed at
random positions within the pipe, whereN is chosen such that
the sum of the volumes of all particles amounts to a prescribed
fractionVφ of the pipe volume. The initial velocity of the par-
ticles in radial direction is chosen randomly between−vr and
vr , with vr = 0.01 m/s, while the particles have vanishing ini-
tial velocity in the axial direction (vz = 0). Periodic bound-
ary conditions are applied in the vertical (z) direction. We
have performed simulations with pipes longer thanL = 1m
and found that the results presented in the next Section with
this value ofL are not affected by finite size effects. That is,
increasing the length of the pipe does not change the results.

3 Results and Discussion

We perform simulations using a constant particle diameterd
as specified in Table 1 and different values of pipe diameterD.
We find that the flow behavior depends fundamentally on the
pipe to particle diameter ratioDφ ≡ D/d. ForDφ > 3 the flow
is intermittent and characterized by acloggingregime where
the average particle velocity in the vertical direction is nearly
constant (Section 3.1). ForDφ . 3 jammingoccurs thus lead-
ing to blockage of the granular flow (Section 3.2). Following
the discussion of these distinct flow regimes we show in Sec-
tion 3.3 that adding a helical inner-wall texture leads to a more
homogeneous solid fraction distribution along the pipe thus re-
ducing the occurrence of clogging and preventing the flow to
jam.
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3.1 Clogging regime

Fig. 1a shows the evolution of the total kinetic energy of par-
ticles flowing through a vertical pipe withDφ = 4. Since the
initial particle velocities in the radial direction are small, the
particles fall freely under the action of gravity during an initial
time before colliding with the inner wall of the pipe. Colli-
sions between the particles and between the particles and the
wall lead, then, to deceleration of the particles and a decrease
in the kinetic energy of the system. After a transient time, the
energy gain of the particles due to gravity is nearly compen-
sated by the energy dissipation due to collisions such that the
total kinetic energy fluctuates around a constant value. The
spatio-temporal image of the volume fraction along the tube
(Fig. 1b) shows the emergence of density waves3, with the
development of recurrentclogging characterized by the for-
mation of plugs, that is regions with high packing fraction
(thick dark lines in Fig. 1b) which can either converge or di-
verge with time. The flow is inhomogeneous and associated
with strong fluctuations of particle average velocities andsolid
fraction both in time and position along the pipe.

Fig. 1c shows the spatio-temporal image of the area-
integrated particle mass flux per unit time along the tube. This
flux is defined as,

ṁ(t,z) = ρpϕ(t,z) [vz(t,z)]πD2/4, (6)

whereϕ(t,z) andvz(t,z) are the packing fraction and the av-
erage particle velocity in the vertical direction, respectively, at
time t within the volume element[z+dz]πD2/4. The proba-
bility density distributionf (ṁ0) of the mass flux ˙m0 ≡ ṁ(t,0)
at the bottom of the pipe, that is atz= 0, is shown in Fig. 1d.
We see thatf (ṁ0) can be well described by a lognormal distri-
bution (fit represented by the dashed line in Fig. 1d). The ex-
pectation value of this distribution is around 0.0092kg/s and
nearly equals, thus, the value of mass flux associated with plug
flow, denoted by the thick bright meandering lines in Fig. 1c.

Moreover, the thinner lines in the spatio-temporal plot of
Fig. 1c denote faster moving particle groups and are associated
with different solid fractions, as can be seen from Fig. 1b. In-
deed, these lines denote smaller particles groups which occur
in-between the plugs during the intermittent flow. Since these
thinner lines align nearly paralell to each other, we conclude
that the small interplugs particle groups move all with nearly
the same average axial velocity down the pipe, independently
of the value of solid fraction. Among these smaller groups,
the ones with the lowest (highest) values of packing fraction
are associated with the smallest (largest) values of mass flux
— that is to the thin green (red) lines — in the spatio-temporal
diagram of Fig. 1c. In other words, the left (right) tail of the
probability density distribution in Fig. 1d incorporates the flux
due to the small inter-plugs particle groups with the lowest
(highest) solid fractions, whereas it is the flux due to plug flow

Fig. 1 Granular flow through a pipe withDφ = 4 (clogging regime).
(a) Total kinetic energy of the particles as a function of time; (b) and
(c) spatio-temporal images of the packing fraction and mass flux,
respectively, along the tube; (d) density distribution of the
time-averaged mass flow. The slope of the line at the lower right
corner indicates the average axial velocity of the particles.
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that dictates the expectation value of this distribution.
We have calculatedf (ṁ0) for different values ofDφ within

the range between 3.5 and 7.0. Fig. 2a shows the respective
distributions. We see that both the distribution width and ex-
pectation value increase with the diameter ratioDφ . Indeed,
for given particle size and volume fraction, both the particle
number and average axial velocity — and thus also the aver-
age mass flux — increase withDφ . Also the distance between
plugs increases with the diameter ratioDφ , which means that
the small inter-plugs particle groups can accelerate the longer
the larger the pipe diameter.
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Fig. 2 Dependence of the mass flux on the pipe to particle diameter
ratioDφ . The particle diameter isd = 1.2mm. (a) Probability
density distribution of the mass flux for different values ofDφ .
Symbols denote simulation results, lines denote fits to the data using
lognormal distributions; (b) expectation value of the mass flux as a
function of the pipe diameterD. Circles denote simulation results,
the solid line corresponds to the best fit to these data using Eq. (7),
which givesA≈ 1.09 andk≈ 0.59, with correlation coefficient
R2 ≈ 0.998.

Moreover, in Fig. 2b we see the time-averaged flux, that is
the expectation valueQ0 = 〈ṁ0〉 as a function of the pipe di-
ameterD as obtained from the simulations (circles). Note that
this mean flux can be written asQ0 = jA, whereA= πD2/4 is
the area of the pipe cross-section andj = 〈vz〉ρpVφ is the aver-

age flux density, with〈vz〉 denoting the average axial particle
velocity. A scaling between〈vz〉 and the pipe diameterD can
be obtained by noting that the average flow rate is dictated by
the behavior of grains within the plug zones37. Each plug zone
is associated with the formation of an unstable arch, the height
of which should scale withD. Particles falling after the break
of an arch can accelerate freely due to the action of gravity
thus leading to a scaling of〈vz〉 with

√
D37. Therefore, a scal-

ing of Q0 with D5/2 is expected. This scaling indeed governs
the mass flux of a granular material flowing out a silo through
an orifice of diameterD, which follows the well-known Bev-
erloo equation20,37–42,

Q0 = Aρp
√

g · (D−kd)2.5, (7)

where the coefficientsA andk must be determined from the fit
to the data. Such a scaling captures well the dependence of the
mass flux on the pipe diameter observed in our simulations —
the best fit to the simulation data is denoted by the continuous
line in Fig. 2b.

It is important to remark that, in the regime of small pipe to
particle diameter ratiosDφ investigated here, the distribution
of the flow along the pipe may be strongly affected by geo-
metric effects as the number of possible arrangements of the
particles along the cross section of the pipe affects the proba-
bility of the formation of a stable arch (see Section 3.2). Such
geometrical effects may influence the width of the probabil-
ity density distribution curves in Fig. 2a as the value ofDφ is
changed — for instance, we see that forDφ = 5.5 the distribu-
tion is narrower than forDφ = 6.0 and 5.0. However, we find
that the mass flux increases monotonically withDφ as it can
be seen in Fig. 2b.

3.2 Jamming regime

The flow characteristics described above, with constant aver-
age particle velocity and the formation of density waves along
the pipe, persist over the entire simulation time, which was
larger than 1000s (real time of the physical system), for all
values ofDφ > 3. In consistence with previous studies43,44,
we find that, forDφ . 3, jammingoccurs thus leading to com-
plete blockage of the granular flow. As an example of the flow
in the jamming regime, we show in Fig. 3a the spatio-temporal
diagram of the packing fraction forDφ = 2.5. As we can see
in this figure, after about 1.8s, a large, stable plug is formed,
which corresponds to the dark horizontal lines in the spatio-
temporal diagram. Indeed, this plug does not break up with
the impacts of the smaller particle groups that fall onto it.In
order words, the frictional forces that yield the archs leading
to plug formation3 are strong enough to sustain the downward
pressure on the granular column.

Our simulations show that, although the criticalDφ ≈ 3.0
below which complete blockage occurs is robust with respect
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Fig. 3 (a) Cumulative distribution of the numbernjam of jammed
simulations withDφ = 2.5 (jamming regime) as a function of time
for different values ofVφ ; (b) njam as a function of the rescaled time
(t − t0)/τ, wheret0 andτ are the times at whichnjam is equal to
0.1% and 50%, respectively. The continuous lines in the upper and
lower insets denote fits to the simulation data usingt0 = a0V

−2
φ and

τ = aτ , which givea0 ≈ 0.012s, with correlation coefficient
R2 ≈ 0.98, andaτ ≈ 1.6s.

to the filling volume of the particles relative to the pipe vol-
ume,Vφ , the time needed for the blockage to occur depends on
this parameter. To quantify this dependence, we perform 100
numerical experiments for each value ofVφ usingDφ = 2.5
which is within the jamming regime. Fig. 3b shows the re-
sulting normalized cumulative distribution of the number of

jammed simulations,njam as a function of time.
We see thatnjam is shifted to the left asVφ increases, which

means that, statistically, the flow jams the earlier the largerVφ .
In order to collapse all curves, we first calculate the timet0 at
which njam becomes larger than 0.1%. This time is shown as
a function ofVφ in the upper inset of Fig. 3b (circles). A fit
to the data usingt0 = a0V

−2
φ , denoted by the continuous line,

givesa0 ≈ 0.012s. The main plot of Fig. 3c showsnjam as a
function of (t − t0)/τ, whereτ is the time required for 50%
of the simulations with a givenVφ to jam. As we can see in
the lower inset of Fig. 3c, this characteristic time (τ ≈ 1.6s) is
nearly independent ofVφ .

These results can be understood by noting that the jam-
ming probability increases with the probability that a stable
arch along the cross section of the pipe is formed (and thus
with Vφ ). This probability further depends onDφ , which
controls the number of possible configurations of particles
arrangements along the pipe’s cross-section. For a constant
Vφ = 0.175, we computenjam for different values ofDφ = 2.5,
2.6, 2.7, 2.8, 2.9 and 3.0 (see Fig. 4a). We see that forDφ

Fig. 4 (a) Cumulative distributionnjam as a function of time for
different values ofDφ and for constantVφ = 0.175. Note that the
time is in thelogarithmicscale; (b)−(d) show two-dimensional
arrangements of particles along the cross section of the pipe with
diameter ratiosDφ = 2.5, 2.9 and 3.0, respectively.

within the range 2.5 ≤ Dφ ≤ 2.9 the flow jams earlier the
smallerDφ , whereas this trend ofnjam with Dφ is not obeyed
by the curve corresponding toDφ = 3.0. The latter curve
shows the largest jamming times among allDφ in Fig. 4. To
understand these results we consider the two-dimensional ar-
rangements depicted in Figs. 4b-d. ForDφ = 2.9 (Fig. 4c) the
probability of stable arch formation is larger than forDφ = 2.5
(Fig. 4b), because in the former there is a higher probability
to obtain a particle chain with a larger inter-particle contact
area and thus a larger tangential force counter-balancing the
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particle weight. However, a linear arrangement of the parti-
cles paralell to the cross-section of the pipe can be reachedfor
Dφ = 3.0 (Fig. 4d), which dramatically decreases the proba-
bility of stable arch formation. Of course a much larger num-
ber of configurations is possible consideringDφ > 3.0 and
three dimensional arrangements. However, although we in-
deed did not observe complete flow blockage forDφ > 3.0, the
flow in this regime is intermittent and characterized by density
waves and intermittent transport as discussed in Section 3.1
and demonstrated previously3,4.

Therefore, in the following our aim is to develop a method
to homogeneize the flow thus avoiding the formation of den-
sity waves that lead to jamming in granular pipe flows.

3.3 Flow homogeneization by means of helical inner-wall
texture

Experiments aiming at reducing erosion damage from slurries
in pipeline bends45 showed that pipes which encourage swirl
can get particles into suspension at lower pumping power and
pressure drop than a round duct. Inspired by this observation,
we investigate the vertical flow of a granular material down a
pipe of circular cross-section that has a helical inner-wall tex-
ture as depicted in Fig. 5a. This texture is constituted of small
beads of diameterds=D/10, which are fixed to the inner-wall
of the pipe and have the material properties listed in Table 1.
Each constituent bead is fixed to the wall at its center such that
half hemisphere of each bead is within the inner volume of the
pipe. The diameter of the pipe in the presence of the helix is
adjusted such that the total volume within the pipe is the same
as in the simulations without the texture elements.

Fig. 5b shows the spatio-temporal diagram of the packing
fraction for the flow within a pipe withDφ = 2.5 and using
the same parameters as in the simulation of Fig. 3a. As we
can see jamming does not occur in such a pipe in the pres-
ence of the helical texture. A steady downward flow of the
granular material is observed, whereas the particles are more
homogeneously distributed throughout the pipe compared to
the simulations without the helical texture. Such improvement
is observed without regard of the average radial velocity of
the particles. Indeed, in Figs. 6a and 6b we show the spatio-
temporal diagrams of the packing fraction without and with
helix texture, respectively, for the same pipe diameter butfor
an order of magnitude larger initial radial velocity. We see
that the thick dark lines in the diagram of Fig. 6a are absent
from the simulation with the helix texture (Fig. 6b). The flow
in presence of the helix takes place through smaller particle
groups rather than through large plugs as in the conventional
duct. This result can be understood by noting that, as the par-
ticles collide with the beads fixed on the inner-wall, they are
deflected to the center of the pipe, thus hindering the formation
of archs. Moreover, collisions between particles and the beads

Fig. 5 (a) Flow of granular particles (blue) through a vertical pipe
with Dφ = 2.5 to which the helical inner-wall texture (constituted by
the red beads) is applied. Initial maximal radial velocity is
vmax

r = 0.01m/s as in Fig. 3; (b) corresponding spatio-temporal
diagram of the solid fraction along the axial position. The slope of
the line at the lower right corner indicates the average axial velocity
of the particles.

of the helix reduce the average axial velocity of the particles,
whereas an increase in the mean radial velocity is observed
(cf. Figs. 6c, 6d). Therefore, by introducing the helical texture
of Fig. 5a, jamming can be prevented at the cost of a lower
rate of particle flux down the pipe.

We find that the average mass flux depends significantly on
the wavelength of the helix,λ . To illustrate this dependence,
we show in Fig. 7 the spatio-temporal plots of the solid frac-
tion for different values ofλ obtained in a simulation with
Dφ = 3.5 (which corresponds to the clogging regime described
in Section 3.1). We see that the thick lines associated with the
plugs in Fig. 7a give place to an increasingly more homoge-
neous flow asλ decreases (cf. Figs. 7b-d). From the slope of
the lines in the different spatio-temporal diagrams, we also see
that the average particle axial velocity increases withλ . This
result can be further seen from Fig. 8, which shows the prob-
ability density functionsf (ṁ0) of the mass flux ˙m0 (cf. Sec-
tion 3.1), for different values ofλ . As λ decreases,f (ṁ0)
approaches a Gaussian shape, that is, it becomes more sym-
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Fig. 6 Granular flow through a pipe withDφ = 2.5 and
vmax

r = 0.1085m/s. (a) Spatio-temporal plot of the solid fraction
along the pipe without helix; (b) same plot for simulation with the
helix; corresponding average values of the radial (c) and axial (d)
velocities along the pipe,〈vr 〉 and〈va〉, respectively. The slope of
the line at the upper right corner in each plot indicates the average
axial velocity of the particles.

Fig. 7 (a) Spatio-temporal plots of the solid fraction along a pipe
with Dφ = 3.5 and without helix; the subsequent figures show the
same plots for simulations with an helix of wavelengthλ = 1m (b),
50mm (c) and 12.5mm (d). The slope of the line at the upper right
corner in each plot indicates the average axial velocity of the
particles.
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Fig. 8 Probability density distribution of the mass flux through a
pipe withDφ = 3.5 (that is, pipe diameterD = 4.2mm) for different
values of the helix wavelengthλ .

metric, while the expectation valueQ= 〈ṁ0〉 of the mass flux
also decreases.

In order to quantitatively describe the effect of the helix
wavelength on the mass flux, we first note that in the steady-
state, the gain in momentum of the particles due to gravity
is fully compensated by the momentum loss due to collisions
with the pipe’s inner-wall as well as with the other particles. In
the presence of the helix, there is an additional contribution to
the rate with which axial momentum is dissipated. This con-
tribution, ṗdiss,helix, is due to collisions of the particles with
the beads composing the helix. It is reflected by a relative de-
crease in the magnitude of the steady-state axial velocity of
the particles, compared to the value without helix, as depicted
in the example of Fig. 6d. Therefore, the steady-state fluxQ
in the presence of the helix relates to the fluxQ0 without helix
through the expression

Q= Q0−Qdiss,helix, (8)

whereQdiss,helix is the amount by which the steady-state axial
mass flux is reduced when the helical texture is present.

In the small pipe to particle diameter ratio investigated here,
it is reasonable to assume that the average mass flux in the
axial direction is proportional to the average axial momen-
tum of the particles, and thatQdiss,helix is nearly proportional
to ṗdiss,helix. As a result of particle-helix collisions along the
pipe, the particles are deflated to the pipe’s central axis which
is why there is an increase in the average radial momentum
when the helix is present (see Fig. 6c). However, we note
that due to symmetry, for any radial direction, the contribu-
tion of the collisions to increasing the radial momentum at
the upper half of one helix wavelength is the same as at the
lower half. For a given pipe diameterD and an helix wave-
lengthλ made up ofns beads, the collisions between particles
with ns/2 beads from the upper and lower hemispheres (halve-

wavelengths) deflate the particles inoppositedirections. We
thus need to calculate the rate with each the particles gain ra-
dial momentum due to collisions with one single hemisphere.
The total rate is then twice the contribution from one halve-
hemisphere.

Fig. 9 represents both hemispheres unravelled from the
inner-wall as two right triangles, each with legsD and
λ/2. Note thatλ/2 is the length corresponding tons/2
beads, which is the contribution of each hemisphere to in-
crease the radial momentum along the pipe’s cross sec-
tion. Moreover, the rate of axial momentum dissipation
due to each hemisphere must scale withp⊥, the compo-
nent of the particles’ average axial momentump0 perpen-
dicular to the hypothenuse of each triangle. Each of both
hypothenuses in Fig. 9 encompassesns/2 beads correspond-
ing to one helix halve-wavelength. Therefore, ˙pdiss,helix ∝
2p⊥ = 2p0sin[ΘD,λ/2], where ΘD,λ/2 = arctan[πD/(λ/2)]
(see Fig. 9). Following our assumption thatQdiss,helix

Fig. 9 Schematic diagram displaying the average axial momentum
p0 and the equivalent angleΘD,λ/2 ≡ arctan[πD/(λ/2)], which
dictates the energy dissipation over one helix wavelength due to
collisions with thens/2 beads composing one halve-wavelength of
the helix. The componentp⊥ = p0sin[arctan[πD/(λ/2)]] is also
indicated. The horizontal arrows along the helix indicate the
direction from the helix to the central axis of the pipe.

should be proportional to ˙pdiss,helix, we can writeQdiss,helix ≈
2bQ0sin[arctan[πD/(λ/2)]] = 2bQ0 · [2πD/

√

λ 2+(2πD)2],
whereb is a parameter that encodes information on the dissi-
pative properties of the collisions. Thus, from Eq. (8),

Q
Q0

= 1−B·
[

2πD
√

λ 2+(2πD)2

]

, (9)

whereQ0 is the flux without helix and the constantB= 2b en-
codes information on energy dissipation due to collisions with
the helix. Thus, the value ofB should depend on the material
properties and particle diameter. To verify Eq. (9), we com-
pute the expectation value of the flux,Q =

∫

q fλ (q)dq as a
function ofλ , where fλ (q) is the probability density function
associated with the wavelengthλ as shown in Fig. 8. The re-
sult of this calculation is denoted by the symbols in the main
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plot of Fig. 10b, in whichQ appears rescaled withQ0. The
continuous line denotes the best fit using Eq. (9), which gives
B ≈ 0.74. As we can see from this figure, the agreement be-
tween Eq. (11) and the simulation results is excellent.

0 0.05 0.10 0.15 0.20

1/λ  [mm
−1

]

0,2

0,4

0,6

0,8

1,0

Q/Q0

0 0.05 0.10 0.15 0.20

1/λ [mm
−1

]

0,0

0,5

1,0

σ/
σ 0

(b)

Fig. 10 (a) Snapshots of simulations without helix and with helix of
wavelength valuesλ = 25mm and 6.25mm (from top to bottom).
Dφ = 3.5 and in the figures a 70mm long excerpt of the pipe is
shown. The small particles composing the helix are coloured black
and there are 44 of such particles per helix wavelength; (b) main
plot: expectation value of the mass fluxQ as a function of 1/λ ,
whereλ is the helix wavelength and the parameters are the same as
in Fig. 8. The flux is rescaled withQ0 ≈ 7.4×10−3kg/s which
corresponds to the calculation with no helix, or equivalentlyλ → ∞.
The continuous line corresponds to the best fit to the simulation data
using Eq. (9), which givesB≈ 0.75. Inset: non-dimensional
standard deviationσ/σ0 as a function of 1/λ , where
σ0 ≈ 2.5×10−4kg/s is the value ofσ with no helix. The
continuous line denotes the best fit to Eq. (10), which givesC≈ 0.9
with correlation coefficientR2 ≈ 0.983.

The inset of Fig. 10b shows the rescaled standard deviation
of the flux,σ/σ0, as a function of 1/λ , whereσ0 is the stan-
dard deviation obtained in the simulations without helix. The
value ofσ/σ0 gives a measure of the homogeneity of the flux
along the pipe — the smallerσ the more homogeneous the

flux. By fitting the simulation data using the equation

σ
σ0

= 1−C ·
[

2πD
√

λ 2+(2πD)2

]

, (10)

we obtainC≈ 0.9. This fit is denoted by the continuous line in
the inset of Fig. 10b. Therefore, both the flux and its standard
deviation can be obtained from the geometric parameters of
the helix using Eqs. (9) and (10), respectively.

Moreover, from Eq. (9) we obtain a modification of the Bev-
erloo equation (Eq. (7)) for the flow of particulate materials in
a vertical pipe of diameterD in presence of an helix of wave-
lengthλ . By replacingQ0 in Eq. (9) by the right-hand-side of
Eq. (7), we obtain,

Q= Aρp
√

g(D−kd)2.5 ·
{

1−B·
[

2πD
√

λ 2+(2πD)2

]}

. (11)

The circles in Fig. 11 show the mass flux as a function of
the pipe diameter obtained for a constant helix wavelength
λ = 25mm. The corresponding fit to the simulation data using
Eq. (11) is shown by the continuous line and givesA ≈ 4.2,
k ≈ 1.13 andB ≈ 1.05. We see that the agreement with the
data is very good. However, obviously Eq. (11) can only be

4 5 6 7 8
pipe diameter  [mm]

0,3

0,4

0,5

0,6

0,7

0,8

m
as

s 
flu

x 
[1

0-2
 k

g/
s]

simulation, λ = 25 mm

Eq. (11)

Fig. 11Expectation value of the mass flux as a function of the pipe
diameterD for simulations using an helical inner-wall texture with
λ = 25mm. The particle size isd = 1.2mm and the solid fraction
Vφ = 0.15 is the same as in Fig. 2 (which considers simulations with
no helix). Circles denote simulation results, and the continuous line
denotes the best fit to these data using Eq. (11), which givesA≈ 4.2,
k≈ 1.13 andB≈ 1.05, withR2 ≈ 0.976.

valid for the regime of small pipe to particle diameter ratios
investigated here. Indeed, the fit in Fig. 11 shows a maximum
at Dφ ≈ 6.5, and predicts negative flux values forDφ & 10.
Moreover, asλ → 0 the flux through the pipe must follow the
original Beverloo equation withQ0 corresponding to a pipe
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with no helix and diameterD−ds, whereds is the size of the
spheres constituting the helix. Further work is thus neededin
order to elucidate the dependence of the coefficientsA, B, C
andk on the number of helix beads per wavelengthλ , as well
as on the particles’ frictional and dissipation properties.

Our results raise the question whether other inner-wall tex-
ture geometries have a similar effect as the helical one. We
thus perform simulations usingVφ = 0.15 andDφ = 2.5 with
the helix geometry as well as with three further alternativetex-
tures (Fig. 12).

Fig. 12Alternative texture geometries: (a) rings, (b) randomly
distributed and (c) vertically aligned beads fixed on the inner-wall of
the pipe. The number of particles constituting the different textures
is the same as for an helical texture of wavelengthλ = 23mm.

The first of these alternative geometries consists of rings
disposed perpendicularly to the transport direction alongthe
pipe axis and with spacing equal toλ . Each ring is made
of the same type of beads that form the helix, and the num-
ber of beads in a ring is equal to the number of beads in one
wavelength of the helix (Fig. 12a). The spatio-temporal dia-
grams obtained with the helix and with the rings are shown in
Figs. 13a and 13b, respectively. We see that the texture made
of rings does not favour steady flow in vertical pipes as does
the helical one. Directly on top of each ring there occurs accu-
mulation of particles and the formation of dense plugs which
can lead to stable archs thus eventually causing blockage of
the flow.

The second alternative geometry consists of disposing the
constituent beads of the texture randomly over the entire inner-
wall surface of the pipe (Fig. 12b). Hereby the same to-
tal number of constituent beads as in the helical texture is
applied. By comparing the corresponding spatio-temporal
diagram (Fig. 13c) with the one associated with the helix
(Fig. 13a), we see that the latter texture geometry yields a
larger particle flux — the particle axial velocity for the he-
lix geometry is 0.71m/s, while for the random texture it is
0.39m/s.

Finally, in the third alternative geometry the particles are
arranged into a vertical line fixed on the inner-wall over the
entire tube length (Fig. 12c). The spatio-temporal diagramof
the simulation using such a texture, shown in Fig. 13d, dis-
plays the occurrence of dense plugs and inhomogeneous flow.

Fig. 13Spatio-temporal plots of the solid fraction along the pipe for
different types of inner-wall textures: (a) helix, (b) rings, (c)
randomly distributed beads on the pipe inner-wall and (d) beads
forming a single line that is paralell to the pipe axis. The slope of
the line at the upper right corner in each plot indicates the average
axial velocity of the particles.
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Overall, the flow using the texture geometry in the form of a
helix or using beads disposed randomly along the pipe is more
homogeneous than the flow using the linear texture geometry.

Based on the results of our simulations, we conclude that
the alternative textures are inferior to the helical inner-wall
one since they lead either to inhomogeneous flow or to smaller
mass flux values.

4 Conclusions

In conclusion, we have presented a method to obtain steady
flows of granular materials through narrow pipes, which con-
sists of applying a helical texture to the pipe’s inner wall.In
presence of such a texture, particles impingements are more
homogeneouly distributed along the pipe, which substantially
reduces the solid fraction fluctuations that are inherent to
particulate flows through narrow channels. Our simulations
show that, by tuning the wavelength of the helix, it is possi-
ble to achieve flows with prescribed transport characteristics.
Specifically, we have shown that the mass flux in presence of
the helix can be predicted as a function of the pipe diameter
and helix wavelength using an expression that is a modifica-
tion of the well-known Beverloo equation with only one addi-
tional fit parameter. Excellent quantitative agreement between
the values of mass flux predicted from our expression with the
mass flux values obtained from simulation results was found.

To the best of our knowledge, there is no direct experimen-
tal evidence of the effect of an helical inner-wall texture on
the flow of granular materials in vertical pipes, the presentre-
sults could be compared to. However, as stated before, it was
already shown experimentally that erosion damage from gran-
ulates in fluid flow through pipeline bends can be diminished
by using helically-formed pipes, because such pipes, which
encourageswirl, lead to a more homogeneous particle con-
centration45.

The helical inner-wall texture provides a means to homo-
geneize the flow along theentirepipe without the need of en-
ergy input from any external source. In fact, previous methods
to obtain steady granular flows were either based on energy
input to the system, e.g. through electric fields or mechani-
cal perturbations1, or designed to prevent the blockage at the
end of silos by adding an obstacle near the flow outlet20. Our
method has proven efficient to prevent the formation of den-
sity waves which are inherent to the flow of granular materials
through pipes and occur without regard of the pipe to particle
diameter ratio. We remark that the density waves in vertical
pipe flows occur at low packing fraction values and that the
necessary condition for jamming in such flows is the formation
of a stable plug that does not break due to collisions of parti-
cles falling upon it thus leading to flow blockage and forma-
tion of a stable column. This mechanism is thus different from
the shear-jamming mechanism where a dense granular system,

which is already close to its highest packing fraction associ-
ated with the jammed stated, is driven to a shear-jammed state
by application of a shear stress under constant density46–49.

We believe that application of the helical texture presented
here could be used to enhance not only gravity-driven pipe
flows but also fluid-driven particle transport through both
through vertical and horizontal pipes18,50, which remains to
be investigated in the future. It would be thus interesting to
perform experiments on vertical or horizontal pipe flows that
include an helical inner-wall texture to verify the predictions
from our numerical simulations.
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