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A simple, coarse-grained model of chiral, helical filamentsis used to study the polymorphism of fibrous aggregates. Three generic
morphologies of the aggregates are observed: twisted ribbons, in which the filaments are joined side-by-side, twisted,helicoidal
fibrils, in which filaments entwine along each other and tubular forms, with filaments wound together around a hollow core of
the tube. A relative simplicity of the model allows us to supplement numerical simulations with an analytic descriptionof the
elastic properties of the aggregates. The model is capable of predicting geometric and structural characteristics of the composite
structures, as well as their relative stabilities. We also investigate in detail the transitions between different morphologies of the
aggregates.

1 Introduction

A number of biological macromolecules assemble in the form

of fibre-like, typically helical forms. The examples include

a wide variety of structures: from coiled-coils ofα-helices,

double-stranded DNA or protein fibrils, to microtubules and

bacterial flagella. Even though these systems share a number

of structural similarities, their detailed morphologies depend

on the conformational characteristics at the monomeric level

as well as the dynamics of the assembly process itself. For

example, the fibrillogenesis depends on the type of fibrilized

protein1–5 or the physical conditions during the fibrillization

process6,7, the DNA super-coil structure is influenced by the

sequence of nucleotides, whereas the structure of a coiled-

coil of α-helices changes depending on their amino acid se-

quences8. Fibrillization processes have recently attracted a

lot of attention, both due to their importance in the medical

context and due to their potential applications in bottom-up

nanoengineering9. On one hand, it has been realized that ag-

gregation of proteins into amyloid fibrils is often associated

with neurodegenerative diseases10. On the other hand, many

examples of functional fibrillar aggregates exist, the mostfa-
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mous of which are keratin, collagen, elastin, and silk with their

unique elastic and tensile properties11. These structures have

provided inspiration for nanoengineers for bottom-up synthe-

sis strategies, in which a small number of simple precursors

molecules spontaneously assemble into hierarchical nanofib-

rils12. One of the basic questions in this context is how does

the morphology of the fibrous superstructure depend on the

properties of individual units and the dynamics of aggregation

process itself. Interestingly, despite a wide variety of building

blocks, the set of realizable fibrillar superstructures seems to

be relatively small. These include ribbons, in which the in-

dividual filaments are joined side-by-side, twisted, helicoidal

structures in which several filaments are entwined along each

other and tubular forms, with the filaments wound together

around a hollow core of the tube7,9,13–21.

Several models have been proposed to explain such a poly-

morphism, linking it to the action of hydrophobic, electrostatic

or entropic forces9,22. In particular, Adamcik et al.17 and As-

senza et al.23 have proposed models in which a key role in

controlling the morphology of the aggregates is played by the

competition between the electrostatic and elastic contributions

to the total energy. While the electrostatic repulsion between

like charges on different fibrils is causing them to twist heli-

cally, the elastic energy prevents this twist from being exces-

sive. Importantly, the helicity of the aggregates in this model

is a consequence of the interactions between the individual
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fibrils, which in itself are achiral.

Other researchers have invoked the role of chiralities of the

constituent units. Chiral molecules do not pack parallel to

their neighbors, but rather at a slight angle. Based on that

observation, Aggeli et al.14, Nyrkova et al.24 and Selinger et

al.22 have analyzed the properties of membranes formed by

such chiral objects (which is reflected in chiral elastic term in

their Hamiltonian). Similarly to the studies based on electro-

static approaches, they also find that filaments self-assemble

into helical or twisted ribbons, which can also close on them-

selves forming the tubules.

However, as stated above, the starting point of the chirality

models is a membrane Hamiltonian, thus they are better suited

to describe self-assembly and polymorphism in lipids25,26,

colloidal membranes27, bilayers of gemini surfactants13 or

amphiphiles28, but less suitable for description of the fibril-

lar aggregates. There is thus a gap in the literature which we

attempt to fill in the present paper, by presenting the coarse-

grained model of self-assembling chiral filaments, where we

assume a microscopic Hamiltonian of each filament plus the

interactions between them. A direct inspiration for our model

is the molecular architecture of insulin aggregates. Insulin

protofilaments are known to be helical29,30, with a spine com-

posed of steric zipper ofβ -strands, and the floppy C-termini

of insulin chain B on the opposite sides of the filament wind-

ing around the filament axis. Because these termini are both

hydrophobic and capable of association into interchain molec-

ular velcro they tend to be attractive31. This is reflected in our

coarse grained model, where the filament backbone is repre-

sented by a chain of beads, whereas the second type of beads

is used to represent the attractive interaction sites, arranged in

two strips on the opposite sides of the backbone, each heli-

cally wound along the length of the filaments - arguably the

simplest way of introducing chirality on the level of individ-

ual filaments. Thus the model falls into similar class as those

proposed by Aggeli et al. and Nyrkova et al.14,24 in that in-

dividual filaments are endowed with nonzero chirality. How-

ever, as already mentioned, we work on a finer scale than the

models considered in14,24, resolving the energies and struc-

ture of individual filaments, instead of starting at the level of

the multi-filament tapes, as it is the case therein14,24.

Within this model, we analyze the structural forms attained

by multi-filament clusters and the interconversions between

them. Since the coarse-grained model resolves, albeit in a

simplified way, the structure of individual filaments, it can

account for different ways, in which (discrete) sets of bind-

ing sites on each filament can bind each other32–34. In our

previous paper, we have shown that the presence of such a

discrete set of binding sites leads to a rather intricate dynam-

ics of the aggregation, accompanied by chirality inversions.

It is thus of interest to see how this discretness affects the

cluster morphologies and the characteristics of the transitions

between them, which is the main motivation for the present

study. Interestingly, we still find three general morphologi-

cal forms which the aggregates can attain, but their geometry

is subtly different from that found the continuum-sheet theo-

ries. For example, the helicoids created from the chiral fila-

ments are not simply helicoidally twisted ribbons, but rather

filaments winding around each other while sharing a common

interaction seam, with the pitch determined by the arrange-

ment of the binding sites, analogously to “knobs-into-holes”

packing in coiled coils, as described by Crick8,35,36. Similarly,

the tubular structures that we found are stabilized by a set of

discrete contacts between the individual filaments, which or-

ganize themselves in a specific manner, giving rise to a selec-

tion of a well-defined radius of the tube.

Our aim here is to explore the energy landscape of the ag-

gregating filaments for a given, fixed set of the parameters of

the model, the same as the one used in our previous work

on chirality reversals34. Within this framework, we identify

the possible morphologies of the clusters, as well as look in

detail at the transitions between the different morphological

forms. Some of these transitions are found to be spontaneous,

whereas to induce other one needs to apply the force and/or

increased temperature. We demonstrate that these morpholo-

gies, although described by a common set of parameters, arise

as a result of an interplay between attraction of individualfil-

aments and their elastic deformation energy, with individual

terms responsible for bending, twisting and stretching of the

filaments. Analysis of these energy contributions shows that

their relative role changes depending on the superstructure of

the cluster. A particularly important role is shown to be played

by an anisotropy in bending rigidities, and the associated en-

ergy density, which gets massively released during the forma-
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tion of the tubular structures. Importantly, a relative simplic-

ity of the model allows us to supplement the numerical results

with an analytic description of the filament aggregates, based

on the continuum representation of the filaments in terms of

classical elasticity theory. This gives an additional insight into

the energetics of the transition between different morpholo-

gies, enabling us to predict a range of parameters under which

a given structure is expected to be stable. These predictions

compare favorably with the numerical data. The paper is or-

ganized as follows. Section 2 presents the numerical model of

aggregating filaments used in the present study. A continuum

description of this model is introduced in Sec. 3. The core

of the paper is the analysis of different aggregate morpholo-

gies and the transitions between them in Sec. 4. Finally, the

conclusions are drawn in Sec 5.

2 Coarse-grained model

The coarse-grained model of a filament used in this study was

described in detail in Ref. 22. Briefly, the filament backboneis

represented by a chain of beads (gray beads in Fig. 1, marked

with B), whereas a second type of beads is used to represent

the attractive interaction sites, arranged in two strips onthe

opposite sides of the backbone, each helically wound along

the length of the fibril (white beads marked withS1andS2for

each of strip, respectively). For the sake of brevity, we shall

refer to these strips as “side-strands”.

In terms of bonding interactions, the force field includes

harmonic potentials for both bonds (between consecutiveB

beads and betweenB bead and the adjacentS bead) and

bond angles (between three consecutiveB beads and between

two consecutiveB beads and one of the adjacentS beads).

The equilibrium distance between the backbone beads,lBB, is

taken to be the length unit, whereas that betweenB bead and

the adjacentSbead islBS= 2lBB. The equilibrium bond angles

correspond to the straight backbone (BBB angles equal toπ)

with perpendicularBSbonds (BBSangles equal toπ/2). The

key element of the model is the introduction of a symmetric

double well dihedral potentialUθ associated with the dihedral

angle spanned by four consecutive beadsS1−Bi −Bi+1−S2

and denoted asθ in Figure 1. The potential has two min-

ima atθ = ±θ0 inducing local twist of the side strands, but

S1S1

S2
B

B S1

S2

λ

θ

Fig. 1 Schematic of the model, with backbone beads in gray and
side strand beads - white. Bonds defining the dihedral anglesθ and
λ are dashed and solid, respectively

also allowing for a flip of local chirality. The curvature ofUθ

potential at the minima is characterized by the constantkθ .

Additionally, another dihedral potential,Uλ , is introduced, as-

sociated with the circumferential angle between a side strand

bead and its neighbor (Fig. 1). The potential has the minima at

±λ0 =±2(π −θ0) and a barrier atλ = 0 with a barrier height

∆Uλ =U(0)−U(±λ0) = kλ/2λ 2
0 . The goal of this potential

is to induce correlation between the values of the consecutive

dihedrals and thus appearance of the overall twist of the side

strands, with the twist densitŷτ0 = λ0/2lBB, where 2lBB corre-

sponds to the axial distance between two consecutiveSbeads

of the same side strand. The cohesive interactions between

the filaments are mediated through the Lennard-Jones forces,

ULJ = 4ε
[

(σ
r

)12
−
(σ

r

)6
]

. We use the uniform energy scale

for backbone and side strand beadsεB = εS = ε but different

length scales:σB = 4 andσS = 1 (in the units oflBB). The

Lorentz-Berthelot combining rules are used to calculate the

cross-species interaction parameters. The LJ energy is used

as the energy and temperature unit throughout the paper, with

the reduced temperature given byT∗ = kBT/ε. All the fila-

ments are composed of a fixed number of backbone and side

strand beads,nB = 2nS1 = 2nS2 = 60. The trajectories of the

filaments are calculated using Langevin dynamics. A natural
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time scale in the simulations is set by the time it takes for a

single bead to diffuse over the distanceσB, i.e. tD =
γσ2

B
6kBT ,

whereγ is a single bead friction coefficient. This time scale is

used as a time unit in the data reported. The simulations were

performed with use of the LAMMPS37 molecular dynamics

package.

3 Continuum description

Different morphologies of the fibril clusters observed during

the simulations of aggregation process are shown in Fig. 2.

Their appearance can be rationalized by noting that the driv-

ing force for the aggregation is the interaction between thehe-

lical side strands of each filament. When two such filaments

are brought together then, for high enough binding energy be-

tween the beads, the side strands align forming an interaction

seam, as indeed observed in Fig. 2b-d. The alignment of the

side strands requires a certain amount of bending and twisting

of the fibrils. The interplay between bending, torsional andco-

hesive energies leads to the appearance of the local minima in

the energy landscape. One of them correspond to a situation

when the filaments untwist to keep their backbones straight,

forming of planar, ribbon structures represented schematically

in Fig. 2c. In such case, the bending and cohesive energies are

at their minimum, whereas the torsional energy is increased.

Such a ribbon can close on itself, forming a tubular struc-

ture (Fig. 2d), with an additional stabilization due to the larger

number of contacts between the filaments.

In the opposite case, when the twisting energy is at the

minimum at the cost of increased bending energy, the fila-

ments will tend to intertwine with each other forming heli-

coidal coiled coils, as depicted in Fig. 2b). As we will show

below, they can be transformed into the tubular structures by

twisting.

To put these considerations on a more quantitative footing,

let us consider the space curver(s), tracing the axis of the

filament, withsbeing the arc length. At eachs, one can define

the material frame built from the vector tangent to the filament

axis (~e3), the vector pointing towards the binding site (~e1) and

finally~e2 =~e3×~e1. This basis evolves according to39

d~ei

ds
= (τ̂0~e3+~Ω)×~ei (1)

a) b) c) d)

Fig. 2 Types of structures observed in the simulation of filament
aggregation (bottom) and the schematic view of the corresponding
binding modes between the fibrils (top): a) a single filament with
two side-strands marked in green and red respectively; b) three
filaments connected via the contacts between their side strands (red),
making a helicoidal aggregate c) untwisted filaments with straight
side-strands, forming the ribbon; d) tubular shaft of helically wound
filaments, forming a ’tubule’ structure. In the bottom panels, the
individual fibrils are represented by surface, with gray color marking
backbones and brown marking contacting side strands. Bottom
images created with VMD38.

where~Ω is a strain vector and̂τ0 is the intrinsic twist den-

sity of the filament (side-strand twist angle around backbone

per unit axial length). The energy associated with the elas-

tic deformation of the backbone of the filament can then be
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expressed as

Eel =
1
2

∫ L

0
(A1Ω2

1+A2Ω2
2+CΩ2

3)ds. (2)

whereAi are the bending stiffness coefficients andC is the

torsional rigidity of the fibril. Usually, it proves more useful

to express the above by means of the geometric characteristics

of the filament axis: its curvatureκ(s), torsionτ(s) and the

angle,ξ (s), between~e2 and the Frenet-Serret normal,n= d~e1
ds .

In such case39, Ω1 = κ sinξ , Ω2 = κ cosξ , thus the energy

can be written as

Eel =
1
2

∫ L

0
(A1κ2(s)+Aspκ2(s)cos2(ξ )+C(τ(s)− τ̂0)

2)ds.

(3)

where Asp = A2 − A1 measures the asymmetry of bending

rigidities. The second term in the above expression gives

the extra energy which is associated with bending along one

axis in comparison to the other. It is sometimes called the

splay elastic energy, particularly often encountered in the liq-

uid crystals, where it is associated with the distortion mode

characterized by a nonzero divergence of a director field40.

In the context of elastic rods and ribbons splay becomes im-

portant whenever - due to anisotropy of the internal structure

of a rod - it becomes more easy to bend it in a particular di-

rection24,41. In our case the anisotropy is associated with the

presence of the side strand along the filament axis. Compar-

ing the backbone with the side strand to a comb, one can in-

tuitively see that bending in the plane of the teeth introduces

an extra strain between the teeth, while bending in the per-

pendicular direction does not (teeth remain perpendicularto

the backbone though the backbone itself gets bent, see Fig. 3).

The exact relation between the effective parametersA1, A2 and

C and the coefficients characterizing the coarse-grained model

are discussed in Secs. S.5 and S.6 in the Supplementary Infor-

mation.

4 Aggregate morphologies and binding modes

4.1 Ribbons

When the filaments are put in solution, they begin to aggregate

into clusters. If the internal twist of the filaments is relatively

small (λ0 ≤ 28◦) then the first structures which appear during

a) b)

Fig. 3 Two bending modes of a comb: involving splay strain (a)
and not involving it (b).

the aggregation usually are the ribbon forms of Fig. 2c. In

these ribbons, the filaments are ordered side by side, with side

strands untwisted to allow for a maximum number of contacts

between the beads. However, such a geometric arrangement

of the filaments is not energetically favorable, since each con-

tact site binds two filaments only. This leads eventually to

reorganization of the filaments into a more packed structure,

in which they entwine one around the other to form helically

twisted fibers (Fig. 2b). Notably, analogous ribbon structures

have been observed in a number of experiments on aggregat-

ing proteins6,7,15,18,20,21,42. Which of these shapes are realized

is determined by the conditions of the aggregation (either qui-

escent or agitated6,15) as well as pH7,18. Clearly, the electro-

static environment around growing fibril may have an impact

on the protonation states of proteins and thus on the distribu-

tion of binding sites on the filament. On the other hand, even

a slight change in the structure of the proteins may result in

different elastic properties of the growing fibril. Interestingly,

there are also cases in which ribbon and helicoidal forms coex-

ist20 and can be transformed into each other, in close analogy

to what is observed in our simulations. Although for a par-

ticular parameter choice corresponding to the current model

the ribbon structure is just a metastable intermediate form, by

modifying the ratio between the bending and twisting rigidity

and Lennard-Jones energy per contact (or the number of possi-

ble contacts), the ribbons can be made a kinetically favorable

structure. This has been confirmed in Ref.20 where it has been

shown that the mutations of human islet amyloid polypeptide

destabilize the helical fibrils sufficiently relative to theribbons

and lead to their complete elimination.
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4.2 Helicoids

Interestingly, the helicoidally twisted fibers themselvescan

exist in several conformational states. For small internaltwists

of constituting fibrils (̂τ0) the fibrils interact in a bead-by-bead

manner: eachSbead of one fibril meets with its partner on the

other (see Fig. 5a). This maximizes the number of bead-to-

bead contacts, but comes at a cost of bending energy, since the

fibrils need to wind around each other. Eventually, for larger

values of an internal twist the cost in bending energy becomes

too high and the cluster restructures itself into a configuration

in which everynth side strand bead binds to a neighboringS

bead on a second fibril34 (cf. Fig. 5b).

2R

α

Fig. 4 Geometric parameters characterizing the supercoil: helix
angleα and radiusR.

This reduces the twist of the filament backbone, since the

effective twist density is now equal to

τ̂n(λ0) = λn/2nlBB, (4)

where

λn(λ0) =−π +(nλ0+π)mod 2π (5)

a) b) c) d) e)

Fig. 5 Different binding modes in a helicoidal cluster: a)n= 1
mode with the side strands binding in a bead-by-bead manner and b)
n= 5 mode in which every 5th side strand bead binds to a
neighboring bead on a second fibril (for clarity, only two filaments
from a 3-filament cluster are shown here). The brown color marks
the side strand beads in contact.

is the circumferential angle between a side strain bead and

its nth neighbor wrapped to the interval[−π,π). The optimal

configuration of the cluster is then a result of a minimization of

the total energy of the system, which (per unit contour length)

is of the form

Etot(α)

L
=

Aκ2(α)+Aspκ2(α)cos2 ξ +C(τ(α)− τ̂n(λ0))
2+

Eint

L
(6)

where the curvature and torsion were reparametrized with su-

perhelix helix angleα (that is the angle between the tangent

to the helix and its axial line, Fig. 4) instead of arc lengths

and the cohesive interactions between the filaments,Eint , are

approximated by the product of the contacts and the depth of

the LJ potential well (see SI for a more detailed description).

In principle, both the curvature and torsion are functions of the

helix angle of the superhelix,α, and its radius,R (see Fig. 4):

κ =
sin2 α

R
, τ =

sinα cosα
R

(7)
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However, the radius of the superhelix is controlled by the

strong binding interactions and is only weakly dependent on

the specific binding mode. Hence, for a given binding mode

(n) the energy of the system becomes the function of one vari-

able only,α (see also32 for a similar approach). By minimiz-

ing eq. 6 with respect toα, i.e. findingα⋆ such that

(dEtot/dα)α=α⋆ = 0, (8)

we obtain the energies of binding modes as a function of the

internal twist,λ0. In Fig. 6 we plot the optimal energy per unit

length,Etot(α⋆), as obtained from Eq. 6 for the first few bind-

ing modes. As observed up toλ0 ≈ 48◦ the most energetically

favorable isn = 1 (bead-by bead) mode, whereas for larger

λ0 the n = 5 mode becomes more favorable. The theoretical

predictions are in a very good agreement with the numerical

simulations of the coarse-grained model of Sec. 2. Sponta-

neously formed clusters of the fibrils bind in then= 1 mode

for λ0 < 40◦ and in then = 5 mode forλ0 > 48◦ (intervals

marked by arrows in Fig. 6). In the intermediate range of the

twist angles, the three energetically favorable modes,n = 1,

n = 5, andn = 7, compete with each other, which results in

inhomogeneous structures of mixed handedness. The bottom

panel of Fig. 6 shows the value of the pitch of the optimum he-

lical superstructures,P = 2πRcotα⋆, compared with the av-

erage pitch measured in the simulations. An important phe-

nomenon observed here is the chirality inversion: the modes

n = 1 andn = 5 are characterized by a different handedness

(as determined by the sign ofα⋆) - supercoil ofn = 1 mode

maintains the same handedness as the individual filaments,

whereas that forn = 5 - handedness opposite to that of in-

dividual strands. Interestingly, recent experiments by Usov et

al.21 seem to confirm the existence of such a chirality-reversal

transition in the fibrillization processes in bovine serum albu-

min.

4.3 Tubular structures

The aggregates can exist in yet another state, in which they

form a tube of helically wound filaments (’tubular’ structures

of Fig. 2d). In the simulations, these structures are not ob-

served to form spontaneously, because of the high free energy

barrier between the helicoid and tubular state, associatedwith

n=1

n=5

à
à
à à à à à à à à à à à à à à à à à

ò ò ò ò ò ò ò ò
ò
ò
ò
ò

ò

ò

ò

æ

æ æ
æ

æ

æ æ

æ

à 11

ò 52

æ sim

20 30 40 50 60
-1.0

-0.5

0.0

0.5

1.0

Λ0

P
�l

B
B
�1

02

Fig. 6 Top: the theoretical predictions of the energies of the
clusters in different binding modes obtained by minimization of the
free energy, Eq. 8. The modes correspond to a situation in which
everynth side chain bead binds to a neighboring bead on another
fibril. The binding modes presented in the Figure correspond to
n= 1 (filled squares),n= 5 (filled triangles),n= 7 (empty
triangles) andn= 4 (empty squares). The lower indices (1,2) mark
the number of side strands involved in the formation of the
interaction seam between the filaments. The arrows mark the
intervals ofλ0 values in which a given mode is prevailing in the
simulations. Bottom: the theoretical prediction of the pitch of the
helicoidal superstructures calculated based on Eq. 8 for the modes
n= 1 andn= 5, compared with the simulation data.

the large amount of backbone bending needed to induce the

transition. It is, however, possible to force the transition by

twisting the helicoidal supercoil, much like what one woulddo

while curling the macroscopic ribbons, as presented in Fig.7.

To be more precise, we clamp one end of the helicoidal su-

percoiled structure, while steadily ramping up the torqueT

acting on the other end,T = at with torque ratea≈ 0.1ε/tD
up toTmax= 60−75ε. During the ramping process the aggre-

gate first transforms itself from an initial helicoidal structure
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Fig. 7 Analogy of ribbon, helicoidal and tubular state for a
measuring tape. Grabbing the tape (a) by the ends and twisting it
slightly, we put it into a helicoidal conformation (b). A somewhat
larger twist induces a transition into the helical state (c). The
difference between (b) and (c) lies in that in (b) the center line of the
ribbon is straight and coincides with its symmetry axis, whereas in
(c) the center line is a helix itself.

into the ’overtwisted’ form (middle structure in Fig. 8) with

a pitch reduced by a factor of 2 to 3, depending on the ini-

tial twist of the filaments. At that point the system encounters

an energy barrier and further twist is impeded. The barrier

is too high for the conformational transitions to occur during

the accessible simulation time scales, unless the temperature

is increased beyondT⋆ = 1.

Fig. 8 Overtwisting of a helicoid leading to the formation of a
tubular structure.

Fig. 9 Geometrical characteristics of theovertwisted(a) and
tubular (b) structures (see also Fig. 8):χ - bond angles (S-B-B) of
equilibrium value ofπ/2; ξ - the angle between backbone normal
vector and side strand bond (it is roughly 0 in the overtwisted and
twisted states andπ/2 in the tubule). The strain in theχ angles is
the source of an elasticsplayterm in the macroscopic treatment. See
Supplementary Information for details.

The resulting transition leads to a dramatic conformational

change within the cluster, accompanied by an abrupt rotation

of the side strands. As observed in Fig. 9, the main differ-

ence between the helicoidal and tubular structure is that inthe

former the side strands are turned towards the main axis (or

outwards, depending on the side strand) whereas in the latter

they are positioned along the surface of the tube. This can be

quantified by an angle,ξ , between the backbone normal vec-

tor and side strand bond: it is close to zero in the overtwisted

helicoidal conformation andπ/2 in the tubular form.

A video illustrating the helicoid to tubule transition can be

found in the Supplementary Information. As can be seen from

the video, the transition - although relatively abrupt - pro-

ceeds in a stepwise manner. As illustrated in more details in

Fig. 10 the transition starts locally, with a group of bonds in

one of the filaments reorienting their side-strands fromξ = 0

to π/2. Then the transition “diffuses” towards the end of this

filament (Fig. 10b). Once two filaments change their config-

uration, the whole structure becomes stabilized by the inter-

acting side strands and then the last filament becomes locked

in its place. The prominent role that the angleξ plays in the

helicoid-tubule transformation suggests that this transition can

also be induced by applying the torque to one of the filaments

in the overtwisted cluster, in order to increase the value ofξ
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Fig. 10 Example trajectory snapshots showing the transition from
overtwisted (that is after the initial twisting phase, see text)
helicoidal to cylindrical configuration. For the clarity of
presentation, b) shows only a single filament. Images created with
VMD 38.

within it (cf. Fig. 11). Except for being an efficient way of

inducing the helicoid-tubule transition, such a controlled way

of performing the transition provides insight into the energet-

ics of the restructuring process. As presented in Fig. 12, the

splay energy, accumulated during the overtwisting, is released

during the transition to the tubular state. On the other hand,

neither the torsional nor the backbone bending energy changes

during the transition. Instead, they remain at their valuesac-

quired during the overtwisting, which are respectively smaller

(for torsional) and larger (for bending energy) than the corre-

sponding values for the unconstrained helicoid.

Importantly, there exists a range of intrinsic twist angles

of the filaments (λ0 ∈ [18◦;32◦]) for which the tubular forms

remain (meta)stable even after the torques are relaxed, with

twisting I

twisting II

tubulehelicoid

Fig. 11 Example time evolution of|cosξ | (see Fig. 9) during the
simulations with external torques applied atT⋆ = 1.0 andλ0 = 26◦,
wheretwisting I phase is the initial stage with constant torque rate
applied to twist the helicoidal supercoil, andtwisting II is the next
stage with constant torques applied to single filaments.

tw. I tw. II

helicoid tubule

ϕ

θ λ

Fig. 12 Example time evolution of selected energy contributions
during the simulations with external torques applied atT⋆ = 1.0 and
λ0 = 26◦ (twisting phases as in Fig. 11).

lifetimes of at least 4× 105tD. These observations can be

rationalized in terms of a simplified, 1d energy landscape

presented in Fig. 13. Here the solid line represents the

situation in the absence of the torque. The helicoidal state(H)

is then at the global energy minimum, separated by a wide

and high barrier from the tubular form (T). As the torque is

applied to the filament (phase 1 of the twisting), the landscape

deforms (dashed line in Fig. 13), and the cluster attains an

overtwisted state (H⋆). The remaining barrier betweenH⋆

1–14 | 9

Page 9 of 14 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Eb
*H T

H*

Eb
HT

T    H

H* T

en
er

gy

reaction coordinate

H

T

Fig. 13 Schematic of the energy landscape for helicoid-tubule
transition. The helicoidal, overtwisted, and tubular conformations
are denoted byH, H⋆ andT respectively. The dashed/solid line
corresponds to the case with/without the external torque applied to
the ends of the filament.

ϕ

θ λ

χ

Fig. 14 The time evolution of the backbone bond angle, dihedral,
and splay energies duringT → H transition atT⋆ = 1.3 and
λ0 = 26◦.

andT can be overcome either stochastically or by additional

twisting of one of the filaments (phase 2 of the twisting).

This transition is marked by a dashed arrow in Fig. 13. After

the torque is released, the tubular state remains at the local

minimum. The energy barrier can be crossed stochastically

(solid arrow in Fig. 13) which is accompanied by an abrupt

release of the backbone strain with simultaneous increase

of dihedral and splay energy as the system goes back to the

helicoidal form (Fig 14). The change in splay energy is here

relatively small, in contrast to theH → H⋆ → T transition,

where there is large amount of splay strain involved in the

overtwistedH⋆ structure.

The video illustrating theT → H transition can be found in

the Supplementary Information. The transition is slower than

in H → T case, but also takes place in a stepwise manner - it

is initiated by loosening of the contacts between the filaments

at their ends and then advancing towards the center of the ag-

gregate.

To estimate the heights of theH⋆ → T andT → H energy

barriers the rates of interconversion between these conform-

ers were measured by performing a series of simulations at

elevated temperatures and fitting them to the Arrhenius equa-

tion43,44. The results, plotted as a function ofλ0, are shown

in Fig. 15. Note that the barrier heights depend on the max-

imum torque,Tmax, used to overtwist the helicoid in phase 1

of the twisting - the larger the torque, the smaller the barrier

left to overcome. This can again be related to the energy land-

scape of Fig. 13, where the position ofH⋆ minimum shifts

to the right as the torque is increased. Another interestingis-

sue is the existence of the peak of maximum energy barrier

at λ0 = 26◦ pointing to more stable tubular structures at this

intrinsic twist. Indeed, for these structures large temperature

(evenT⋆ = 1.5) is necessary to disrupt the tubules.

Fig. 15 The heights of energy barriers obtained from the simulation
data for the tubule to helicoid (T → H) transition (filled diamonds)
and for the overtwisted helicoid to tubule (H⋆ → T) transition
(empty symbols). The overtwisted stateH⋆ has been obtained with
two different values of the maximum torque:H⋆

1 with T1 = 62.5
andH⋆

2 with T2 = 75. The lines are the guide to the eye.
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More insight into the forces stabilizing the helicoidal and

tubular structure can be gained by the analysis of individ-

ual contributions to the internal energy (Figs. S.3a - S.3d in

Supplementary Information). Although significantly differ-

ent in shape, both the helicoidal and tubular conformations

maintain a similar number and quality of contacts, that is the

difference between the two structures in the cohesive energy

is small (Fig. S.3d), particularly, relatively to other contribu-

tions. Also, the difference in the bond energy is negligible

(Fig. S.3a). Clearly, the two competing forces in the cylin-

drical structure is the one aiming at straightening the back-

bone (towards the helicoidal configuration, with backbone

only slightly bent) competing with the one aiming at keeping

the torsion of the backbone helix atτ = τ̂0 which minimizes

the dihedral term in the elastic energy, as given by Eq. 6.

The tubular structures have a very robust geometry. They

are formed by three filaments wound together around a hol-

low core of the tube. The LJ attraction forces between the

backbone beads stabilize their distance atd0 = 21/6σB. The

cross-section of the tubule coincides then with a circle circum-

scribed on the equilateral triangle with side length ofd0 (see

Fig. 16). This sets the circle radius atR= 4×21/6×3−1/2 ≈

2.59, where we have used the fact thatσB = 4 (in the units of

lBB). This value of the radius is not far from the simulation

results, where< R>≈ 2.65± 0.1 has been obtained. How-

ever,d0 is also the distance between the filament backbones

as measured along the side of the cylinder (cf. Fig. 16). By

solving the triangle marked in the left panel of Fig. 16, we get

P = 6πRd0(4π2R2−9d2
0)

−1/2 ≈ 23.958, which is very close

to the average pitch of the tubular structures measured in the

simulations (< P >= 23.3±0.4). Finally, the helix angle of

the tubule can be calculated to beα = 34.2◦.

These values ofRandα, together withA1,AspandC param-

eters given in the Supplementary Information can then be used

in Eq. 6 to estimate the free energy of tubular structures, as

shown in Fig. 17. Also, the energies of helicoids, overtwisted

helicoids and ribbons are presented there. The ribbon energies

are approximated by assuming straight configuration of the fil-

aments, with the only strain coming from the untwisted side-

strands. The ribbons and tubules are structurally similar to

each other, with the main difference coming from the fact that

latter form a closed structure, with a larger number of contacts

Fig. 16 Arrangements of the filaments within the tubule.

Fig. 17 Theoretical estimates of the free energy per unit length of
the helicoid (filled diamonds), overtwisted helicoid (empty
triangles), ribbon (filled triangles), and tubule (filled rectangle)
systems atT∗ = 1.0 for various values of intrinsic filament twist
angle,λ0.

between the backbones and the side strands, and hence lower

LJ energy, stabilizing the structure. There are approximately

450 contacts in 3-filament cluster of a tubular form (180 B-B

contacts, 90 S-S contacts and 180 S-B contacts), which gives

on the average 2.5 contacts per unit length of each filament.

An analogous calculation for the ribbon gives the value of 1.67

contacts per unit length.

The ribbons are also characterized by a smaller number

of contacts (per side-strand bead) than other structures, since

eachSbead is in contact with only one otherSbead. Finally,

the energies of overtwisted helicoidal structures are calculated
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similarly to those of the tubules, based on the observation that

neither the pitch nor the radius changes significantly during

the H⋆ → T transition. This, together with the assumption

thatξ = 0 fully determines the geometry of these structures.

It is worth noting a pronounced minimum in the tubule en-

ergy plot (cf. Fig. 17) at aroundλ0 = 20◦. This is related to

the dihedral term,C(τ − τ0)
2 in the energy equation (6). The

torsion of the tubule, calculated based on Eq. 7 withα = 34.2◦

readsτ ≈ 0.179. Since, on the other hand,τ̂0 = λ0/2lBB, one

concludes that forλ = 0.358 radians (or 20◦) the dihedral term

vanishes, hence the parabolic form of the energy plot in thisre-

gion. This minimum, suggesting the increased stability of the

tubules atλ0 = 20−22◦ should be compared with the maxi-

mum in the barrier heights in Fig. 15 which marks the most

stable tubules obtained in the simulations. However, the max-

imum is shifted toλ0 = 26◦ which is probably the result of

a simplified treatment of LJ interactions between side-strand

beads in the analytic model. When calculating the interactions

between the side strands in the tubule, we assume that they are

directed along the backbone binormal vectors. However, at the

same time the attractive interactions between the backbones

are trying to bring the distance between them to the equilib-

rium value ofd0. To accommodate that, the side strand beads

have to slightly protrude out of the cylinder surface, whichis

the reason why the the optimal angle in the real system shifts

by approximately 10% with respect to that predicted by a the-

ory.

Finally, let us note that there are in principle two ways in

which the tubules can be formed. One is the by twisting the

helicoidal structures, as described above. The other possibility

of tubule formation would be directly from the ribbon, which

can wrap around and close on itself. However, in the present

model a large difference in energies between the ribbons and

the helicoids creates a strong bias towards the latter. As a re-

sult, the ribbons are transient structures only and get trans-

formed into the helicoids before they manage to form tubules.

5 Concluding remarks

In this paper, we have presented a simple model of aggre-

gating helical filaments, capable of describing the transitions

between different aggregate morphologies: ribbon-like, heli-

coidal, and tubular. A relative simplicity of the model allowed

for an introduction of analytic description, based on a linear

elastic model of helical filaments interacting through multi-

ple binding sites. We studied the dependence of the results

on the intrinsic twist of the filaments. The theoretical model

predicts nicely the crossover between binding modes in the

case of helicoidal clusters, as well as the existence of the most

stable forms of the tubules. We have quantified the geometri-

cal characteristics of different morphological types as well as

the main energy contributions determining their relative sta-

bility. We conclude with two remarks. First, as already men-

tioned in the Introduction, there are both similarities anddif-

ferences between the geometries of the aggregate structures

in the present study and those based on the continuum sheet

theories13,14,22,45–48. On one hand, the overall topological fea-

tures, with the division into three main structural classes- rib-

bons, helicoids and tubules - are similar in both approaches.

However, at a finer level of detail a number of differences are

evident. The helicoids are not simply twisted ribbons, as in

the continuum theories, but rather coiled coils composed of

filaments winding around each other while sharing a common

interaction seam. Similarly to the “knobs-into-holes” packing

in α-helical coiled coils described by Crick and others8,35,36,

we find that the filaments forming a helicoid can bind them-

selves in a number of different ways (“binding modes”), the

selection of which depends on the internal twist of the indi-

vidual filaments. The binding modes determine both the pitch

and the handedness of the resulting cluster. The network of

contacts between the binding sites with an underlying triangu-

lar ordering (cf. Fig. 16) provides also a stabilizing scaffold

for the tubular structure, giving rise to the selection of a well-

defined radius of the tube.

Second, the numerical data and theoretical considerations

presented here seem to suggest that it should be relatively easy

to induce a transition between different morphological forms.

The easiest way of carrying it out is to change the relative mag-

nitude of cohesive and elastic contributions to the energy.This

can be achieved by changing the ionic strength (which can

screen the electrostatic interactions between the bindingsites)

or temperature. Importantly, these factors not only influence

the interaction between the filaments but can also affect the

properties of individual filaments, such as their internal twist
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(λ0), which in turn influences aggregate properties, including

its handedness. An increased sensitivity of the aggregate char-

acteristics to the environmental conditions have indeed been

observed in many experimental studies6,7,18,21,47. Such a pos-

sibility of dynamic morphology control makes these materi-

als particularly attractive from the point of view of bottom-up

nanotechnology.
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