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Abstract

Motivated by recent experiments on the rod-like virus bacterio-

phage fd, confined to circular and annular domains, we present

a theoretical study of structural transitions in these geometries.

Using the continuum theory of nematic liquid crystals, we exam-

ine the competition between bulk elasticity and surface anchor-

ing, mediated by the formation of topological defects. We show

analytically that bulk defects are unstable with respect to defects

sitting at the boundary. In the case of an annulus, whose topol-

ogy does not require the presence of topological defects, we find

that nematic textures with boundary defects are stable compared

to defect-free configurations when the anchoring is weak. Our

simple approach, with no fitting parameters, suggests a possible

symmetry breaking mechanism responsible for the formation of

one-, two- and three-fold textures under annular confinement.

Introduction

Over the last thirty years rod-like viruses, optically visualiz-

able, have been established as unique prototype systems for ex-

perimental studies of liquid crystalline order1. In recent exper-

iments, f d-viruses 0.88 µm long and 6.6 nm thick were con-

fined to wedge2, rectangular3 and annular4 geometries. De-

pending on the relative size and shape of the confining geome-

try various two-dimensional (2D) equilibrium configurations of

f d-viruses with spatially non-trivial orientational texture were

observed. The author4 attributes the formation of rather strik-

ing annular textures with three-fold rotational symmetry to the

finite length of f d-rods. Most theoretical work so far has em-

ployed numerical Monte Carlo simulations2,3,5, incorporating

the range of confinement, the aspect ratio and the density of

the constituent rods. This approach inherently depends on the

details of the microscopic parameters. Although very useful in

modeling specific small systems these simulations do not pro-

vide a universal or complete picture of the phase diagram and

corresponding transitions exhibited by confined systems. The

aim of this paper is to gain a basic understanding of the symme-

try selection mechanisms of nematic configurations confined to

circular geometries.

As suggested by experimental data4, the delicate interplay

between boundary and bulk effects is responsible for the variety

of equilibrium structures. Confined to thin annuli, f d-viruses

readily satisfy the preferred tangential alignment at the inner

and outer boundaries (planar anchoring) at the expense of bend

elastic distortions in the bulk. For a disc, such a bend config-

uration would inevitably lead to the presence of a topological

defect of charge q = +1 at the center, in agreement with the

Poincaré–Hopf theorem6 applied to line fields, since the Euler

characteristic χ of a disc is one. However, as analytically cal-

culated below, the bulk defect is unstable with respect to two

defects sitting at the boundary. As a result the nematic direc-

tor satisfies the boundary conditions almost everywhere on the

boundary (strong anchoring) except at a finite number of points,

similar to the studies of Langmuir monolayers7,8. In case of a

finite/weak anchoring, the preferred alignment at the boundary

can be violated over extended region. Here we show that even

for an annulus boundary defects become energetically favored,

though no defects are required by topology (χ = 0). By in-

serting pairs of positive (negative) charges at the outer (inner)

boundary of an annulus we screen the curvature of circum-

ference and ‘unbend’ otherwise bend nematic texture, similar

to the stabilizing effect of the Gaussian curvature in the two-

dimensional manifold9,10. Alternatively, introducing boundary

defects into the uniform state (no bend or splay elastic defor-

mations), we can curve the director field to satisfy the boundary

conditions and lower the anchoring energy. Therefore, when-

ever bulk and boundary energy contributions become equally

important, we expect the equilibrium 2D textures to encompass

boundary defects.

Interestingly, the phenomenon of the transformation between

surface and bulk defects was studied in 3D nematic droplets11.

When the boundary conditions, set by the temperature, change

from the homeotropic to planar anchoring, the nematic direc-

tor deforms from the ‘hedgehog’ configuration (point defect

inside) to the pair of ‘boojums’, sitting at the surface. In experi-

ments with the f d-virus4, the nature of the boundaries does not

change, while it is the size and the topology (disc or annulus) of

the 2D confinement which may influence the distribution of the

topological charge at the boundary. To quantify the effect of the
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confinement and weak anchoring conditions, we adopt the con-

tinuum theory of nematic liquid crystals12, assuming the one

elastic constant approximation, such that bend and splay elastic

constants are equal K as suggested by2 for f d-virus. We quan-

tify the relative stability and the equilibrium number and charge

of defects at the boundary, which is governed by the ratio of the

anchoring extrapolation length La =K/Wa (Wa is the anchoring

strength) and the system size R. With no fitting parameters we

capture some features of experiments4 on f d-viruses, namely

the appearance of one- and two-fold textures, in particular. Our

analytic calculations for different geometries suggest the value

of the anchoring extrapolation length La ≃ 5 µm.

In the following we first formulate the problem and charac-

terize topological defects in the bulk and at the boundary. Next

we consider special solutions for nematic configurations, con-

fined to the disc and to the annulus, allowing for the presence

of defects at the boundary. This approach is merely an ansatz,

the limiting case of a general minimization problem.

Formulation of the problem

Nematic liquid crystals are usually described by the unit vector

n, known as the director, with n ≡ −n to obtain an orientation

rather than a direction. In the continuum description the elas-

tic Frank free energy12 is quadratic in gradients of n, including

bend ∇×n and splay ∇ ·n terms in 2D. In the one elastic con-

stant approximation (equal bend and splay contributions) the

elastic energy simplifies to12

Fel =
K

2

∫∫

Ω
dxdy |∇n|2, (1)

where the integration is performed over the domain Ω. In an in-

finite system the ground state corresponds to the uniform direc-

tor field, n = const. When confined, liquid crystals reorient to

satisfy the boundary conditions, resulting in spatial variation of

the director field, parametrized in Cartesian (x,y) coordinates

by (see Fig. 1a)

n = cosθ(x,y)ex + sinθ(x,y)ey. (2)

Minimizing the free energy (1) leads to the Euler–Lagrange

equation

∂xxθ +∂yyθ = 0, =⇒ θ(z) = ∑
i

Im
{

log(z− zi)
qi
}
, (3)

where z ≡ x + iy. The equilibrium configurations described

in Eq. (3) correspond to a set of defects of strength (topolog-

ical charge) qi located at positions zi. Note that in the far

field (|z − zi| → ∞) the director is uniform, which is a good

approximation for systems with infinite size. The total topo-

logical charge ∑i qi in (3), associated with the line field n in

�

qi

 mj>0

�
2

(b)

�

(a)

�

��

Figure 1 Schematic illustration of (a) a uniform line field n = ex

confined to a simple region Ω with χ = 1 (6), where we have chosen

as positive the counter-clockwise orientation of the boundary ∂Ω,

with the unit normal ννν pointing outside Ω; (b) two kinds of

topological defects: bulk defects (circles of charge qi (4)) and

boundary defects (half-circles of charge m j = ∆θ j/(2π)), related via

the charge conservation law, Eq. (9).

2D, is defined by enclosing the defects at positions zi by an ar-

bitrary contour γ1 (see Fig. 1b) and computing the following

integral9,12

1

2π

∮

γ1

ds(n×∂sn) =
1

2π

∮

γ1

dθ= ∑
i

qi. (4)

The effects of confinement may be studied by adding an

effective surface energy Fa favoring planar anchoring in the

Rapini–Papoular form12

Fa =
Wa

2

∫

∂Ω
ds(n ·ννν)2, n ·ννν = cos(θ −ϕ) (5)

where Wa > 0 is the anchoring strength, s is a curvilinear co-

ordinate of the boundary ∂Ω and ννν = cosϕ(s)ex + sinϕ(s)ey

(see Fig. 4) is a unit normal to the boundary. The anchoring

length La = K/Wa is the length scale over which the director

reorients to align tangentially with the boundary. Any simply

connected domain Ω with boundary ∂Ω is homeomorphic to a

disc, whose Euler–Poincaré characteristic χ = 16, with

χ =
1

2π

∮

∂Ω
ds(ννν ×∂sννν) =

1

2π

∮

∂Ω
dϕ. (6)

We have chosen the counter-clockwise orientation of ∂Ω as a

positive one (Fig. 1). The Euler–Poincaré characteristic of an

annulus is zero (χ = 0). This can be shown by i) integrating (6)

over two circles with opposite orientation, connected by a cut or

ii) triangulating an annulus and counting the number of vertices

V , edges E and faces F , yielding χ =V −E +F = 0.

If the characteristic size of our system R is much smaller

than the anchoring length, R . La, the director remains uni-

form, as shown in Fig. 1a. Very strong anchoring Wa (R ≫ La),

on the contrary, forces a preferred orientation of n relative to

the normal ννν (in the case of planar anchoring n ⊥ ννν). Topolog-

ical defects of charge qi then appear in the bulk, with ∑i qi = χ

2
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(Poincaré–Hopf theorem6). On the other hand, the most com-

mon situation in experiments corresponds to R & La. In this

case surface anchoring and the energetic cost of bulk direc-

tor deformations compete with each other and bulk defects can

be pushed towards the boundary, resulting in director deforma-

tions that satisfy the boundary conditions almost everywhere on

∂Ω, except at a finite number of points z∂
j

7. The repulsive na-

ture of the pairwise defect–defect interactions favours maximal

separation between same-sign defects9,12 while anchoring me-

diated interactions between topological defects have not been

analyzed in detail before.

To characterize defects localized on a 1D boundary ∂Ω,

we introduce their topological charge m j related to the angle

deficit of the director field n, which rotates in the same (op-

posite) sense as the interior contour γ2 (see Fig. 1b), yielding

a positive (negative) charge m j = ∆θ j/(2π). To establish the

connection between the strengths qi and m j of bulk and surface

defects, the topology of the system as described by χ , and the

anchoring n ·ννν we derive the charge conservation law, follow-

ing the approach outlined in11,12 for 3D nematic systems. We

choose a closed curve γ2 going around the boundary defects m j

at positions z∂
j (see Fig. 1b). Since there are no special points

of the director field n between the curve γ1, enclosing defects

in the bulk, and γ2, we get

2π ∑
i

qi
(4)
=

∮

γ1

ds(n×∂sn) =
∮

γ2

ds(n×∂sn). (7)

Decomposing the integral over the closed contour γ2 into the

contribution for the portion around the boundary defects, given

by −∑ j m j, and the integral along piecewise regular curves, we

find
∫

γ2\{z∂
j }
ds

[
(n2

ν +n2
τ

︸ ︷︷ ︸

1

)∂sϕ +nν ∂snτ −nτ ∂snν
︸ ︷︷ ︸

∂sθ−∂sϕ

]
ννν ×τττ. (8)

The integral of the first term is 2πχ (6). The other terms

can be computed using the parametrization n = nν ννν + nτ τττ in

the local system of coordinates and the relations ∂sννν ≡ ∂sϕ τττ ,

∂sτττ =−∂sϕ ννν . Replacing (8) in (7), we get the following charge

conservation law

∑
i

qi +∑
j

m j = χ +
1

2π ∑
j

∫

γ2\{z∂
j }
d(θ −ϕ). (9)

In Fig. 2 we show the transformation of a configuration of the

director field n containing bulk defects with qi = +2,+1 to

configurations with boundary defects with m j = + 1
2
,+ 1

4
. By

choosing an arbitrary curve γ2 enclosing the defects, one can

show that (9) holds in all the cases considered in Fig. 2. In fact

the bulk and boundary defects are in the same topological class

since the latter are obtained simply by pushing a bulk defect to

the boundary. Here we restrict ourselves to smooth boundaries

and thus m ≡ q/2.

To find nematic configurations minimizing the total free en-

ergy Fel +Fa one needs to solve the Euler–Lagrange equa-

tion (3) in the domain Ω with the boundary condition, arising

from the vanishing of the first variation of δ (Fel +Fa) = 0 on

∂Ω, given by

Kννν ·∇θ −Wa sin(θ −ϕ)cos(θ −ϕ) = 0. (10)

Instead of solving this variational problem numerically, we pro-

pose a plausible ansatz for the angle θ that minimizes Fel (3).

We then seek approximate solutions compatible with the one-,

two- and three-fold symmetries observed in experiments4 and

compare their relative energies to determine the most favorable

configuration. This allows us to treat the problem analytically.

We consider configurations with different number of defects

(up to 6) and topological charge |m| 6 1
2

(or |q| 6 1), confined

to a disc and an annular geometry. Since the boundaries of both

disc and annulus have constant curvature, the position of de-

fects correspond to the furthest separation along the boundary.

The defect charge is, however, not known a priori. Using this

approach, we compare the energetics of nematic liquid crystals

confined to a disc or annulus and study the interplay between

the anchoring extrapolation length La, the system size R and the

core size of defects ε in controlling the lowest energy configu-

rations.

Nematic confined to a disc

The vector field n (2) shown in Fig. 2b,e without confinement

can be written explicitly as

θ (+ 1
2 )(z) = Im

{
log(z2 −R2)

}
, z ≡ reiϕ , (11)

θ (+ 1
4 )(z) =

π

2
+ Im

{
log

√

z2 −R2
}
. (12)

It accounts for the pairs of topological defects at positions

zi = ±R with charges qi = +1 and qi = + 1
2

and satisfies the

Euler–Lagrange equation (3). Confining the director fields

given by Eqs. (11), (12) to a disc of radius R (Fig. 2c,f) leads

to boundary defects characterized by m =+ 1
2

and m =+ 1
4
, re-

spectively, while the director n remains almost uniform in the

bulk. According to Eq. (9) we expect no anchoring contribution

for a pair of m =+ 1
2

where the boundary condition is not satis-

fied just at the defect core and the total charge equals χ , while

for a pair with m=+ 1
4

the deviation from the preferred anchor-

ing orientation extends over a finite portion of the boundary,

yielding a non-zero anchoring contribution.

Below we quantify the energetics of the nematic configura-

tions (Fig. 2c,f) and analyze the stability of configurations with

boundary defects relative to the defect free, uniform state. We

assume that the size ε of the defect core satisfies ε ≪ R and

that the associated core energy is much smaller than the elastic

3
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(a) q =+2 (b) q =+1 (c) m =+1/2

(d) q =+1 (e) q =+ 1
2

(f) m =+1/4

Figure 2 (a)–(c) Shows the transformation of a bulk defect of charge

+2 into two +1 defects, which subsequently approach the boundary

of the circular region, where they can be classified as charge m =+ 1
2

boundary defects. (d)–(f) Similarly, a charge qi =+1 defect is split

into two qi =+ 1
2 defects which in turn yield two charge m =+ 1

4
boundary defects. This process illustrates the construction of our

ansatz. The parametrization of the director field configuration of (c)

and (f) is given by (11) and (12), respectively.

energy in the bulk and thus can be neglected. First we compute

the total free energy of configuration with m = + 1
4
. Substitut-

ing the nematic angle θ (+ 1
4 )(z) given in Eq. (12) into the an-

choring and elastic free energy Fa and Fel given in Eqs. (5)

and (1) and integrating over the polar coordinate ϕ , we find

F
(+ 1

4 )
a =

WaR

2

∫ 2π

0
dϕ cos2(θ (+ 1

4 )−ϕ) =
WaR

2
(π −2), (13)

F
(+ 1

4 )

el =
K

2

∫ 2π

0
dϕ

∫ R

0

dr r3

R4 + r4 −2r2R2 cos(2ϕ)
≃

≃ K

2

{
π

2
log

R

4ε
+

ε

R

(
3π

4
+ cot

(
ε

R

))

+O

(
ε

R

)2}

, (14)

where we have truncated the converging power series in ε/R.

Including the next order corrections may be appropriate for sys-

tems with relatively large defect core size ε . In conventional

nematics ε is of the order of nanometers, which is the charac-

teristic scale of the constituent molecules. In Ref.3, the authors

assumed ε = 0.88 µm for fd-virus and estimated the anchoring

extrapolation length La ≃ 1.4 µm.

Nematic configurations with a pair of boundary defects of

charge m =+ 1
2
, in a disc (Fig. 2c) have zero anchoring energy,

except for a small region O(ε) around the defects where the an-

choring condition is not satisfied. Their elastic energy is, how-

ever, four times higher than F
(+ 1

4 )

el (14) since it is proportional

to the square of the charge. Notice also that the structure with a

Pair m=1�2

Pair m=1�4

U
ni

fo
rm

æ

æ

æ

æ

à

à

à

à
à
à

0 5 10 15 20

2

4

6

8

10

R�La

lo
gH

R
�¶
L

Figure 3 Phase diagram of nematic film confined to a disc of radius R

showing the regions of parameters corresponding to the energy

minimum for three configurations: a uniform state (green) and the

two defective configurations with charges m =+ 1
2 (blue) and

m =+ 1
4 (pink) shown in Fig. 2c,f. The horizontal axis is the

dimensionless parameter R/La = RWa/K; the vertical axis is the ratio

of the radius R to the defect core ε (14). The circles show the location

of the crossover between the m = 1
4 defect configuration and the

uniform state for La = 1 µm and various values of the radius of the

disc (R = 5,10,15 . . . µm from left to right). The squares denote the

corresponding crossover between the two defective configurations for

La = 5 µm In both cases we have chosen ε = 0.5 µm.

bulk defect qi =+1 (Fig. 2d) confined to a disc is unstable with

respect to configuration (c), since Fd −Fc ∝ 2πK log2, ne-

glecting the contribution from the defect core. The fact that no

bulk defects were observed in experiments with fd-virus4 sug-

gests that these systems are characterized by a finite anchoring

strength Wa. Finally, pushing defects of higher charge, such as

q =+2 (Fig. 2a), to the boundary of a disc8 gives higher elas-

tic energy ≃ 2πK log(2R/ε) compared to the configurations

shown in Figs. 2(c,d).

To quantify the role of anchoring La = K/Wa and system

size R we compute the phase diagram. In Fig. 3 we compare

three nematic states confined to a disc of size R: a uniform state

n= const, and two nematic configurations with a pair of bound-

ary defects separated by 2R and charge m = + 1
2

and m = + 1
4
,

respectively (see Fig. 2c,f), (12). The relative energy of these

configurations is controlled by the interplay of the defect core

size ε , the anchoring strength La and the radius R of the disc.

Note that the core energy for a pair of defects is of the order of

πKq2 12, independently of ε , and accounting for this contribu-

tion will lead to a slight shift of the coexistence curves in the

phase diagram without changing the basic picture. The uniform

state is stable for small systems (R) and weak anchoring (large

La & R). A small value of ε increases the region of stability of

the uniform state. For stronger anchoring (or smaller system

4
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size) the lowest energy state is one with a pair of boundary de-

fects. The m = + 1
2

defects are favored for large values of the

core size ε while the configuration with m=+ 1
4

is preferred for

smaller core sizes. The main result is that by tuning the system-

size R one can drive a transition between a uniform state and a

defective configuration selected by the minimization of the an-

choring and elastic energies. The transition is controlled by two

dimensionless length scales R/ε and R/La, where ε and La are

determined by intrinsic physical and chemical properties of the

system.

Next, we compare our analytic predictions with experimen-

tal data for the fd-virus4 confined to a disc. For weak an-

choring (La = 5 µm) we find that increasing the radius R =
5,10,15 . . . µm for a chosen core size ε = 0.5 µm yields a tran-

sition from a uniform to a ‘defective’ state with m = 1
4

(squares

in Fig. 3). For strong anchoring (La = 1 µm) the transition

is between the two defective configurations (circles in Fig. 3).

In both cases the critical system size where the transition oc-

curs is in the range R ≃ 5− 10 µm, which is compatible with

experiments4. On the other hand, since the defect charge asso-

ciated with reorientation of the f d virus was not extracted from

the experimental data4, we cannot determine the value of the

anchoring extrapolation length La based solely on the results

shown in Fig. 3.

In the following we adapt simplified analytical model to a

viral nematics confined to an annular geometry. Our goal is to

gain insight into the mechanism responsible for the selection of

the symmetry of the boundary defect arrangement (one-, two-

or three-fold, as seen in experiments4), as well as their topo-

logical charge, and estimate the value of the anchoring strength

La within our approximations.

Nematic in annular geometry

Now we consider a nematic liquid crystal confined to an annu-

lus of inner radius Ri and outer radius R. This geometry does

not require the presence of topological defects since the Euler

characteristic of the annulus is χ = 0. In this case the defect-

free ground state shown in the top inset of Fig. 4 satisfies the

tangential boundary condition. We will refer to this structure

as the bend configuration. In Fig. 4 we compare the total free

energy Ftot = Fel +Fa of a uniform state and a bend state as

a function of R/La and ξ = Ri/R ∈ (0 : 0.7]. For small radius R

or weak anchoring (large La) a uniform state with zero elastic

energy and anchoring energy Fa = WaπR(1 + ξ )/2 is ener-

getically favored, consistent with the phase diagram in Fig. 2.

For large R/La a bend state with no anchoring contribution and

elastic energy Fel = −Kπ logξ becomes energetically favor-

able. According to experiments with fd-virus4, the transition

between these two states occurs at R ≃ 5 µm and ξ ≃ 0.3−0.5.

Using this value, we estimate a value La ≃ 2.7−5.5 µm, which

Ri

R

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

=
R

i/
R

 

R/La

bend

uniform

Figure 4 The coexistence curve of the bend state with

n =−sinϕ ex + cosϕ ey and the uniform state with n = ey in an

annulus of inner radius Ri and outer radius R (see Fig. 1 for the

definition of the coordinate system). The horizontal axis is the system

size R scaled by the anchoring extrapolation length La = K/Wa, the

vertical axis is the ratio ξ = Ri/R. The bend state (Fel > 0 (1)) is

energetically favored above the curve, while the uniform state

(Fa > 0 (5)) has lower free energy in the region below the curve.

is of the same order as La ≃ 1.4 µm obtained for fd-virus in

rectangular geometries3 with the same physical properties of

the boundary.

We now examine a number of nematic configurations with

k-fold rotational symmetry, with k = 1,2,3. These can be ob-

tained by considering different numbers of defect pairs of posi-

tive and negative charge sitting at the inner and outer bound-

aries of the annulus. The total charge is conserved since

χ = 0 (9). We consider the textures shown in Fig. 5 and evalu-

ate the corresponding energies. Configurations 1 to 3 can be

obtained by starting from the bend state and introducing nega-

tive charges m =− 1
4

at the inner boundary and positive charges

Table 1 The total anchoring, Fa, and elastic, Fel , contributions to

the free energy (integrated over the whole system) calculated to

lowest order in ε/R for the configurations 1 – 3 (Fig. 5). The director

n is parametrized by the angle θ = π
2 +arg

[
zβ−Rβ

zβ−R
β
i

]
, where β = 1,2,3

for the first, second and third row, respectively, and ξ = Ri/R.

Fa, WaR(1+ξ )/2 Fel , K/2

1
2(1+ξ )( π

2 −2arctan
√

ξ )−π(1−
√

ξ )2

2
√

ξ

π
2

log
(

R
ε · 1−ξ 2

2
√

ξ

)

2
πξ−2(1+ξ 2)arctanξ

ξ
π log

(
R
ε ·

√
ξ (1−ξ 4)

4

)

3
(1+ξ 3)(π−4arctanξ 3/2)−π(1−ξ 3/2)2

2ξ 3/2
3π
2

log
(

R
ε · ξ 1/6(1−ξ 6)

6

)

5
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1 2 3

4 5 6

7 8 9

Figure 5 Nematic textures confined to annular geometry. The size of

dots describes the magnitude of the defect charge: m = 1
4 ( 1 – 3 and

7 – 9 ), m = 1
2 ( 4 – 6 ); the color corresponds to the sign, with red

denoting positive defects (m > 0) and blue negative ones (m < 0).

The textures 7 – 9 have the same anchoring energy but higher elastic

energy than 1 – 3 , hence are not included in the stability phase

diagram shown in Fig. 6.

m =+ 1
4

at the outer boundary of the annulus and cost less elas-

tic energy from director distortion than 7 to 9 , but have a high

cost in anchoring energy compared to 4 to 6 . Note that tex-

tures 1 to 3 and 7 to 9 have the same anchoring energy (see

Table 1). Conversely, the configurations with |m|= 1
2

boundary

defects ( 4 – 6 ) cost more elastic energy associated with curva-

ture of the director field than 1 – 3 , but have lower anchoring

energy, as shown in Fig. 6a. Charge conservation as given in

Eq. (9) requires that for all textures considered the anchoring

energy density is the same at the inner and the outer boundaries

of the annulus. For the configurations 4 – 6 the anchoring en-

ergy is simply WaR(1+ξ )πξ 2n/2, with n= 1,2,3, respectively,

for 4 – 6 representing the number of boundary defect pairs.

In the following we exclude the configurations 4 – 9 from our

analysis, because their elastic/total energy is much larger than

that of 1 – 3 , as well as of the defect free states.

In Fig. 6 we compare the energies of the various nematic

textures in the annulus. In textures 1 – 3 the m = ± 1
4

bound-

ary defects have high anchoring energy in fat annuli (small ξ )

but lower elastic energy than the bend state over a wide range

of parameters ξ and R/ε , as shown in Fig. 6b which displays

the region of stability of the various textures. Thus, for small
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Figure 6 Energetics of the six configurations 1 – 6 shown in Fig. 5:

(a) The normalized anchoring energy in units of R/La as a function of

ξ = Ri/R. The corresponding expressions are given in Table 1;

(b) and (c) display the region of parameters where various nematic

textures minimize the free energy (b) is obtained by comparing the

elastic free energy of textures 1 – 3 and of the bend state (not that for

these configurations the anchoring contribution to the free energy is

zero or negligible); (c) is obtained by comparing the total free energy

of textures 1 – 2 and of the defect free configuration shown in Fig. 4

for La = 7 µm and ε = 0.5 µm.

system size, or weak anchoring, where the elastic energy dom-

inates, we expect the equilibrium textures with one-fold sym-

metry ( 1 ) to be more favorable in thin annuli and textures with

two-fold symmetry ( 2 ) to be favored in thick annuli. The con-

figuration 3 may also be energetically accessible in a narrow

range of parameters, consistent with the fact that it is rarely

observed in experiments4. In all cases boundary-stabilized de-

fect textures are the ground states of confined nematics when

R/La ∼ O(1). In Fig. 6c, assuming weak anchoring La = 7 µm

and ε = 0.5 µm, we illustrate with different colors the minimiz-

ers of the total free energy Fel +Fa. Defect structures with

m = + 1
4

are energetically favored, and therefore support our

previous estimate of the anchoring extrapolation length. Note

that ground states (energy minimizers) with crystalline order on

the surface of an embedded torus are also characterized by the

presence of positive disclinations on the exterior of the torus

and negative disclinations in the interior10.
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Concluding remarks

We have shown that, in contrast to what speculated in earlier

works3–5, a number of defective textures observed experimen-

tally in nematic films confined to circular and annular geome-

tries can be accounted for within continuum liquid crystal the-

ory. By examining the energetics of textures with localized de-

fects at the boundary, and exploiting conservation of topologi-

cal charge, our work captures the main features of experiments

in f d-virus4 and provides an estimate for the anchoring extrap-

olation length in these systems – La ≃ 5 µm.

Several challenging questions remain unanswered. Our re-

sults suggest that the selection of the symmetry of observed ne-

matic textures is controlled a single dimensionless parameter,

WaR/K, and the conservation of topological charge rather than

by details of microscopic interactions. But what is the range of

validity of the continuum theory, i.e., is it valid when the size

of confinement approaches a few molecular sizes? Another im-

portant question concerns the use of the one-elastic constant

approximation, which is reasonable for semiflexible polymers,

including the f d-virus with its persistence length of the order

of the polymer length2,4, but is not accurate for rigid rods13. A

significant elastic anisotropy was measured experimentally for

systems composed of tobacco mosaic virus14 with bend con-

stant larger than splay constant, K3 ≃ 17K1. On the contrary,

according to theoretical predictions15 the splay elastic constant

K1 diverges as the length of the molecule while the bend elastic

constant K3 depends on the rigidity of the molecules. Thus for

(semi)flexible polymers one expects K1 > K3. It would there-

fore be of interest to quantify the energetics of topological de-

fects in case of strong anisotropy of the elastic constants. The

authors16 analyzed the influence of splay-bend anisotropy on

the formation of fiber texture in discotic liquid crystals with

fixed boundary conditions and topological defects in the bulk.

Our approach could also be generalized to other planar geome-

tries with non-monotonic curvature of the boundary, such as

the square plates examined in3,4. Finally it is well known that

in three dimensions topological defects affect the shape of ne-

matic droplets17,18. It would similarly be interesting to examine

the interplay between defect textures and shape in thin nematic

films confined by a deformable boundary.
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