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particles-enriched region next to the membrane surface created

by advective-diffusive transport7,12. The CP layer formed by mo-

bile particles effectively increases the resistance to solvent trans-

port and the local osmotic pressure, hence reducing the permeate

flux.

Membrane fouling is an undesirable irreversible modification of

the membrane caused by specific physical and chemical interac-

tions between the membrane and the particles19–22. It gives rise

to a stagnant cake layer deposited on the membrane and to the in-

trusion or clogging of particles inside the membrane pores. Foul-

ing substantially lowers the permeate flux because of the added

hydrodynamic resistance and can also change the membrane se-

lectivity. Moreover, the filtration channel becomes constricted by

the growth of the cake layer. In order to avoid or reduce foul-

ing effects in large volume concentration processes, UF is often

performed in a cross-flow setup where, under steady-state con-

ditions, the feed dispersion flow is directed parallel to the mem-

brane with inlet and outlet ports.

For small values of the applied transmembrane pressure (TMP),

the permeate flux is found to be proportional to the TMP, while

at larger TMP the flux increases sublinearly. Eventually, a lim-

iting flux is reached, insensitive to any further increase in the

TMP. Blatt et al. investigated the permeate flux in cross-flow UF

using thin-film theory (gel-layer model) under conditions of lim-

iting flux6. The thin-film theory has been subsequently improved

within a boundary layer approximation by regarding explicitly the

CP layer mechanism23–25. In these later works, the concentra-

tion dependence of the collective diffusion coefficient and/or the

dispersion viscosity was considered using phenomenological ex-

pressions for the transport coefficients, with applications to spe-

cific systems like BSA proteins, sucrose, and dextran. Another

model refinement was obtained by including the osmotic pres-

sure buildup at the membrane surface opposing the influence of

the applied TMP11,26,27.

In addition, numerical solutions of coupled advection-

diffusion, Navier-Stokes, and continuity equations by finite differ-

ence methods have been used to analyze CP in cross-flow UF and

hence to predict the permeate flux and the particle concentration

profile at the membrane surface28–32. In most of these works,

the concentration-dependent osmotic pressure, collective diffu-

sion coefficient and dispersion viscosity were taken into account

using approximate expressions for the special cases of solvent-

impermeable colloidal hard spheres and charged-particles mod-

els describing sucrose, polyvinyl alcohols, and BSA and lactofer-

rin proteins. Typically employed approximate expressions for the

sedimentation coefficient have been the truncated virial expan-

sion result by Batchelor33 and the cell model result by Happel34.

The semi-phenomenological expressions by Eilers and Krieger-

Dougherty35 have been used to describe the zero-frequency vis-

cosity of neutral solvent-impermeable hard-sphere dispersions.

The inaccuracy of these transport coefficient expressions has its

impact in the respective UF model predictions.

Recently, Bouchoux et al. studied dead-end filtration of milk

casein micelles36. These soft, deformable and solvent-permeable

micelles can be regarded to some extent as biological siblings of

the synthetic microgels. One of the major issues of their work

was to determine the permeability of the dispersion, which was

obtained by a combination of osmotic stress and filtration mea-

surements. Different from cross-flow, the dead-end or frontal fil-

tration is an intrinsically non-steady process where the thickness

of the immobile cake layer increases during the process.

The present work includes the first comprehensive theoretical

study of particle permeability effects in the concentration process

of non-ionic microgel dispersions by cross-flow UF. The microgel

particles are modeled as solvent-permeable spheres interacting by

a hard-core potential. In contrast to previous works, we use accu-

rate analytic expressions for the concentration-dependent collec-

tive diffusion coefficient and viscosity of permeable hard-sphere

dispersions, which have been well tested against computer simu-

lation results and experimental data on non-ionic PNIPAM micro-

gels37–41. These expressions have been obtained using a hydro-

dynamic radius model wherein the internal hydrodynamic par-

ticle structure is mapped on a hydrodynamic radius parameter

for unchanged direct (non-hydrodynamic) interactions. Riest et

al. have shown recently that this simple particle model captures

quantitatively the static and dynamic properties of non-ionic PNI-

PAM microgel dispersions in an organic solvent40,41. This de-

scription is accurate up to large particle concentrations where

the effect of solvent permeability is quite significant. Using a

boundary layer analysis of the advective-diffusion transport in

the CP layer23,24, we calculate the concentration profile and per-

meate flux at the membrane for different operation conditions.

Our focus is on particle permeability effects using concentration-

dependent dispersion properties. Various efficiency and energy

cost indicators for the filtration process are introduced and nu-

merically evaluated to check the efficiency and sustainability of

the UF filtration process.

The paper is structured as follows: in Sec. 2, we describe

the macroscopic cross-flow UF model and the similarity solution

scheme for the CP boundary layer. We also discuss a transcenden-

tal equation that simplifies the problem for constant dispersion

transport properties. Under such conditions, this equation leads

to upper and lower bounds for the concentration profiles, which

can be profitably used for a quick check on unwanted cake for-

mation. The employed analytic expressions for the concentration-

dependent collective diffusion coefficient, shear viscosity and os-

motic compressibility of permeable Brownian particle dispersions

are discussed in Sec. 3. Numerical results for the CP profile and

the permeate flux are analyzed in Sec. 4 regarding their depen-

dence on the TMP, shear rate, feed concentration, particle size,

and in particular the particle permeability. The significance of the

microgel permeability is assessed by comparison with results for

impermeable particles. We also evaluate the UF process in terms

of process efficiency and cost indicators. Our conclusions are pre-

sented in Sec. 5.

2 Macroscopic UF model

2.1 Cross-flow transport

We consider a homogeneous feed dispersion of non-ionic Brown-

ian microgels particles of hard-core radius a dispersed in a New-

tonian solvent at volume fraction φ0. As illustrated in Fig. 1,
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axial velocity component at the membrane surface,

u(x,0) = 0 , (16)

and assume that the particle concentration right at the fiber en-

trance and distant from the membrane surface matches the bulk

(feed) concentration,

φ(0,y) = φ(x,y → ∞) = φ0 . (17)

Finally, the assumed impermeability of the membrane regard-

ing the colloidal particles is considered using the zero normal par-

ticle flux condition,

D(φ)
∂φ

∂y

∣

∣

∣

∣

y=0

+ vw(x)φw(x) = 0 , (18)

at the membrane surface. In using this reflecting boundary condi-

tion, particle adsorption by the membrane is excluded which adds

to fouling.

For given dispersion properties D(φ), η(φ), and Π(φ), the non-

linear coupled partial differential Eqs. (8)-(10) in conjunction

with the boundary conditions in Eqs. (11)-(18) form a two-

dimensional boundary value problem. It can be solved only nu-

merically for the searched for CP concentration and velocity pro-

files φ(x,y) and v(x,y), respectively. The only exception is the lim-

iting case, v0
w = 0, of an impermeable fiber wall where φ = φ0

holds uniformly throughout the fiber and the Poiseuille velocity

profile extends right up to the membrane wall. The solution of

the boundary value problem for v0
w > 0 is largely simplified using

a similarity analysis described in the following.

2.3 Similarity solution

The similarity solution scheme used in this work follows that by

Shen and Probstein for gel polarization23. We account here in

addition for the osmotic pressure contribution to UF and give ad-

ditional insight into the obtained solution.

We first estimate the thickness, δ = δ(x), of the CP layer. To this

end, we use that the transverse advection term, v∂φ/∂y, in Eq. (9)

is negligible at the outer diffuse edge of this layer in comparison

to the axial one, since um ≫ v0
w and since φ has decayed basically

to φ0. Right at the membrane surface, however, the axial advec-

tion term is zero instead due to the no-slip boundary condition.

Using that ∂/∂y ∼ 1/δ, the estimate

δ =

(

3Dbx

γ̇

)1/3

, (19)

is obtained, with Db = D(φ0) denoting the bulk collective diffu-

sion coefficient. Eq. (19) describes an axial growth of the CP

layer thickness proportional to x1/3. It follows that δ(L)/R ∼
(L/R)1/3/

(

PeR
γ̇

)1/3
. The axial advection Péclet number PeR

γ̇ =

τR
D/τad, with τR

D = R2/D0 and τad = R/um, is in UF orders of mag-

nitude larger than one, consistent with the thin boundary layer

assumption we have started from.

Eq. (19) implies the existence of a similarity solution, φ(λ), for

the CP profile which for each axial position x is a function of the

dimensionless similarity variable23,24,

λ =
y

δ
, (20)

only with λ ∝ y/x1/3. The dispersion incompressibility condition

in Eq. (8) and the shear stress Eq. (11) are expressed in terms of

λ as

dv

dλ
= − δ

3x
λ

du

dλ
(21)

1

γ̇δ

du

dλ
=

1

η̂(φ)
, (22)

respectively, where η̂(φ) = η(φ)/η(φ0) is the reduced viscosity.

Dimensionless velocities are introduced accordingly by

V (λ) = − 3x

δ2γ̇
v (23)

U(x,y) =
u

γ̇ δ
, (24)

where the axial velocity u has been scaled with the fluid velocity,

γ̇ δ, at the outer edge of the CP layer, and the transverse velocity

v by the velocity Db/δ = δ2γ̇/(3x) characteristic of the advection-

diffusion balance. The negative sign in the definition of V has

been included to make it positive valued. Different from V , the

reduced axial velocity U is not a function of λ only. This fol-

lows from considering the special case, η̂= 1, of constant viscosity

where u = γ̇y is the solution of Eq. (22) satisfying the no-slip con-

dition at the membrane surface. The corresponding transverse

velocity is obtained from the incompressibility condition and Eq.

(12) as v(x,y) = −vw(x), being constant across the CP layer for a

given x.

The non-dimensional velocity related to U defined as

G(λ) =U −λ , (25)

is, however, an explicit function of λ. Substitution of Eq. (25)

into Eq. (22) leads to

dG

dλ
=

1

η̂(φ)
−1 , (26)

which is the non-dimensionalized shear stress equation. The di-

mensionless incompressibility condition follows from Eqs. (21)

and (25) as
dV

dλ
= G(λ)−λ

dG

dλ
. (27)

Using Eqs. (20), (24), (25) and (27), the advection-diffusion

Eq. (9) is expressed in terms of λ, V and G as

d

dλ

[

D̂(φ)
dφ

dλ

]

=−dφ

dλ

{

λ [λ+G(λ)]+V (λ)
}

, (28)

where D̂(φ) = D(φ)/Db. It is noticed here that with φ and V , also

G is a function of λ.

In terms of λ, V and G, the boundary conditions in Eqs. (12),
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(16)-(18) are expressed as

G(λ = 0) = 0 (29)

V (λ = 0) = Vw (30)

φ(λ → ∞) = φ0 (31)

D̂(φw)
dφ

dλ
(λ = 0)+Vwφw = 0 . (32)

Here, Vw = (3x/δ2γ̇)vw is the dimensionless permeate velocity,

with vw given by Eq. (13). Using the boundary conditions at

λ = 0, Eqs. (26) and (27) are integrated,

G(λ) =
∫ λ

0

dλ′

η̂(φ(λ′))
(33)

V (λ)−Vw = 2

∫ λ

0
dλ′ G(λ′)−λG(λ) , (34)

with G and V expressed now as functionals of the concentration

profile.

Eqs. (26)-(28) form a set of coupled nonlinear ordinary differ-

ential equations which in combination with the boundary con-

ditions in Eqs. (29)-(32), can be solved numerically for the

searched for profile φ(λ) and the reduced velocities G(λ) and

V (λ). Since Vw in Eq. (13) varies with the axial position along

membrane surface, due to the likewise varying osmotic pressure,

the set {φ,G,V} must be calculated for each x value separately.

We have performed these calculations with MATLAB’s routine

bvp4c47, using analytic expressions for collective diffusion co-

efficient, effective dispersion viscosity and osmotic pressure pre-

sented in the following section.

The general behavior of the concentration profile follows from

the integrated Eq. (28),

dφ

dλ
=− Vwφw

D̂(φ(λ))
exp

{

−
∫ λ

0
dλ′ [λ

′ (λ′+G)+V ]

D̂(φ(λ′))

}

, (35)

where the zero flux condition at the membrane wall has been

used. In accord with physical expectation, it describes the strictly

monotonic compressed exponential decay of φ(η) from the wall

value φw at λ = 0 towards the large-λ bulk value φ0 where

dφ/dλ → 0.

2.4 Solution for constant viscosity and diffusivity

An additional simplification follows for a concentration-

independent reduced viscosity η̂ in the CP layer not necessarily

equal to the bulk value of one. In this case, the solutions of Eqs.

(26) and 27) are G = λ(1/η̂− 1) and V = Vw, respectively, for all

λ ≥ 0. Assuming in addition a constant reduced collective diffu-

sion coefficient D̂, Eq. (35) can be integrated using Eq. (31),

resulting in24

φw =
φ0

1− (Vw/D̂)
∫ ∞

0 dλexp
{

−λ3/(3η̂D̂)−λVw/D̂
} , (36)

where Vw = Vw(φw). This is a transcendental equation for the

membrane wall concentration, φw(x), at a given axial distance

x from the feed inlet. It can be solved using an iteration method.

For given osmotic pressure expression, the permeate velocity

vw(x) follows then from substituting the solution φw(x) into Eq.

(13). In Sec. 4, Eq. (36) is profitably used to generate a good

approximation of the profile φw(x) for non-constant collective dif-

fusion and viscosity coefficients.

3 Permeable particles dispersions

We model non-ionic microgel dispersions generically as disper-

sions of uniformly solvent-permeable colloidal hard spheres37–40.

As shown in a recent theoretical-experimental work by Riest et

al.40, this simplifying model provides an excellent description of

static and dynamic light scattering data, and hence the pair dis-

tribution function and collective diffusion properties, of non-ionic

PNiPAM microgels41.

3.1 Osmotic pressure

The Brownian particles accumulated in the CP layer give rise, for

Pea
γ̇ ≪ 1, to an equilibrium osmotic pressure profile Π(φ). Accord-

ing to Eq. (4), the osmotic pressure gradient drives a thermal dif-

fusion current pointing away from the membrane into the bulk.

On the other hand, the osmotic pressure at the membrane wall,

Π(φw), reduces the permeate flux as quantified by Eq. (13). Since

the microgels are modeled as permeable hard spheres, which are

characterized statically by the hard-core radius a with associated

volume fraction φ, the osmotic pressure in the fluid phase is de-

scribed to excellent accuracy by the Carnahan-Starling (CS) equa-

tion of state35,

Z(φ) =
1+φ+φ2 −φ3

(1−φ)3
, (37)

where Z(φ) = Π(φ)/(n(φ)kBT ) is defined as the ratio of osmotic

and ideal gas pressures. Eq. (37) applies not only to the

fluid-phase branch extending up to the freezing concentration,

φ f ≈ 0.494, but decently well also to part of the non-crystalline

metastable phase branch from φ f up to the melting volume

fraction φm ≈ 0.545. The CS Z(φ) does not reproduce the os-

motic pressure divergence, Π ∼ 1/(φ − φrcp), of the metastable

non-crystalline phase at the random close packing concentration

φrcp ≈ 0.6442,48. This divergence is of no concern in this work

where stagnant cake layers formed by particle jamming are not

considered.

3.2 Hydrodynamic particle model

The mesh-size averaged flow inside a microgel particle is de-

scribed in our model by the Brinkman-Debye-Bueche (BDB) equa-

tion49,50, wherein the amount of fluid permeability is character-

ized by the non-dimensional parameter

χ = κa , (38)

equal to the inverse of the hydrodynamic penetration depth, κ−1,

in units of the hard-core radius a. The penetration depth is equal

to the square root of the Darcy permeability of a microgel par-

ticle, and it roughly equals its mean mesh size. Values of χ can

vary in principle between χ = ∞, corresponding to an imperme-
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able hard sphere with no-slip surface boundary condition, down

to low values characteristic of strongly permeable particles. For

the continuum picture underlying the BDB equation to be valid,

the mean pore size should be no larger than one tenth of the

particle radius (χ & 10). Typical values in experimentally studied

dispersions are χ ∼ 20−40 or larger40,51.

Transport properties of permeable particle dispersions such as

D and η depend on χ in addition to φ. At infinite dilution, D(χ,φ)

reduces to the single-particle translational diffusion coefficient of

a permeable sphere,

D0(χ) =
kBT

6πη0ah(χ)
, (39)

with the hydrodynamic particle radius, ah, given by37

ah(χ)

a
=

2χ2 [χ− tanh(χ)]

2χ3 +3 [χ− tanh(χ)]
. (40)

The hydrodynamic radius becomes equal to a for χ → ∞. It

decreases with increasing permeability (decreasing χ) since the

viscous drag is reduced when more fluid is allowed to penetrate

the particle. For realistic parameter values, χ & 10, the particle-

fluid interface can be considered as locally flat. The ratio ah/a is

then well approximated by the flat interface value

ah, f (χ)

a
= 1− 1

χ
, (41)

with the error introduced in ah being of order O(1/χ2) small. The

flat-interface radius, ah, f , and the associated reduced slip length,

L∗
h, f = 1 − ah, f /a = 1/χ, are independent of the single-particle

transport property used for their definition. In other words, the

same value for Lh, f is obtained regardless whether the transla-

tional or rotational single-particle diffusion coefficients or the in-

trinsic viscosity are used38,40.

As explained in Refs.38,40, diffusion and rheological proper-

ties of a large variety of dispersions of spherical colloidal parti-

cles of quite different internal hydrodynamic structure and sur-

face boundary conditions, including core-shell particles and par-

ticles with Navier slip boundary conditions, can be characterized

hydrodynamically in terms of the single hydrodynamic parame-

ter ah. This key observation allows for the usage of the simpli-

fying hydrodynamic radius model wherein the particles are de-

scribed hydrodynamically as no-slip spheres, characterized by ah

derived from a single-particle transport property, for unchanged

direct particle interactions. Regarding the considered non-ionic

microgels, this means an unchanged direct interaction radius a.

The error introduced in using the hydrodynamic radius model for

transport coefficient calculations, such as those for D and η is of

O

(

(L∗
h, f )

2
)

small40. Since Eqs. (40) and (41) describe a one-to-

one mapping between χ and the universal parameter ah, the at

first sight specific model of uniformly permeable spheres used in

this work is in fact quite general.

3.3 Collective diffusion

For the considered macroscopic length and time scales, collective

thermal diffusion or gradient diffusion refer to the relaxation of

thermally induced local concentration gradients by the coopera-

tive diffusive motion of Brownian particles which interact both

directly and hydrodynamically. The long-time collective diffusion

coefficient appearing in Fick’s law of macroscopic gradient diffu-

sion of a non-ionic dispersion of monodisperse permeable spheres

is given, according to Eq. (4), by

D(χ,φ) = D0(χ)
K(χ,φ)

S(φ)
, (42)

namely by the single-particle diffusion coefficient D0(χ) times the

ratio of the long-time sedimentation coefficient, K(χ,φ) and the

thermodynamic coefficient S(φ). The latter is equal to the zero-

scattering wavenumber limit of the static structure factor deter-

mined in scattering experiments52 and to the reduced isothermal

osmotic compressibility,

1

S(φ)
=

(

∂ [φZ(φ)]

∂φ

)

µs,T

, (43)

where µs denotes the chemical potential of the dispersing fluid.

An issue not addressed in the UF literature is that the long-

time collective diffusion coefficient D, and the associated long-

time sedimentation coefficient K, in Eqs. (4) and (42) are smaller

than their respective short-time counterparts. This is due to the,

at long times, slowing influence of the micro-structural environ-

ment, which is perturbed from the equilibrium isotropic state by

the sedimenting or collectively diffusing particles53. Different

from self-diffusion and viscosity, where the respective short-time

and long-time transport coefficients are strongly different in con-

centrated dispersions, the short-and long-time collective diffusion

and sedimentation coefficients differ by less than 7 % only, even

in concentrated dispersion of no-slip hard spheres where the hy-

drodynamic interactions are particularly strong54. The relative

difference in the latter two quantities is of purely hydrodynamic

origin and caused by the non-pairwise additive near-distance part

of the hydrodynamic particle interactions55. We emphasize that

the present discussion applies to Brownian particles for low sedi-

mentation Péclet number characteristic of UF. In the large Péclet

number regime, micro-structural changes and their effect on the

concentration dependence of the sedimentation velocity become

highly significant56.

In this work, we use the short-time form as a substitute for

the long-time K(χ,φ) in Eq. (42) since first, the calculation of

the short-time sedimentation coefficient is far simpler and sec-

ond, precise simulation data are available for the short-time coef-

ficient in its dependence both on φ and χ37,39,40. The wall con-

centrations in our UF results are such that φw < 0.4 so that the

long-time coefficients D and K are only slightly overestimated by

this substitution. The inset of Fig. 3 shows simulation results for

the concentration dependence of the short-time K(χ,φ), for values

of the inverse reduced permeability given by χ = 20, 50, 100, and

∞. These values correspond, according to Eq. (41), to reduced

hydrodynamic radius ah/a = 0.95, 0.98, 0.99, and 1.

For impermeable no-slip hard spheres, the numerically precise

second-order virial (concentration) expansion result,

K(φ) = 1−6.546φ+21.918φ2 +O(φ3) , (44)
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Fig. 3 Inset: concentration dependence of the short-time sedimentation

coefficient, K(χ,φ), of permeable hard-sphere dispersions. Main figure:

corresponding reduced short-time collective diffusion coefficient,

D(χ,φ)/D0(χ), obtained from K(χ,φ) by division with the CS S(φ). ✸ and

◦ are simulation results for impermeable spheres (χ = ∞) by Ladd 57 and

Abade et al. 37. ✷, △, and ▽ are simulation results by Abade et al. 37 for

χ = 100, 50, and 20, respectively. Colored lines are polynomial fits to

the respective simulation data. Dotted and dashed lines: Eq. (46) for

α = 6.55 and the cell model prediction by Happel 34, respectively, both

for impermeable spheres. The cell model predictions for K and D are

non-analytic at φ = 0. Black solid lines in main figure and inset:

second-order virial expansion results for impermeable spheres given in

Eqs. (45) and (44), respectively.

for the short-time sedimentation coefficient has been obtained by

Cichocki et al.58. As seen from the inset of Fig. 3, this expres-

sion describes the simulation data37,57 well for φ < 0.1 only (solid

line). The division of K(φ) in Eq. (44) by the second-order virial

expansion result of the hard-sphere osmotic compressibility, S(φ),

leads to the second-order virial expansion expression59

D(φ)/D0 = 1+1.454φ−0.45φ2 +O(φ3) , (45)

for the short-time collective diffusion coefficient. This quadratic

polynomial describes the weakly monotonic increase of D(φ) with

increasing φ remarkably well even up to φ ≈ 0.5 where the non-

sheared dispersion starts to solidify. See here the solid black line

in the main part of Fig. 3. This finding points to a mutual can-

cellation of higher-order terms in the virial expansions of K and

S. The simulation data for D shown in the main part of the figure

have been obtained from dividing the simulation data for K by

the CS S(φ) obtained from Eqs. (37) and (43).

Previous UF works dealing with impermeable colloidal particles

have commonly used either simply a constant D=D0, or the semi-

empirical expression30,60

K(φ) = (1−φ)α , (46)

with the exponent α = 6.55 selected to match Batchelor’s33 first-

order virial coefficient result (Eq. (44) and the dotted line), or

the cell model result for K(φ) by Happel34 (dashed line in inset)

in conjunction with the CS S(φ) as divisor28–32. While Eq. (46)

describes the simulation data for impermeable spheres depicted

in the inset overall decently well, the decay of K(φ) at larger φ is

overestimated to such an extent that, after division by S(φ), the

resulting D is decreasing for larger φ, in conflict with simulation

data and experimental findings for colloidal hard spheres59. No-

tice here that K(φ) and S(φ) are both monotonically decreasing

with increasing φ in a concave-shaped form. Their ratio is thus

very sensitive to small changes in both quantities. Using the expo-

nential form for K in Eq. (46), Bhattacharjee et al.30 combined an

approximate long-distance treatment of the hydrodynamic mobil-

ities of two no-slip spheres with the Percus-Yevick solution for the

pair distribution function leading to a concentration-dependent

exponent α(φ). While their modified approach predicts the mono-

tonic increase of D(φ) with increasing φ, the increase is signifi-

cantly overestimated in comparison to the simulation data.

The cell model predictions for K and D (dashed lines) are ruled

out since they violate the exact analytic low-φ forms of these

quantities noted in Eqs. (44) and (45), respectively. In partic-

ular, an infinite negative slope of D(φ) at φ → 0 is predicted by

this model. In summarizing the present discussion on collective

diffusion of impermeable particles, our conclusion is that Eq. (45)

should be used as a good description of the D(φ) of impermeable

colloidal hard spheres.

A thorough analysis of the sedimentation coefficient of colloidal

dispersions of hard spheres with internal hydrodynamic structure

(non-zero permeability) was given in40. This article provides an

approximate analytic expression for K(γ,φ), where γ = ah/a, de-

scribing the simulation data quite well for all φ < 0.5 and γ ≥ 0.8

using Eq. (41). We only quote here the resulting low-φ expression

D(χ,φ)

D0(χ)
≈ 1+

(

1.454+
8.592

χ

)

φ+O(φ2) , (47)

valid for χ & 10, with O(1/χ2) corrections disregarded. It quan-

tifies the initially linear increase of K(χ,φ) at low φ displayed in

Fig. 3, with increasing slope with increasing permeability.

The remaining smaller differences between the analytic expres-

sion for K in40 and the simulation data are enhanced at larger φ

after the division by S(φ). In our UF calculations for permeable

particles, we therefore use a direct fit of the simulation data for

D(χ,φ)37 in the form of a fifth order polynomial (colored lines).

The simulation data for K and D for a given concentration in-

crease with increasing permeability (decreasing χ). The respec-

tive increase is more pronounced for larger χ since the main ef-

fect of permeability is to lower the hydrodynamic interactions be-

tween the particles. Permeable hard spheres sediment and diffuse

collectively faster than impermeable ones for two related reasons:

first, the hydrodynamic interactions are weaker and second, D0

is larger due to ah < a. The sedimentation coefficient decreases

with increasing volume fraction owing to an increasing fluid back-

flow and enhanced hydrodynamic interactions53,60. For a given

χ, D increases with increasing φ which reflects that the diminu-

tion in K is overcompensated by the diminution in the osmotic

compressibility. The monotonic increase of D with increasing φ is

characteristic of colloidal hard spheres but not of particles with
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longer-ranged repulsive interactions or particles having shorter-

ranged attractions. For example, in lower-salinity dispersions of

charge-stabilized colloids and protein solutions, D behaves non-

monotonically, passing through a pronounced maximum with in-

creasing φ61.

3.4 Effective dispersion viscosity

The effective dispersion viscosity, η, in a steadily sheared disper-

sion is the ratio between the dispersion shear stress and the rate

of strain35. It depends on the concentration and internal hydro-

dynamic structure of the Brownian particles and their direct and

HIs. Since Pea
γ̇ ≪ 1 in UF, there are no shear-thinning effects. The

zero-frequency low-shear-rate limiting effective viscosity of a per-

meable particles dispersion is the sum

η(χ,φ) = η∞(χ,φ)

[

1+
∆η(χ,φ)

η∞(χ,φ)

]

, (48)

of the high-frequency viscosity contribution, η∞(χ,φ), which is

of purely hydrodynamic origin, and the shear relaxation viscos-

ity part, ∆η(χ,φ), originating from the relaxation of the shear-

perturbed dynamic particle cages formed around each particle.

The viscosity part, ∆η, is influenced both by direct and HIs, with

the consequence that, for concentrated dispersions, the long-time

viscosity η is substantially larger than the short-time viscosity η∞.

This distinguishes the viscosity from collective diffusion where

the difference between the associated short-time and long-time

collective diffusion coefficients stays small.

As discussed in Refs.40 and42, the term in brackets in Eq. (48)

can be expected to be only weakly influenced by HIs. This sug-

gests the no-HI factorization approximation

∆η(χ,φ)

η∞(χ,φ)
≈ ∆η(φ)

η0

∣

∣

∣

∣

no−HI

, (49)

where ∆(η)|no−HI is the shear relaxation part without HI, with

η∞|no−HI being equal to the fluid viscosity η0. In this approxima-

tion, the hydrodynamic particle structure quantified by χ and the

HIs are assumed to affect η only through the factored-out high-

frequency viscosity in Eq. (48). This simplifies the calculation of

∆η considerably. An analytic estimate for the ∆η of colloidal hard

spheres without HIs is given by

∆η(φ)

η0

∣

∣

∣

∣

no−HI

≈ 12

5
φ2g(2a+,φ) , (50)

where g(2a+,φ) = (Z(φ)−1)/4φ is the contact value of the equi-

librium radial-distribution function, and Z(φ) is given for φ < 0.5

by Eq. (37). This estimate combines the exact quadratic-order

low concentration limit of ∆(η)|no−HI with its divergence at the

random closed packing volume fraction, φrcp, constituting the up-

per concentration limit of the non-crystalline metastable branch

of the hard-sphere phase diagram. This divergence is triggered

by the divergence of g(2a+,φ) at φrcp
40,42.

The existing high-precision simulation data38 for the high-

frequency viscosity of permeable colloidal hard spheres in the

fluid phase region φ < 0.5 are well described by the the gener-

alized Saitô formula38,40,

η∞(χ,φ) = 1+[η](χ)φ
1+ Ŝ(χ,φ)

1− 2
5 φ [η](χ)

[

1+ Ŝ(χ,φ)
] , (51)

with the Saitô function Ŝ(χ,φ) = φ(kh(χ)−2/5) [η](χ). Both the

intrinsic viscosity, given by [η](χ)≈ (5/2)(1−3/χ) for χ > 10, and

the Huggins coefficient, kh(χ), depend on the particle permeabil-

ity parameter χ only. Analytic fitting expressions of these two

quantities are given in Ref.40.

In this work, we use the factorization approximation in Eqs.

(48)-(51) as the analytic input for η̂(χ,φ) = η(χ,φ)/η(χ,φ0) in our

UF calculations.

The concentration dependence of η(χ,φ) is plotted in the main

part of Fig. 4 together with the associated high-frequency viscos-

ity, η∞(χ,φ), shown in the inset. While both viscosities increase

with increasing concentration, η is substantially larger than η∞

for large concentrations, due to the at large φ dominating shear

relaxation contribution ∆η. Notice the different scales of the or-

dinate in the inset and the main figure part.

We consider first the high-frequency viscosity presented in the

inset. The simulation data by Abade et al. (open symbols) for

permeable hard spheres38 show that η∞ decreases with increas-

ing particle permeability (decreasing χ) since viscous dissipation

is reduced. The simulation data are quantitatively described by

the generalized Saitô formula in Eq. (51) for all considered per-
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Fig. 4 Concentration dependence of the steady-shear zero-frequency

dispersion viscosity η(χ,φ) (main figure), and the associated

high-frequency viscosity η∞(χ,φ) (inset), for permeable colloidal hard

spheres. •, � and ✸ are experimental data for η by Segrè et al. 62, and

Weiss et al. 63, and simulation results by Foss and Brady 64, respectively,

all for χ = ∞. Solid black, red, violet, and blue lines: factorization

approximation predictions for η in Eqs. (48)-(51) at χ = ∞, 100, 50, and

20, respectively. Black dotted line: Krieger-Dougherty formula for

χ = ∞ 35, using φmax = φcp. In the inset: ✸ and ◦ are simulation data for

η∞ by Foss and Brady 64 and Abade et al. 38, for impermeable spheres

(χ = ∞). ✷, △, and ▽ are simulations results by Abade et al. 38 for χ =

100, 50, and 20, respectively. Correspondingly colored solid and dashed

lines in the inset are the results by the generalized Saitô formula in Eq.

(51), and the cell model expression by Ohshima 65, respectively.
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meabilities (solid lines in the inset). For comparison, also recent

cell model results by Ohshima65 for the η∞ of permeable spheres

are shown (dashed lines). For impermeable particles, χ = ∞, the

cell model prediction reproduces an earlier result by Ruiz-Reina et

al.66. As it can be noticed from the inset, the cell model method

strongly overestimates the high-frequency viscosity at larger φ for

all considered permeabilities.

Consider next the concentration dependence of the steady-

shear viscosity, η, displayed in the main part of Fig. 4. The exper-

imental data (filled black symbols, taken from62,63) and in partic-

ular the simulation data (open diamonds, from64) for imperme-

able hard spheres are overall well represented by the factorization

approximation in Eqs. (48)-(50) combined with the generalized

Saitô formula in Eq. (51) for η∞(∞,φ) (solid black line). A slight

improvement over this factorization approximation result for η

has been discussed by Riest et al.40. This improvement, however,

does not noticeably change our UF predictions for the CP layer

and permeate flux profiles.

Analogous to the corresponding behavior of η∞(χ,φ), the

steady-shear viscosity η is lowered with increasing permeability

due to the weakened HIs. This trend is described by the factoriza-

tion approximation results for the three considered finite values of

χ (differently colored solid lines). To our knowledge, no simula-

tion or experimental zero-frequency viscosity data of permeable

particles are available to date for a direct comparison with our

theoretical predictions for η(χ,φ).

In previous UF works dealing with hard-sphere-like disper-

sions28–32, either a concentration-independent value for η or

the phenomenological expressions by Eilers or Krieger-Dougherty

have been used. The Krieger-Dougherty expression for the steady-

shear viscosity reads35

η

η0
=

(

1− φ

φmax

)−φmax [η](χ)

, (52)

where the particle permeability enters only via the intrinsic vis-

cosity in the exponent. Here, φmax is the maximal volume frac-

tion at which the expression diverges. In previous UF works31,32,

the closed packing fcc crystal value φcp =
√

2π/6 ≈ 0.74 was used

for φmax. According to the dotted line in Fig. 4 valid for χ = ∞,

the Krieger-Dougherty relation for φmax = φcp strongly underes-

timates the steady-shear viscosity at large concentrations. This

underestimation is less severe if, as suggested by de Kruif et al.67

for low shear Péclet numbers, φrcp ≈ 0.64 is used instead of φcp.

The Eilers expression describes a viscosity curve (not shown in

the figure) similar to the one representing the Krieger-Dougherty

equation.

4 Filtration model results

We present in this section our boundary layer model results

for cross-flow UF of permeable (more generally: hydrodynam-

ically structured) Brownian particles dispersions. The selected

system parameters are: membrane length L = 0.5 m, inner ra-

dius R = 0.5 mm, hydraulic membrane permeability Lp = 0.5−
6.7 × 10−10 mPa−1s−1, and feed particle volume fraction φ0 =

1.0−1.5×10−3 which is small enough that the Einstein expression

η ≈ (5/2)(ah/a)3 φ0 for permeable particles, with ah/a according

to Eq. (40), applies for the feed viscosity. The calculations are

performed for the room temperature value T = 293.15 K.

The explored parameters in our calculations are the applied

TMP ∆P = 0.3 − 5.0 kPa, particle excluded volume radius a =

10− 30 nm, and characteristic shear rate γ̇ = 30− 130 s−1, in ad-

dition to the inverse permeability parameter χ = 20,30,50, 100,

and ∞. These are realistic operation conditions for the UF of

permeable Brownian particles, which we have selected such that

Pea
γ̇ ≪ 1, with Brownian diffusion dominating shear-induced hy-

drodynamic diffusion12. Moreover, since R ≪ L, the boundary

layer condition um ≫ v0
w and, with ReR ∼ 1, also the condition

of laminar pipe flow are fulfilled. The pipe radius R and the

feed velocity um enter only implicitly into the similarity solution

scheme for the CP layer through Eq. (6) for the characteristic

shear rate. The particle radius a affects the CP layer and per-

meate flux directly by the factor D0(χ) in Eq. (42). We further

note that the selected operating conditions are such that mem-

brane fouling caused by particle jamming is avoided. Fouling is

not considered in the present UF study which focuses on parti-

cle permeability effects on the CP layer and permeate flux, based

on accurate expressions for the concentration and permeability

dependent viscosity and collective diffusion coefficient.

4.1 Concentration-dependent transport properties

Before discussing the influence of the particles permeability on

cross-flow filtration, we analyze the effects of the concentration

dependence of the transport properties D(φ) and η(φ). For later

comparison, we consider in this subsection the limiting case, χ =

∞, of impermeable hard spheres.

Figure 5 depicts the CP layer profile at the membrane surface,

φw(x), in its dependence on the reduced axial distance, x/L, from

the fiber inlet (Fig. 2). The main figure part includes results

of the similarity solution scheme discussed in Subsec. 2.3. The

black solid line is the result for φw(x) based on Eq. (45) for

D(φ)/D0, and Eqs. (48)-(51) for η(φ)/η0. It shows the typical

UF behavior of φw(x) at non-fouling conditions, namely its mono-

tonic concave-shaped increase with increasing x caused by the

steady-state advective-diffusive mass balance inside the CP layer.

An asymptotic analysis based on Eqs. (28) and (13) shows that

the surface concentration grows initially as

φw(x)

φ0
≈ 1+Ax1/3 , (53)

in the immediate vicinity of the fiber inlet (not resolved on the

scale of Fig. 5), with A = 1.857× v0
w/

[

γ̇D(φ0)
2
]1/3

. Thus, φw(x)

shares the fractional x-dependence of the CP layer thickness δ(x)

for very small x/L . As expected, the initial growth of the surface

concentration at the inlet is larger for larger TMP and larger mem-

brane permeability Lp (larger v0
w) and smaller for larger charac-

teristic shear rate γ̇ and bulk diffusion coefficient D(φ0). Since

the curves for φw(x) are non-intersecting for different values of γ̇,

D(φ0), and v0
w, these trends remain valid for non-small values of

x/L.

In some earlier UF works24,30, the concentration dependence
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Fig. 5 Concentration profile, φw(x), of impermeable colloidal hard

spheres at the membrane surface, as function of the axial distance, x,

from the inlet, in units of the fiber length L. Black solid line: similarity

solution scheme result for concentration-dependent D(φ) and η(φ)

according to Eqs. (45) and Eqs. (48)-(51), respectively. Red dashed and

blue dotted lines: similarity solution results for constant D(φ0)≈ D0 and

η(φ0)≈ η0, and for variable D(φ) and constant η(φ0), respectively. In the

inset, the similarity solution result for concentration-variable D and η

(black solid line) is compared with the solutions of the transcendental

Eq. (36) for constant D(φw) and η(φ0) (red dashed-dotted line), and

constant D(φ0) and η(φw) (blue dashed-dotted line). The black

dashed-dotted line is the arithmetic average of the latter two solutions.

System parameters: ∆P = 5 kPa, γ̇ = 65 s−1, a = 10 nm, φ0 = 1.0×10−3,

and Lp = 6.7×10−10 mPa−1s−1.

of the collective diffusion coefficient, D(φ), for impermeable par-

ticles was accounted approximately, but the dispersion viscosity

was treated as constant inside the thin boundary layer, of value

equal to the bulk (feed) viscosity η(φ0). It is noticed from the

blue dotted line in Fig. 5, obtained for constant η = η(φ0), that at

larger distance from the inlet, the growth of φw(x) with increasing

x is underestimated in comparison to the surface concentration

profile for variable viscosity, with the latter increasing for increas-

ing concentration in accord with Fig. 4. The reason for this is, as

quantified in Eq. (22), that the axial particle transport lowering

the CP layer formation is overestimated for a constant η inside

the layer taken equal to the minimal feed dispersion value. Com-

monly, φ0 ≪ 1 so that the feed viscosity and collective diffusion

coefficient of electrically neutral particle systems are practically

equal to the fluid viscosity, η0, and single-particle diffusion coef-

ficient, D0, respectively (see Figs. 3 and 4).

In most classical UF models, both D and η are described as

being constant6,27–29,68 and set equal to the feed dispersion or

infinite dilution values. The surface concentration profile (red

dashed line in Fig. 5) for constant D(φ0) and η(φ0) is located in

between that for concentration-variable D and η, and for variable

D(φ) and constant η = η(φ0) (blue dotted line), respectively, for

the reason that the transverse diffusion flux of particles away from

the membrane surface is underestimated when the minimal bulk

dispersion value D(φ0) is used instead of a concentration-variable

D(φ) (see again Fig. 3). The main part of Fig. 5 states that the

precise modeling of the concentration dependence of D and η is

key to a proper identification of operating conditions for which

membrane fouling caused by the cake formation of jammed par-

ticles can be avoided.

In the inset of Fig. 5, the similarity solution result for φw(x) with

concentration-dependent D(φ) and η(φ) (black solid line) is com-

pared with two semi-analytic solutions for constant D and η of the

transcendental Eq. (36) (colored dashed-dotted lines). The red

dashed-dotted line is the result of the transcendental equation for

constant D(φw) and η(φ0) (largest value of D, given at the mem-

brane surface, and smallest possible viscosity value, given in the

bulk). Since the extent of CP layer formation is underestimated

in this way, a lower bound for the surface concentration profile

with concentration-dependent transport coefficients is obtained.

An upper bound follows when the minimal diffusion coefficient

D(φ0) and the maximal viscosity η(φw) are used as constant input

values in Eq. (36) (blue dashed-dotted line). The strong increase

of the blue dashed-dotted line at small x/L is a consequence of

approximating η by its maximal membrane surface value η(φw)

throughout the CP layer.

Sufficiently distant from the inlet, the concentration profile for

concentration-variable D and η is well described by the arithmetic

average of the two bounding red and blue dashed-dotted lines

(black dashed-dotted line). Since the numerical solution of Eq.

(36) is fast and stable, the arithmetic average result is convenient

for disclosing unwanted operating conditions where cake forma-

tion by particle excluded volume solidification takes place.

4.2 Microgel permeability effects

We proceed by discussing the influence of the particle permeabil-

ity on the CP layer, φ(x,y), and permeate flux, vw(x), profiles. The
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Fig. 6 Membrane surface concentration profile for permeable particles

for two particle radii a as indicated (black and red lines). Solid and

dotted lines are similarity solution results for inverse permeability

parameters χ = 20 and χ = 50, respectively. Dashed lines represent

results for impermeable hard spheres, χ = ∞. Other parameters:

∆P = 300 Pa, γ̇ = 75 s−1, φ0 = 1.0×10−3, and Lp = 5×10−9 mPa−1s−1.
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Fig. 7 Transversal boundary layer concentration profile, φ(x,y), at

different axial positions x as indicated (differently colored lines). The

transverse distance, y, from the membrane surface is scaled by the CP

layer thickness at the fiber outlet, δ(L). Solid lines: permeable particles

with χ = 20. Dashed lines: impermeable particles, χ = ∞. Other

parameters as in Fig. 6 for a = 30 nm.

results shown in the following have been obtained from the nu-

merical solution of the similarity solution scheme in Subsec. 2.3.

As input, we have used the factorization approximation results

for η(χ,φ), described by Eqs. (48)-(51) and pictured in Fig. 4,

and the polynomial fits to the high-precision simulation data of

D(χ,φ), depicted in Fig. 3.

Figure 6 shows how the membrane-surface concentration pro-

file, φw(x), is affected by the particle permeability (χ = 20, 50, and

∞), using two different particle radii a. We recall from Eq. (38)

that χ = 20, for example, amounts to a hydrodynamic penetra-

tion depth equal to the twentieth part of the particle radius. Ac-

cording to Fig. 6, the membrane surface concentration decreases

with increasing permeability (decreasing χ). The reason for this

is that for a given concentration D(χ,φ) increases and η(φ) de-

creases with increasing permeability (see Figs. 3 and 4). Both

effects enlarge the number of particles leaving the CP layer, with

φw being reduced accordingly. The diminution of φw(x) is most

significant at the fiber outlet x = L. We also notice from Fig. 6 a

strongly enhanced surface concentration when the particle radius

is enlarged from 20 nm (red lines) to 30 nm (black lines). This

can be mainly attributed to the particle size dependence of the

single-particle diffusion coefficient, D0(χ), in Eq. (39), which is

proportional to 1/a for constant χ. Recall here the [D(χ,φ0)]
−2/3

dependence of the coefficient A in Eq. (53), quantifying the sur-

face concentration growth at the inlet.

The transverse microgel concentration profile, φ(x,y), in the CP

layer is shown in Fig. 7 as a function of the distance y from the

membrane surface, for different reduced axial positions x/L in-

dicated in the figure. As described implicitly by Eq. (35), the

transverse profile decays strictly monotonically from the mem-

brane surface value, φw(x), at y = 0 towards the bulk concentra-

tion value, φ0, asymptotically reached for y ≫ δ(x). Due to the
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Fig. 8 (a) Surface concentration profile, φw(x), and (b) permeate

velocity profile, vw(x), scaled by the pure solvent flux, v0
w, for different

TMPs, ∆P, and shear rates, γ̇, as indicated (differently colored lines).

Solid lines: permeable particles with χ = 20. Dashed lines: impermeable

particles, χ = ∞. Other parameters as in Fig. 5.

gradual buildup of the CP layer along the fiber, the transverse

particle concentration profile is larger for larger axial distance x

from the inlet. The effect of particle permeability is to decrease

the transverse concentration profile. This decrease is most pro-

nounced at the membrane surface (dashed and solid lines).

Results for φw(x) and the permeate velocity profile, vw(x), along

the membrane surface are shown in Figs. 8(a) and (b), respec-

tively, for different combinations of ∆P and γ̇ as indicated, and

χ = 20 and ∞ (solid and dashed lines), respectively. The permeate

velocity displayed in Fig. 8 decreases monotonically with increas-

ing x, due to the gradually sharpening CP layer structure: the

particle concentration φw increases with the axial distance from

the inlet, thus enhancing the osmotic pressure at the membrane

surface, Π(φw), which in turn, according to Eq. (13), lowers the

values of vw(x) for given TMP. Since φw increases as x1/3 in the im-

mediate vicinity of the fiber inlet, and since Π(φw) ∝ φw +O(φ2
w)

near the inlet where φw ≈ φ0 ≪ 1, the permeate velocity decreases

as x1/3 very close to the fiber inlet.

According to the black and blue lines in Fig. 8(a) for ∆P= 5 kPa

and 3 kPa, respectively, an enlargement of ∆P for fixed γ̇ causes

an increase in φw due to the larger permeation drag experienced

by the particles (larger v0
w in Eq. (14)). Quite interestingly, an

increase of the TMP by 2 kPa is overcompensated in the ratio

Π(φw)/∆P in Eq. (13) by the associated enlargement of Π(φw),

causing a decrease of the relative permeate velocity, vw/v0
w, for

enlarged TMP as depicted in Fig. 8(b). While the relative per-

meate velocity is lowered, its absolute value, vw, is still enlarged

for enlarged TMP. Different from this, if γ̇, and thus the influx of
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Fig. 9 Fiber-length-averaged permeate velocity, 〈vw〉, as function of the

applied TMP for different shear rates, γ̇, and feed particle

concentrations, φ0, as indicated (differently colored lines). Solid lines:

permeable particles with χ = 20. Dashed lines: impermeable particles,

χ = ∞. The dotted line applies for pure solvent where 〈vw〉= Lp∆P. Inset:

fiber-length-averaged osmotic pressure, 〈Π〉, scaled by the TMP. Other

parameters as in Fig. 5.

the feed particles, increases for fixed ∆P (red and blue lines), the

resulting enhanced axial drag gives rise to a smaller values of the

membrane surface concentration and associated osmotic surface

pressure and hence to a larger absolute permeate velocity. Notice

here that δ(x) ∝ γ̇−1/3 according to Eq. (19).

Figures 8(a) and (b) illustrate, in addition, the influence of the

particle permeability: since φw decreases with increasing perme-

ability, the permeate velocity, vw, at large distances from the inlet

is for particles with χ = 20 significantly larger than for imperme-

able ones (solid versus dashed lines).

Consider next the fiber-length-averaged permeate velocity,

〈vw〉=
1

L

∫ L

0
vw(x)dx , (54)

which according to Eq. (13) is related to the fiber-length-

averaged osmotic surface pressure, 〈Π〉, and the applied TMP by

〈Π〉
∆P

= 1− 〈vw〉
v0

w

. (55)

The average permeate velocity is more easily accessible exper-

imentally than the local axial velocity distribution vw(x). Results

for 〈vw〉 as a function of ∆P are presented in Fig. 9 for differ-

ent γ̇ and feed concentrations φ0 as indicated. For small values

of the TMP up to ∆P ≈ 3 kPa, the CP layer and the associated

osmotic surface pressure are so weak that 〈vw〉 ≈ v0
w = Lp ∆P is

valid. With further increasing TMP, the average permeate flux in-

creases weaker than linearly in ∆P. This is explained in the inset

of Fig. 9 which shows the pressure ratio 〈Π〉/∆P as a function of

∆P. The CP structure development along the membrane surface is

such that 〈Π〉 increases more strongly than linearly with increas-

ing ∆P, giving rise to an average permeate velocity smaller than

that for pure solvent feed, according to Eq. (13). Note further

that 〈vw〉 decreases with increasing φ0 since φw is increased. This

effect becomes more significant with increasing ∆P. Moreover,

consistent with the observations made in Fig. 8 for the axial per-

meate velocity distribution, 〈vw〉 increases with increasing γ̇ and

with increasing particle permeability (dashed and solid lines).

The absence of a plateau region for 〈vw〉 in Fig. 9 at large TMP

indicates that the operation conditions for a limiting flux behavior

at large TMP43 have not been approached. Operating UF under

limiting flux conditions reduces the efficiency of the separation

process. The discussion of 〈vw〉 as a function of the applied TMP,

such as the one in Fig. 9, is thus also of practical relevance.

An important conclusion of the present subsection is that the

particle permeability should be included in the UF modeling of

non-ionic microgel dispersions. At large TMP, the permeate ve-

locity (membrane surface concentration) of permeable particles

is significantly larger (smaller) than the one of impermeable par-

ticles, for otherwise identical system parameters.

4.3 Efficiency and cost indicators

To assess the performance of a filtration process from different

technical-economical viewpoints at given operating conditions,

various efficiency and cost indicators can be introduced and eval-

uated. We discuss in the following several indicators and their

inter-relations. These indicators apply quite generally but are

evaluated here in the context of the considered steady-state thin

boundary layer cross-flow UF in a hollow cylindrical fiber mem-

brane of length L and inner radius R. A more detailed discussion

of the process indicators is given in the supplementary informa-

tion.

The first efficiency indicator in the present list of indicators is

the Degree of Concentration Factor, α ≥ 1, defined as the ratio of

the particle volume fraction, φ f , in the finally obtained dispersion

(retentate) to the feed dispersion volume fraction,

α =
φ f

φ0
=

1

1−β
. (56)

Here, β < 1 is the related so-called Solvent Recovery indicator

which, by mass and dispersion volume conservation, is equal to

the fraction of initial dispersion volume recovered in the permeate

compartment as pure solvent. For fully developed homogeneous

parabolic Poiseuille feed flow described by Eqs. (6) and (17), the

second indicator is obtained in the supplementary information as

β =
4L

R

〈vw〉
um

, (57)

where um = γ̇R/2 is the feed inflow velocity at the center of the

fiber.

According to Eq. (57), β is proportional to 〈vw〉, thus having an

explicit 1/γ̇ dependence inherited from um. Considering the TMP

and characteristic shear rate dependence of 〈vw〉 displayed in Fig.

9, it follows that β increases with increasing ∆P, first linearly for

small TMP values and subsequently sub-linearly for larger pres-

sure values. In contrast, β decreases monotonically with increas-

ing γ̇. Since α increases with increasing β as quantified by Eq.
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Fig. 10 Degree of Concentration Factor, α, as a function of applied TMP

(a) and shear rate (b). Other parameters as in Fig. 5.

(56), the Degree of Concentration Factor α increases with increas-

ing ∆P and decreases with increasing γ̇, as expected. Figs. 10(a)

and (b) show quantitative results for α as a function of ∆P and

γ̇, respectively, obtained from the similarity scheme solution for

concentration-dependent transport properties.

An important indicator for the material cost aspect of a

baromembrane separation process is the Productivity per Unit

Membrane Area indicator, θ, defined as the dispersion volume flux

at the outlet (retentate flux) divided by the membrane area. It can

be expressed in terms of α and 〈vw〉 as

θ =
α2〈vw〉
α−1

. (58)

We refer to the supplementary information for the derivation of

this equation. Note that θ has the physical dimension of a velocity.

An alternative definition of the process productivity using the per-

meate rather than the retentate as the final product is discussed

in Ref.69.

As shown in Fig. 11(a), θ increases monotonically with in-

creasing ∆P, with a more pronounced upturn for the smaller con-

sidered shear rate. Quite interestingly, the behavior of θ as a

function of γ̇ is non-monotonic, with a minimum value at a shear

rate that increases with increasing TMP (Fig. 11(b)). Increasing

the shear rate is associated with two opposite trends. The first

one is a reduction in the CP layer that results in a decrease of the

osmotic pressure opposing the TMP. This leads to a diminution

of θ. The second trend is an increase in the feed flow that leads

to an increase in the outlet flow, with a correspondingly enlarged

indicator θ. At sufficiently low shear rates, the osmotic pressure

noticeably compensates the TMP. Therefore, the first noted trend

predominates thus lowering the CP layer profile accompanied by

a stronger permeate flux and a lower outlet flow. When the shear

rate is sufficiently high, the CP layer profile is reduced to such an

extent that its further reduction does not substantially affect the

permeate flux any more. Hence, the second noted trend leads to
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Fig. 11 Productivity per Unit Membrane Area, θ, as a function of applied

TMP (a) and shear rate (b). Other parameters as in Fig. 5.

an increase in θ with increasing γ̇.

We now discuss two energy cost indicators. The first one,

termed Specific Energy Consumption indicator, ω, is defined as the

energy consumed for producing a unit volume of final product. In

earlier related works70–76, the final product has been identified

with the permeate (for example, with desalinated water in case of

desalination studies) whereas the final product is identified here

with the retaining dispersion of concentration φ f . Moreover, in

earlier works the CP layer has been either completely disregarded

or treated in a simplified way using a semi-empirical parameter75.

Considering that basically the whole externally supplied power is

consumed for pressing the solvent through the membrane, it is

shown in the supplementary information that ω can be expressed

as

ω = (α−1)∆P , (59)

so that its shear rate dependence is inherited from that of α. Con-

sequently, ω decreases with increasing γ̇. Moreover, it strongly in-

creases with increasing ∆P, quadratically in the pressure for small

applied TMP or high shear rates, and more stronger than linearly

but weaker than quadratically for larger TMP values.

While the indicators α, θ, and ω discussed thus far favor large

values of the applied TMP for optimizing the one-stage cross-flow

UF process, this conflicts with the second energy cost indicator

considered here, namely the indicator ε ≤ 1 of Specific Energy Ef-

ficiency. This indicator is defined75 as the ratio of the thermody-

namically necessary minimal work per unit volume of final prod-

uct, ωmin, to the energy per volume, ω, in Eq. (59), consumed

during the steady-state filtration process,

ε =
ωmin

ω
=

αφ0

(α−1)

∫ φ f

φ0

(

Π(φ)

∆P

)

dφ

φ2
. (60)

Explicitly,

ωmin =− 1

V f

∫ Vf

V0

ΠdV = φ f

∫ φ f

φ0

Π(φ)
dφ

φ2
(61)
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Fig. 12 Specific Energy Efficiency, ε, as a function of applied TMP (a)

and shear rate (b). Other parameters as in Fig. 5.

is the minimal work per unit volume of retentate required in a

adiabatically slow reversible thermodynamic process of isother-

mally compressing the dispersion from its initial volume V0 to the

final volume V f with the help of a fully particle-retentive non-

adsorbing membrane employed as a plunger. We have used the

relation V = (4π/3)a3N/φ, with N the total number of mobile par-

ticles that remains constant during the compression. Note that the

minimal work required in the adiabatically slow reverse-osmosis

compression is equal to the change in free energy of the system

minus the energy required for lowering the number of solvent

molecules in the system during the compression. The integral in

Eq. (60) can be performed analytically, using the CS Eq. (37) as

input for the osmotic pressure Π(φ). The resulting expression for

ε is given in the supplementary information.

The behavior of the Specific Energy Efficiency as a function of

TMP and characteristic shear rate is shown in Figs. 12(a) and

(b), respectively. As expected, ε decreases with increasing γ̇, but

different from the earlier discussed indicators, ε decreases with

increasing ∆P. It should be noticed here that while the Degree of

Concentration Factor α increases with increasing TMP, the factor

α/(1−α) in Eq. (60) decreases. We finally point to the small

values of the Specific Energy Efficiency in Fig. 12. This is due ba-

sically to the comparatively large particle hard-core radius a = 10

nm for which the osmotic pressure buildup along the membrane

surface is small as described by the size dependence Π ∝ 1/a3.

5 Conclusions

We have presented the first comprehensive theoretical study of

particle permeability effects in the UF of non-ionic microgel dis-

persions modeled as solvent-permeable Brownian spheres. Based

on a boundary layer analysis, we have provided a systematic

study of inside-out cross-flow UF. The CP layer and permeate flux

profiles have been calculated using accurate analytic expressions

for the concentration-dependent collective diffusion coefficient,

D(φ), and zero-frequency viscosity, η(φ), of dispersions of perme-

able particles. The employed expressions for these transport co-

efficients are well tested against computer simulation results and

experiments40. They should be used instead of the substantially

less accurate cell model results and the semi-empirical Krieger-

Dougherty and Eilers expressions employed in earlier theoretical

UF studies, which have dealt mostly with impermeable colloidal

particles and proteins.

We have shown that the concentration dependence both of D

and η significantly influences the CP layer, in particular right at

the membrane surface, with a correspondingly strong influence

on the osmotic pressure profile and therefore on the permeate

velocity. The usage of constant values for D and η, if taken in

particular for the common situation of low feed volume concen-

tration φ0, results in the underestimation of the CP layer structure

and hence in the overestimation of the permeate flux. The appli-

cability of the transcendental Eq. (36) for the membrane surface

concentration profile, φw(x), with constant transport coefficients

has been discussed (inset in Fig. 5). It can be used to generate

an arithmetic average concentration profile in good agreement

with calculations of φw(x) for concentration-dependent D and η

at non-small distances x from the fiber inlet. Since the numerical

solution of the transcendental equation is quick and stable, the

arithmetic-average profile can be profitably used, for example, in

determining the axial range extending downstream from the inlet

wherein the membrane is devoid of a stagnant cake layer15,45,77.

We have shown that the effect of non-zero microgel permeabil-

ity is to reduce the particle concentration at the membrane sur-

face with a consequently enlarged permeate velocity. It is worth

to emphasize again that our study of permeability effects is rele-

vant not only for non-ionic microgels, modeled here hydrodynam-

ically as uniformly permeable spheres, but also for other hydro-

dynamically structured particles such as core-shell particles with

a dry rigid core and an outer permeable polymer brush layer. As

pointed out earlier and discussed in Ref.40, the reason for this is

that even particles with a complicated internal structure are hy-

drodynamically fully characterized, for quite general conditions,

by their hydrodynamic radius.

Various efficiency and cost indicators assessing the steady-state

UF process from different technical-economical viewpoints have

been discussed in dependence of the process parameters and with

full account of the CP layer structure. A detailed description of the

indicators and their inter-relations is given in the supplementary

information. Different indicators favor partially conflicting opti-

mization strategies. For example, while an enlarged TMP leads

to a larger Degree of Concentration factor, α, and Productivity

per Unit Membrane Area, θ, the price to pay is a reduced Spe-

cific Energy Efficiency, ε. The discussed indicators are of value

going beyond the specific permeate-particles cross-flow UF pro-

cess discussed in the paper. They can be used, for example, to

evaluate different optimization strategies employing multistage

processes70–72, re-use of free energy accumulated in a filtration

process73–75, external electric fields76, local production of flow

instabilities78, and the generation of high shear rates by moving

parts79. We expect our theoretical work to be useful in future

experimental explorations of microgel cross-flow UF.

The present paper was focused on identifying and analyzing
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hydrodynamic effects on UF arising from the particle permeabil-

ity and concentration-permeability dependencies of D and η, with

fouling effects disregarded. The dynamics of cake layer formation

by permeable particles can be described using cross-sectional av-

eraged forms of the time-dependent advection-diffusion and sta-

tionary momentum balance equations15,18,45,80, with the local

hydraulic resistance of the cake layer added to the clear mem-

brane resistance Rm.

In dealing with UF of microgel dispersions, also particle poly-

dispersity and deformability play a role. Size polydispersity is

expected to enlarge the particle concentration in the cake and

CP layers. Moreover, there should be an enhanced tendency of

membrane pore clogging by the small particles of the size distri-

bution. There is also a tendency of size fractionation triggered

by the transversal flow which, however, is counteracted by the

strong Brownian motion in UF. The theoretical treatment of poly-

dispersity in UF is a difficult task since it requires the additional

consideration of collective cross-diffusion coefficients relating the

diffusion flux of one component to the local concentration gradi-

ent of another one52,81,82. These coefficients are affected, in par-

ticular, by HIs causing a hydrodynamic dragging-along of small

particles by larger ones.

For ionic microgels in polar solvents, the effective particle

and membrane surface charges are additional important parame-

ters68,83,84. As shown in Ref.1, while the permeability of ionic

microgels is hydrodynamically less influential than that of un-

charged ones, due to the longer-ranged electrostatic repulsion,

the ionic microgels tend to shrink substantially with increasing

concentration in the swollen-state temperature range. Moreover,

the softness (single-particle compressibility) of ionic microgels in-

fluences the width of the fluid-solid coexistence region, rendering

it smaller for stiffer microgels85. Thus, the size shrinkage with

increasing concentration and the softness of ionic microgels must

be included in a realistic modeling of the CP and cake layers.

Work by the present authors on filtration modeling of polydis-

perse and charge-stabilized rigid colloidal particles and soft ionic

microgels is in progress. Furthermore, we are currently involved

in an experimental-theoretical study of cross-flow filtration of mi-

crogel dispersions86. The present theoretical results in particular

for the concentration factor and energy efficiency indicators are

used to analyze the performance and to design the filtration ex-

periments. The outcome of this ongoing study will be communi-

cated in a future publication.
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