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What are the fundamental laws for the adsorption of charged polymers onto oppositely charged
surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating
applications, various complex formation phenomena, as well as in the context of cellular and viral
biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems
the quantitative understanding is however often achievable only by computer simulations. In this
study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer-
surface adsorption in confined domains. We study the inverted critical adsorption of finite-length
polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity.
The scaling relations extracted from simulations for the critical surface charge density σc—defining
the adsorption-desorption transition—are in excellent agreement with our analytical calculations
based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude
and scaling of σc for the concave interfaces versus the Debye screening length 1/κ and the extent
of confinement a for these three interfaces for small κa values. For large κa the critical adsorption
condition approaches the planar limit. The transition between the two regimes takes place when the
radius of surface curvature or half of the slit thickness a is of the order of 1/κ. We also rationalize
how σc(κ) gets modified for semi-flexible versus flexible chains under external confinement. We
examine the implications of the chain length onto critical adsorption—the effect often hard to tackle
theoretically—putting an emphasis on polymers inside attractive spherical cavities. The applications
of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids
onto the inner surfaces of cylindrical and spherical viral capsids.

I. INTRODUCTION

The adsorption of charged polymers or polyelectrolytes
(PEs) onto oppositely charged surfaces [1–5] has a num-
ber of technological and biophysical applications includ-
ing paper production [8, 9], interface coating [10], layer-
by-layer formation [6, 7], water desalination [11, 12], and
stabilization of colloidal suspensions [13, 14]. One dis-
tinguishes weak and strong PE-surface adsorption [5]:
weak PE-surface adsorption is governed by an interplay
of energetic often electrostatic (ES) attraction of polyions
onto an interface versus an entropic penalty accompany-
ing the confinement [15, 16] or the compression of the
polymer chains near the surface [17–19]. Weak adsorp-
tion takes place for weakly charged PEs (partially neut-
ralized by condensed counterions [20, 21]) and for mod-
erately charged interfaces: such PE-surface binding is
rather reversible. This contrasts an irreversible adsorp-
tion in the limit of strong PE-surface association [5, 22].

Weak PE adsorption onto surfaces of different geomet-
ries at varying conditions has been investigated in a num-
ber of recent theoretical [5, 23–42], experimental [43–58],
and computer simulation [59–78] studies. PE adsorption
onto patterned and corrugated surfaces [32, 33, 79–83] as
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Figure 1: Schematics of the inverted PE adsorption in confine-
ment: planar slit, cylindrical pore, and spherical cavity. Video
files illustrating the conformational changes of the polymer
chain for conditions below and above the critical adsorption
transition are presented in the Supplementary Material.

well as critical PE adsorption onto charged Janus net-
neutral particles [59] was also examined. The proper-
ties of polymer adsorption inside cylindrical nanopores
in porous glass were studied experimentally and by com-
puter simulations in Ref. [44]. Possible effects of surface
dielectric discontinuities on PE-surface adsorption were
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rationalized too [84–86].
The critical adsorption describes the threshold condi-

tions at which the ES-driven adsorption of PE chains
first takes place in the system. This phase transition in-
terrelates the condition for the interface surface charge
density σ, the line charge density of the polymer ρ, the
reciprocal Debye screening length in the solution κ, the
ambient temperature T , and the polymer’s Kuhn length
b. The critical adsorption condition defines the relation
between these important model parameters at the co-
existence boundary of adsorbed versus desorbed chain
conformations. Typically, a universal critical adsorption
parameter can be constructed,

δc =
24πa3|ρσc|
ϵkBTb

, (1)

and its dependence on κ governs the scaling of σc—the
critical surface charge density required for PE adsorption
to take place—at varying salt conditions. Here ϵ is the
dielectric constant of the medium, a is the curvature ra-
dius of the adsorbing surface, and kB is the Boltzmann
constant. For a long flexible nearly Gaussian charged
polymers in front of a uniformly oppositely charged plane
the well-known result is [17, 18, 26]

δplc (κ) ∼ σpl
c (κ) ∼ κ3. (2)

The standard rationale for increasing σc with the salt
concentration n0 is the requirement to compensate a
stronger screening of ES attraction of the PE chain to
the oppositely charged surface. For a symmetric 1:1 elec-
trolyte we have κ2 = 8πlBn0, where lB = e20/(ϵkBT ) is
the Bjerrum length. The peculiar cubical scaling of the
critical charge density with κ in Eq. (1) stems from the
properties of the eigenfunctions of the corresponding Ed-
wards equation for the conformations of a long polymer
chain in the attractive Debye-Hückel potential of the in-
terface [17]. In addition, some ES chain stiffening at
low-salt conditions takes place impeding the PE-surface
adsorption (see also Ref. [34] for non-ES effects in PE-
surface adsorption).
For the convex cylindrical geometry (see Fig. 1) a

quadratic scaling is instead predicted by the Wentzel-
Kramers-Brillouin (WKB) theory at low salt [38], namely

δcylc (κa) ∼ (κa)2, (3)

while at high salinities and large rod radii κa ≫ 1 the
planar limit (2) is recovered. For PE adsorption on the
outside of oppositely charged spherical particles yields
the linear dependence of σc(κa) in the limit κa ≪ 1 [38],

δspc (κa) ∼ (κa)1. (4)

Here a is the radius of the cylinder or sphere. The pre-
factors in these WKB scaling relations are very close to
the exact analytical results available e.g. for the planar
and spherical surfaces [38]. For more details on these
scalings we refer the reader to Refs. [5, 38, 59].

The systematic change in the σc(κa)-scaling behavior
from the planar interface via a cylinder to a sphere is in
agreement with a number of experimental evidences from
the Dubin’s lab, see e.g. Ref. [47] (and also the analysis
in Ref. [36]). The experimental observations of critical
PE adsorption are based on the complex formation of
various polymers with oppositely charged particles and
micelles of spherical and cylindrical geometry [47]. These
experimental findings indicate a weaker dependence of
σc on κa for more ”convex” surfaces, as the adsorbing
interfaces transfer from the planar to the cylindrical and
finally to the spherical shape.

The adsorption transition of weak PEs under con-
finement [31]—we call below the inverted critical
adsorption—has a number of biologically relevant applic-
ations. Here, the term critical for confined PEs has the
same meaning as for adsorption of charged polymers onto
the planar and convex interfaces [5]. For instance, the
self-assembly of cylindrical and spherical single-stranded
RNA viruses involves the adsorption of nucleic acids onto
the inner virus capsid surface composed of protein build-
ing blocks [29, 40, 41, 87, 88]. The capsid proteins are
abundant in highly-basic flexible poly-peptide tails which
trigger the adsorption of negatively-charged nucleic acids
thus steering the self-assembly [89, 90]. The known ex-
amples include nucleic acid encapsulation inside the cyl-
indrical tobacco mosaic virus TMV [91] and the icosa-
hedral cowpea chlorotic mottle virus CCMV [29, 92, 93].

For very long chains, the scaling relations for critical
PE adsorption in inverted geometries were recently de-
rived theoretically from the ground-state analysis of the
Edwards equation for the Green function [39]. The main
subject of the current paper is the inverted weak adsorp-
tion of finite-length PE chains of varying stiffness in all
three basic geometries, see Fig. 1. For long flexible poly-
mers the critical adsorption conditions were obtained us-
ing the WKB method in Ref. [38]. Namely, Eqs. (5),
(6), and (7) of Ref. [38] provide the dependence of σc in
the entire range of κa. At low salt or strong confinement
when κa ≪ 1 the critical adsorption parameter δinvc for
a planar slit was predicted to scale as [39]

δpl,invc ∼ 3C2(κa)1. (5)

Here and below the constant C is of order unity, C ≈
0.973. For long flexible PEs inside the oppositely charged
cylinder this parameter reveals a plateau with a slowly
varying logarithmic correction [39]

δcyl,invc ∼ 3C2

0.116− log(κa)
. (6)

Finally, for a PE inside spherical cavities in the low salt
limit the value of δc tends to saturate to a plateau [39]

δsp,invc ∼ 3C2. (7)

These functional dependencies on κa are in stark con-
trast to the fast and monotonically increasing δc for the
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adsorption of PEs on the outside of cylindrical and spher-
ical interfaces, Eqs. (3) and (4). In the opposite limit of
loose confinement or high salt when κa ≫ 1 the theory
predicts

δinvc = 3C2(κa)3/2 (8)

for all three inverted geometries [39]. This latter limit-
ing behavior was derived from the WKB approach in the
limit of zero surface curvature [5, 38]. Note that for a
finite-length polymer all the above mentioned standard
ground-state based predictions for σc need to be mod-
ified; the regular procedure is however not easy. Also,
in theory the polymer chain is treated on the mean-field
level in terms of the probability distribution function,
with no explicit examination of polymer loops or tails on
the surface being possible. These facts make the find-
ings of our current computer simulations—which enable
us to overcome these theoretical limitations—even more
valuable for experimentally relevant situations.
In the current paper we study by extensive Monte-

Carlo simulations the properties of critical PE adsorption
in three basic inverted geometries, see Fig. 1. We study
the effects of the chain length, the polymer persistence,
and systematically of the confinement size and solution
salinity onto the critical surface charge density σc. In
Sec. II we present the details of the simulation model
and the data analysis algorithms. The main results on
PE adsorption profiles and critical adsorption character-
istics are described in Sec. III. We discuss the physical
rationales behind the observed dependencies and the ap-
plications of our results in Sec. IV.

II. MODEL AND APPROXIMATIONS

We here implement the same Metropolis Monte-Carlo
simulation algorithm which has been successfully ap-
plied and tested by us recently for PE adsorption onto
spherical [64], cylindrical [61], and spherical Janus [59]
particles as well as for surface adsorption of pH-sensitive
PEs [65]. We refer the reader to Refs. [59, 61, 64]
for more details on the simulation procedure. In brief,
the polymer chain is modeled within the spring-bead
model, with each monomer being a rigid sphere of radius
Rm = 2Å carrying a point elementary charge Zm = e0
at its center. Neighboring beads are connected by the
harmonic potential

Ustr(r) = Kr(r − r0)
2/2,

with the elastic constant for bond stretching Kr =
1.0N/m2 and the inter-monomer equilibrium distance
r0 = 7.0Å (as for single-stranded DNA [96]). The chain
stiffness is given by the elastic potential

Uel(θ) = Kθ(θ − θ0)
2/2,

where the force constantKθ assumes the values such that
the non-ES persistence length lp,0 of the polymer ranges

A

B

Figure 2: (A) Variation of the dimensionless ES potential
Ψ(a) = e0φ(a)/(kBT ) at the boundary versus the radius
of the spherical cavity plotted for: σ = −0.1/(4π) C/m2

and κ=1/(30Å) (filled circles), σ = −0.1/(8π) C/m2 and
κ=1/(30Å) (filled squares), σ = −0.1/(16π) C/m2 and
κ=1/(30Å) (filled triangles), σ = −0.1/(16π) C/m2 and
κ=1/(100Å) (empty triangles). Note that C/m2 ≈ e0/(16Å

2)
that is ≈ 6σB-DNA, where σB-DNAis the bare charge density of
the B-DNA [96]. For large a values the potential approaches
the known planar result, φ(a) = 4πσ/(ϵκ). (B) The ES poten-
tial on the inner surface of spherical cavities scales as Ψ(a) ∼
κa for κa ≪ 1, whereas Ψ(a) → e0φ(a)/(kBT ) for κa ≫ 1.
Parameters: σ = −0.1/(4π) C/m2, κ = 1/(3000Å) (filled
circles), κ = 1/(1000Å) (filled squares), κ = 1/(300Å) (filled
triangles).

from about 8 to 50 Å (a typical range for many real PEs
[5]). Here θ denotes the angle between the two successive
bonds and θ0 = π. The mechanical persistence length for
an uncharged chain lp,0 was obtained in simulations via

the relation lp,0 = ⟨R2⟩1/2/(1 + ⟨cos θ⟩), where ⟨R2⟩ is
the root-mean-squared monomer-monomer distance [97].
The inter-chain excluded volume is accounted for by the
standard hard-core repulsive potentials in simulations, as
compared to the theoretical model [39].

The repulsion of monomers at distance r is given by
the screened Coulomb potential

UES(r) =
Z2
me−κr

ϵr
. (9)

The ES potential emerging in a slit with inter-plane
distance 2a, inside a cylinder or a sphere of radius a
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were computed as the solutions of the linear Poisson-
Boltzmann equation [39]. Below, we use the potentials
denoted as Ψin,out(r) in Ref. [39] to parametrize the
strength of ES PE-surface attraction. For brevity, we
do not provide the explicit analytical expressions here,
instead showing the potential distributions in Fig. 2.
The critical surface charge density σc is defined in our

simulations as the condition at which the PE binding
energy to the interface exceeds the thermal energy,

|Eb| ≥ kBT. (10)

Thus, even for the conditions when the polymer is not in
direct contact with the surface but its total binding en-
ergy is lower than Eb = −kBT , we consider the chain to
be in the adsorbed state. To compute the value of σc for
given values of the model parameters κ, a, andN , we per-
form the simulations for a set of surface charge densities
and then determine the one for which the adsorption-
desorption criterion (10) is satisfied. Here one can an-
ticipate already that longer chains will require smaller
surface charge densities σc to be classified as adsorbed,
as we indeed obtain from simulations, see below and also
Ref. [98]. In the limit a → ∞ the potentials Ψin,out(r)
of Ref. [39] turn into Ψ(r) for the corresponding isolated
surfaces (see Fig. 2); the same holds for the properties
of the adsorption-desorption transition, see below.
There exists a number of differences between the in-

verted PE adsorption and the polymer-surface adsorp-
tion from a dilute, free-space solution. One feature is
the presence of confining interfaces. They have differ-
ent implications onto the polymer: for a planar slit the
polymer is mobile in two dimensions, for a cylindrical
tube the chain is free to move in one direction, and for
a spherical cavity the polymer has no translational free-
dom at all. This progressively increasing confinement
reduces the polymer conformational entropy [99], par-
ticularly upon adsorption on the interior of oppositely
charged cylinders and spheres, see also Ref. [100].
We also note that in the low-salt limit the total PE

persistence length,

lp(κ) = lp,0 + lES
p (κ) = b/2, (11)

acquires an ES component which is decreasing with the
solution salinity. For flexible chains it obeys the scal-
ing lES

p (κ) ∼ κ−1 [2] while for semi-flexible polymers

lES
p (κ) ∼ κ−2 [1], see also Refs. [101–105]. This fact
is not accounted for in the theories of PE-surface adsorp-
tion [38, 39] yielding for δinvc the scaling relations (5),
(6), (7). This ES contribution lES

p should correspond-
ingly renormalize the scaling of σc with κ obtained from
computer simulations at low salt, in accord with Eq. (1),
see the discussion in Ref. [5] and also Ref. [18] the for
planar and convex surfaces. For concave adsorbing in-
terfaces, such as the sphere’s inner surface, due to this
ES polymer stiffening the chains will tend to occupy re-
gions of smaller curvature [99], as it is indeed observed
upon ”spooling” of double-stranded DNA inside bacterio-
phages [106]. The chains approach the interface because

of bending energy minimization thus facilitating the ES-
driven PE-surface binding, see below.

An additional important parameter for confined PE-
surface adsorption is the polymer’s volume density. In
the theory [5, 38] the PE adsorption typically takes place
from a very dilute polymer solution, which is not the case
for confined inverted-adsorption situations, where the net
polymer density is finite, see below.

Let us now briefly discuss some approximations in-
volved in the current study.

a) We use the Debye-Hückel theory to compute the ES
potentials near the interfaces and between the polymer
monomers. This approach is valid for weakly charged
systems and for an appreciable amount of salt in the
solution n0, when the ES potentials |Ψ| ≤25 mV (com-
pare the panels of Fig. 2). The solution of the nonlinear
Poisson-Boltzmann equation in curved geometries in the
presence of salt is a formidable theoretical problem per
se, often only solvable in some idealized limits (see Ref.
[107] for a charged rod at n0 = 0). Note that the linear
ES theory often overestimates the magnitude of the po-
tential emerging near highly charged interfaces (see Fig.
2 of Ref. [108] and Ref. [109]). Also note that particu-
lar in low-salt solutions, the effects of counterion release
from the surface upon PE adsorption [110–112]—on the
level of the standard Poisson-Boltzmann approach with
the cation concentration obeying n(r) = n0e

−Ψ(r) and
beyond—might become relevant.

b) The WKB scaling relations presented in the Intro-
duction stem from the ground-state analysis of infinitely
long flexible Gaussian chains in front of surfaces with
the Debye-Hückel ES potential. Both these idealizations
will not hold upon variation of n0 in a broad range, as
we study below. The investigation of implications of the
non-linear nature of the ES potential near highly charged
surfaces is the subject of a separate investigation [113].
Also, the impact of the mutual influence of adsorbing
PE chains onto the ES potential of the interface (charge
regulation) can non-trivially impact the critical adsorp-
tion conditions in terms of σc(κ) scaling. Moreover, we
consider below the adsorption of a single PE chain from
a dilute solution; at realistic conditions however several
chains might adsorb simultaneously. Their mutual salt-
dependent ES repulsion along the surface will have an
effect, for instance, on the overall surface coverage by
PEs. The latter is often measured experimentally for
PE-surface adsorption from bulk solutions with a finite
polymer concentration. All these effects are experiment-
ally relevant and will be considered elsewhere [113].

c) We implement the physically-intuitive kBT -based
adsorption criterion (10) to identify the PE adsorption-
desorption threshold. This criterion was used e.g. in
computer simulations [76] and experimental studies of
formation of PE-protein complexes [46]. Such a criterion
for confined adsorption is however somewhat arbitrary:
for instance, one can classify the adsorption threshold us-
ing PE distributions with a single peak versus the double-
peaked profiles emerging between the two confining inter-
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faces, see e.g. Fig. 3 below. Note here that there exists
a conceptual difference between PE adsorption from the
empty space and inside a confined cavity. For the former,
counting the chain configurations in the course of simu-
lation one can clearly distinguish the desorbed state with
zero binding energy and the adsorbed state with the ad-
sorption energy of several kBT units [59, 61]. This phase
transition line then determines the first-order transition
boundary. Then, the polymer chain staying for > 50%
of the simulation time in adsorbed configurations is con-
sidered to be in the adsorbed state. For the polymer ad-
sorption under e.g. spherical confinement this procedure
is no longer possible: the well-defined energy-separated
states of the polymer near the surface do not exist (in
general sense, no first-order-like transition, see Fig. A1).
This was the reason to use another adsorption criterion
here as compared to PE adsorption problems treated in
Refs. [59, 61, 64].
d) We assume reversibility and ergodicity [114] for the

process of PE adsorption at all conditions (no irreversible
binding). This assumption might not be valid, particu-
larly at low salt when the binding of even several PE
monomers to an interface with large ES potential might
overcome the thermal energy. Also, in this limit the
relative accuracy in defining the adsorption-desorption
boundary becomes important and even small fluctuations
|δσc|/|σc| that can realize in experiments might cause siz-
able effects. Finally, the adsorption of one fragment of
the chain is assumed not to affect the ES potential act-
ing to attract other parts of the polymer. This might
be important for pH- and potential-responsive surfaces
(not a part of this study [113]). We work in the single-
chain limit and thus do not study the PE adsorption
isotherm—the amount of polymer adsorbed for a varying
bulk polymer concentration. The experimentally more
relevant situation of multi-chain adsorption is a subject
of separate investigation, see some results in Fig. 4B. The
multi-chain effects are extremely important to determine
e.g. the amount of PE adsorbed per unit surface area.
This issue should include additional approaches/models
for computing the steric and electrostatic effects of neigh-
boring chains as well as the effective charge density of the
interface which is partially covered with already adsorbed
PE chains.
Despite these simplifications and assumptions, our

computational results reveal excellent agreement with
the theoretical predictions in a wide range of model para-
meters, see below.

III. RESULTS

A. Polymer density distribution

First, we examine the distribution of polymer
monomers, ρ(r), in the three basic inverted geometries.
For a fixed degree of the external confinement, the evol-
ution of the ρ(r) profiles with varying n0 reflects the

Figure 3: Distribution of polymer monomers for inverted ad-
sorption of flexible PEs (lp,0 = 8Å) in a spherical cavity (top
panels), cylindrical pore (middle panels) and planar slit (bot-
tom panels) with the surface charge density of σ = −0.1/(4π)
C/m2. The radius of the sphere and cylinder is a = 50 Å, and
the slit thickness is 2a = 100 Å. The distance r denotes the
separation from the centre of the confining space. The poly-
mer density distribution ρ(r) used here is not to be mixed
with the PE linear charge density ρ. The degree of chain
polymerization is N = 20 (left panels) and N = 100 (right
panels). The salt concentration n0 is varied: κa = 0.1 (black),
κa = 0.5 (red symbols), κa = 1 (blue symbols) and κa = 5
(green symbols).

positioning of the adsorption-desorption boundary. We
start with relatively flexible chains confined into a spher-
ical cavity and a cylindrical pore; we use lp,0 = 8Å for
flexible chain results below. If the unperturbed radius
of gyration of the chain exceeds the cavity dimensions,√⟨

R2
g

⟩
≳ a, volume exclusion creates a force pushing

the polymer towards the surface, see Fig. 3. This is par-
ticularly pronounced for spherical cavities, with strongly
restricted chains. With increasing ionic strength up to
κa = 1 the monomer accumulation near the surface gets
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facilitated. From κa = 1 to κa = 5 this behavior gets
inverted, as at large κa the conditions are close to or
above the threshold of polymer desorption, and in ad-
dition the ES term in the chain persistence length gets
smaller. This makes the polymer chains effectively more
flexible, they are attracted weaker to the interface, and
the polymers occupy the bulk of the cavity more readily.
In this situation we thus find a single peak of the polymer
distribution in the centre of the confining space, whereas
for small κa the PE peak emerges near the oppositely
charged surface in confined geometries.

The effect of the polymer’s mechanical persistence
onto PE distribution in confined spaces is illustrated in
Fig. A2. Progressively stiffer PE chains prefer to oc-
cupy the peripheral regions of the cavity due to a lower
bending energy penalty for the chain arrangements with
larger radii of curvature – the effect particularly pro-
nounced for spherical cavities, see the top row in Fig.
A2. These latter trends are in line with the results
of our recent simulations for polymer chains inside in-
ert or non-attractive spherical cavities in the presence of
macromolecular crowding [99], see also Refs. [115, 116].
Moreover, the loss of configurational entropy for the ar-
rangement of more persistent chains near the cavity sur-
face is smaller as compared to the flexible ones. Fig. A2
shows that the deviations for semi-flexible versus flex-
ible chains become smaller as we go from PE adsorption
inside a spherical cavity to PE adsorption inside a cyl-
indrical pore and finally to PE adsorption inside a planar
slit (respectively, the top, middle and bottom panels of
Fig. A2). The physical reason is again the the num-
ber of the polymer’s degrees of freedom available in the
corresponding geometries. For instance, for a planar slit
the bending energy of semi-flexible chains has nearly no
implications on the amount of the polymer near the ad-
sorbing interface, in stark contrast to the spherical cavity
for which a severe chain bending is unavoidable [99], com-
pare the panels in Fig. A2. As we demonstrate below,
this polymer bending energy in spherical and cylindrical
confinement has non-trivial effects onto the critical sur-
face charge density σc(κa) of the adsorption-desorption
transition.

A relevant experimental question for super-critical PE
adsorption is the amount of the polymer adsorbed on the
surface. In Fig. 4 we quantify how this amount changes
with κa for the three adsorption geometries for the single-
chain adsorption simulated. Namely, for σ > σc we ana-
lyzed the PE profiles formed near the interfaces for the
inverted polymer adsorption. We evaluate the fraction
of the polymer chain in the region close to the adsorbing
interface, Nads/N . This fraction is a stationary quantity:
(we do not consider here the kinetics of PE adsorption
for σ > σc [2, 78, 117, 118] and the total time required to
complete the adsorption. We illustrate the behavior of
this fraction versus the reciprocal Debye screening length
κ for two different chain lengths of N = 20 and N = 100
monomers, see Figs. 4A and 4B respectively. To quantify
the effects of the chain length, in Fig. 4B we also show the

data for adsorption of five N = 20 chains inside a spher-
ical cavity. The fraction of monomers adsorbed Nads/N
is found to be quite close to that computed for a single
chain with N = 100 monomers.

We find that the amount of PE adsorbed within this
first layer near the interface is often a non-monotonic
function of the salt concentration n0. One physical
reason for this is a shorter ES persistence length of PEs
and weaker polymer-surface charge-mediated binding as
n0 increases. This non-monotonicity can be anticipated
already from the evolution of PE profiles in Fig. 3 in
the proximity of the adsorbing surface as κ increases.
Here, we refer the reader to the studies in Refs. [34, 48]
for experimental evidence and theoretical predictions of
non-monotonic effects of added salt on the amount of
adsorbed PE chains. In realistic multi-chain systems,
higher solution salinities effect softer PE chains, weaker
PE-surface ES attraction, but also a weaker ES repulsion
between the already adsorbed polymer coils. The inter-
play of these effects might yield a non-monotonic beha-
vior of the mass-per-area of adsorbed PEs with varying
κ. Fig. 4C quantifies the growth of the fraction of ad-
sorbed PE monomers for the chains of varying length
inside a spherical cavity. The results are plotted for dif-
ferent values of κ. As expected, we observe that low-salt
conditions give rise to a stronger PE adsorption, with a
larger Nads/N fraction.

The width of the PE profile w together with the mass
of adsorbed PE per area are the experimentally rel-
evant quantities to measure of the polymer deposition
propensity onto a surface. As we work in the single chain
limit, the latter will not be considered. For inverted PE
adsorption, the width of the adsorbed layer is expected to
be a non-monotonic function of κ too. Note however that
the standard definition of w implemented for instance for
the adsorption of an isolated PE chain onto an attractive
surface [5]—as the width of the polymer probability dis-
tribution function at its half-height—cannot be directly
used for the current problem of inverted adsorption.

B. Critical adsorption conditions

Now we turn to the main objective of the current study,
the scaling of the critical surface charge density at the
adsorption-desorption transition. For the inverted PE
adsorption in confined geometries, we find that σc var-
ies with κa as shown in Fig. 5, revealing an excellent
agreement with the theory developed in Ref. [39]. As ex-
pected, the scaling of the critical surface charge density
is very different in the limit of small and large κa values,
as prescribed by Eqs. (5), (6), (7) and Eq. (8), respect-
ively. In the low-salt limit spherical cavities necessitate
larger surface charge densities than the cylindrical tubes;
the latter in turn need larger surface charges than the
planar slits in order to reach the same degree of polymer
binding (10), compare the curves in Fig. 5. We attribute
this reduction of σinv

c to a progressively smaller penalty
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A B C

Figure 4: Fraction of polymer monomers within 4Å from the adsorbing surface for inverted PE adsorption into a spherical
cavity (black), cylindrical pore (red) and planar slit (blue symbols) with σ = −0.1/(4π)C/m2 (above the critical adsorption
transition), plotted for a varying solution salinity. The radius of spherical cavity and the cylindrical tube is a = 50 Å and the
inter-plane distance for the slit is 2a = 100 Å; N = 20 (panel A) and N = 100 (panel B); lp,0 = 8Å. The results for five N = 20
chains are the star symbols in panel B. Panel C shows the variation of the adsorbed PE fraction in a spherical cavity with the
polymerization degree N , computed for the same σ, lp,0, a for varying salt conditions, namely at κa=0.1 (circles), 1 (squares),
and 3 (triangles).

of entropic confinement of flexible PE chains. Remark-
ably, even the reversed order of the critical adsorption
curves in the limit of large κa, as compared to the low-
salt limit, is precisely reproduced in our simulations, in
accord with the theory [39]. This reversed order at high
salt is particularly well pronounced for longer chains, Fig.
5B. The change in the σc(κa) scaling behavior, from the
low-salt prediction to the high-salt asymptote (8), oc-
curs at κa ∼ 1, for any chain length, compare the panels
in Fig. 5. The effects of the surface curvature on the
adsorption-desorption transition point is thus universal
and start to be important for the conditions of low-salt
and large surface curvature when κ ≲ 1/a. Fig. 5 is the
central result of the current study.
For progressively longer PE chains the values of σc de-

crease, preserving however the overall scaling relations
in the limit of low salt and the approach to the univer-
sal asymptote at high salt, compare Figs. 5A and 5B.
According to our adsorption criterion, Eq. (10), longer
chains will clearly accumulate the same binding energy
for smaller |σ|. A similar behavior was observed for PE
adsorption onto Janus particles [59]: the entire σc(κa)
dependence shifts down for longer chains but preserves
the scaling properties for small and large κa values.
In Fig. 5 flexible chains are considered, with the non-

ES persistence length of lp,0 ≲ 10 Å. For a spherical
cavity, the theoretical results of Ref. [39] for σc give an
excellent agreement with the results of our simulations
for N = 100 chains if we set b = 2lp,0 ≈ 4 Å, a realistic
value for flexible chains simulated. This follows from Eq.
(7) for PEs inside spherical cavities for κa ≪ 1 from
which the critical charge density can be recalculated in
units C/m2 as

σsp,inv
c

C/m2
= 3C2 16br0

24πa3lB
≈ 1.9× 10−5. (12)

The same Kuhn length b is then used to compute the full
σinv
c (κ) asymptotes from the theoretically predicted [39]

relations for δcyl,invc (κ) and δpl,invc (κ), according to Eq.

(1).

Due to the adsorption criterion implemented, for N =
20 chains σc is nearly 100/20=5 times larger than for
N = 100 polymers, compare the panels in Fig. 5 and
see also the universal curves in Fig. 7. Also note that
for κa ≫ 1 our simulations of the PE adsorption under
confinement yield the σc(κ) ∼ κ3 scaling behavior, as an-
ticipated for polymers with a salinity-independent Kuhn
length b [17]. This is in contrast for instance to PE ad-
sorption on the outside of spherical particles, where the
effects of ES persistence are important and our simu-
lations in the high-salt limit give σc(κ) ∼ κ1.9 scaling
instead, see Fig. 8A in Ref. [59].

We also examined the dependence of the critical ad-
sorption conditions for more persistent chains in all three
adsorption geometries, see Figs. A3 and 6. Fig. A3
shows that for more persistent chains the magnitude of
σc decreases for the adsorption onto the planar slit, in-
side cylindrical pore, and spherical cavities. We find that
particularly for PE adsorption inside spherical cavities
the magnitude |σc| decreases due to a bending-energy
driven localization of polymers near the cavity surface,
see Fig. 6, particularly pronounced for the chains much
longer than the cavity dimensions, see also Ref. [99]. For
PE-sphere inverted adsorption, stiffer PEs prefer to stay
closer to the adsorbing interface thus reducing the value
of σc. The precise behavior of σc as a function of κa
shows that the deviations from the flexible chain results
become progressively larger for more persistent chains
and at larger κa values, see Fig. 6. The latter is not
surprising because at high-salt conditions the ES contri-
bution to the polymer persistence gets reduced and the
PE stiffness is dominated by its mechanical part lp,0, see
Eq. (11).

The question arises whether for inverted PE critical
adsorption the variation of the confinement degree or
salt concentration gives rise to different σc(κa) behavi-
ors? We showed that for adsorption of finite-length PEs
onto spherical Janus particles [59] there was no universal

Page 7 of 15 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



8

A

B

Figure 5: Critical surface charge density σc for inverted ad-
sorption of flexible PEs (lp,0 = 8Å) into a planar slit (blue
symbols), cylindrical tube (red symbols), and spherical cav-
ity (black symbols), plotted for varying solution salinity. The
dashed lines are the full theoretical asymptotes for δc as given
by Eq. (7) in Ref. [39], recalculated for σc using Eq. (12).
The corresponding low-salt limits are given by Eqs. (5), (6),
(7); the high-salt or the planar limit is Eq. (8). Note the
inverse positioning of the curves in the region of κa ≫ 1.
Parameters: a = 50 Å (1/2 of the slit thickness, the cylin-
der and sphere radii), the polymerization degree is N = 20
(panel A) and N = 100 (panel B). On a standard 3-3.5 GHz
workstation every curve on these graphs requires some 180 h
and 900 h of computational time for chains of N = 20 and
N = 100 monomers, respectively.

parameter κa that would combine the curvature and sa-
linity effects on the critical adsorption properties σc(κa).
The inverted critical PE adsorption is also quite differ-
ent if one varies the size of the confined cavities, tubes,
and slits or the solution salinity, compare the curves in
Fig. A4 for spherical confinement. Longer chains require
smaller surface charge densities to get adsorbed and for
smaller sizes of spherical cavities the value of σc increases.
This can be understood from the variation of the ES
surface potential in spherical cavities presented in Fig.
2B showing that Ψ(a) ≈ 2(κa)e0φ(a)/(kBT ) ∼ κa for
κa ≪ 1 [39]. For inverted critical PE adsorption we ob-
tain that indeed there exists no universal parameter κa.
This at first sight disagrees with the theoretical results

Figure 6: Critical adsorption charge density for persistent
versus flexible polymers inside a spherical cavity, σc/σ

0
c , com-

puted for varying non-ES polymer persistence length. Para-
meters: a = 50 Å, N = 100, κa = 1 (circles), 5 (squares), 8
(diamonds) and 10 (triangles).

Figure 7: Universal rescaled surface charge density for critical
PE adsorption inside spherical cavities of varying radii and for
polymers of different lengths, plotted for varying κ; lp,0 = 8Å.

of Ref. [39]. For the finite-length PEs with varying ES
persistence studied in our simulations this disagreement
is however not surprising, as compared to infinitely long
flexible salt-insensitive polymers studied in the theoret-
ical idealization [5, 39].

Fig. 7 illustrates the behavior of the rescaled critical
surface charge density for inverted PE-sphere adsorption,
σcaN . This combination accounts for the peculiar fea-
tures of the variation of the ES potential with the cavity
radius (Fig. 2B) and the adsorption condition used in
the simulations, Eq. (10). We find a universal collapse
of this renormalized parameter for the critical adsorption
curves for different chain lengths and cavity sizes, for a
wide range of variation of the solution salinity. We finally
note that the adsorption criterion (10) was used through-
out the paper. The insert of Fig. A3 illustrates how-
ever the behavior of PE adsorption-desorption boundary
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σc(κ) onto spherical cavities if the criterion of kBT/10
average binding energy per monomer is used. We find
that the functional dependence of σc(κ) obtained with is
also agrees with theoretical predictions [39].

IV. DISCUSSION

In this study, we have employed extensive Monte-Carlo
computer simulations to unveil the physical properties
of PE adsorption in confined spaces, considering poly-
mer chains inside a planar slit, a cylindrical pore, and
a spherical cavity. We rationalized the position of the
adsorption-desorption transition upon variation of vari-
ous physical parameters such as the extent of the ex-
ternal confinement, the salinity of the solution, the chain
length, and the bare persistence length of the polymer.
We have demonstrated how the well-known cubic scal-
ing of the critical surface charge density with the recip-
rocal Debye screening length κ gets non-trivially mod-
ified. Namely, in the limit of κa ≪ 1—small solution
salinities or large surface curvature 1/a—for the critical
adsorption condition for PEs under confinement splits
for the three fundamental geometries. We illustrate this
behavior in Fig. 5 that is the main result of this study.
Our results revealed a remarkable quantitative agreement
with the recent theoretical predictions for the same sys-
tems [39]. The simulation approach enabled us to vary
the polymer length and PE persistence, which are often
quite problematic to be properly implemented from the
first theoretical principles [18]. Also, we showed that for
the critical adsorption onto concave surfaces more per-
sistent chains require smaller surface charge densities to
get adsorbed. For critical adsorption of PEs of varying
polymerization degree N inside spherical cavities of ra-
dius a, we found that the simulation results collapse onto
a universal curve if the rescaled surface charge density is
considered, namely σc → σcaN .
Finally, only the static properties of PEs under con-

finement were considered in the current paper. It would
be instructive as a next step to study the dynamics of
charged polyions inside oppositely charged domains and
cavities. In particular, the implications of polymer charge
and adsorption to the spherical cavity interior can enrich
the trends observed for looping kinetics of spherically-
confined flexible and semi-flexible chains [99]. The video
files of the Supplementary Material demonstrate, for in-
stance, that the dynamics of PE chains in the adsorbed
state is slowed down dramatically, as compared to de-
sorbed configurations. This surface-mediated polymer
confinement is consistent with the ultraslow relaxation
of confined DNA molecules detected in single-molecule
experiments during viral packaging [119]. Future devel-
opments of the model will include the study of PE ad-
sorption onto pH-responsive functionalized [120] curved
surfaces, the implications of a nonlinear ES potential dis-
tribution on the position of the adsorption-desorption
boundary σc(κ,N) [113], and the adsorption of polymer

chains with heterogeneous charge distribution. The lat-
ter can be applied, for instance, to the surface-mediated
adsorption of poly-peptide chains of partially folded pro-
teins.

Let us discuss some possible applications of our find-
ings. Polymer encapsidation inside oppositely charged
cavities [42, 70, 77, 96, 121, 122] is the fundamental mech-
anism of assembly of cylindrical and spherical single-
stranded RNA viruses [89, 90]. This process employs
a delicately tuned adsorption of negatively charged RNA
chains onto the positively charged interior of viral pro-
tein shells. Direct applications of our observations to
the properties of real RNA viruses might however require
the secondary RNA looped structure to be taken into ac-
count. The latter often pays an important role in viral
assembly and nucleic acid packaging process [42, 123].
Branching and self-association in the structure of com-
pacted RNA yield, for instance, a weak overcharging of
the entire virion: on average the negative charge of the
enclosed nucleic acid chain is about 1.6 times larger than
the positive charge of the enveloping protein shell [29].
Also note that a low dielectric permittivity of viral pro-
tein shells can affect the association of single-stranded
DNA chains on the interior of capsid surfaces [94–96].
Here, there exist some theoretical [84] and simulation-
based [85] predictions for the effects of dielectric con-
tinuities onto weak PE-surface adsorption. The confined
weak PE adsorption onto low-dielectric surfaces has not
yet been studied so far, to the best of our knowledge.
This can be an interesting subject for future investiga-
tions [113].

Another domain of possible applications includes the
behavior of long DNA molecules in micro-fluidic devices
involving nano-channels [124–127] with attractive walls.
Having in mind some applications to cylindrical channels
of non-trivial cross-section [128], one can consider in the
future the PE adsorption on the interior of tubes with
more complicated geometries, e.g. rectangular or trian-
gular rather than circular cylindrical channels. Some ap-
plications of our findings to the description of charge ef-
fects of PE and DNA translocation though natural and
synthetic nano-pores [129] are also possible. Another in-
teresting issue is the lateral diffusion of polymers along
transiently adsorbing interfaces [130, 131] where clear
subdiffusive features for the chain displacement were
measured in recent single-molecule tracking experiments
[132]; see also Ref. [133]. Related to these transloca-
tion and surface diffusion issues is the problem of PE
deposition and critical polymer-surface adsorption under
externally applied shear and in the presence of hydro-
dynamic interactions [134, 135].

One more immediate application of our results includes
the problems of protein adsorption—both in their nat-
ive form and in the denatured state—in various porous
media. For instance, polymer dynamics and adsorption
in sticky nano-channels of porous silicon studied in Ref.
[136] can pave the way for the selective separation of
proteins from unknown mixtures, based on their surface
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charge and surface-adsorption properties. Moreover, de-
fining the critical adsorption conditions is of vital im-
portance for the fabrication of responsive and permeable
multilayer capsids. They are being formed via the altern-
ating adsorption of oppositely charged PEs [7] and used
for diagnostic and therapeutic purposes [137]. Finally,
nano-structured polymer-functionalized porous materials
are used in electro-chemical super-capacitors [138, 139]
and our results on polymers under extreme confinement
might find some future applications in this area as well.
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Appendix A: Additional Figures

In this Appendix we present the additional Figures A1,
A2, A3, A4 which support the claims in the main text of
the manuscript.
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Figure A2: Distribution of semi-flexible polymers inside a
spherical cavity (top), cylindrical pore (middle) and planar
slit (bottom panels) for the parameters of Fig. 3 and for
N = 100, κa = 0.5 (left panels, reddish colors) and κa = 5.0
(right panels, greenish colors). The color scheme matches that
of Fig. 3. The non-ES persistent length is lp,0 = 8 (circles),
23 (squares), 33 (diamonds) and 46Å (triangles).

Appendix B: Supplementary Material

In the Supplementary Material we include the video
files illustrating the change of polymer conformations
for the two basic geometries, as investigated in the
main text. For each geometry, we fix the value of the
surface charge density σ and the confinement dimen-
sions a and vary the solution salinity. In doing so,
at small κa values the polyelectrolyte chain is rather
in the adsorbed state, while for larger κa the electro-
static polymer-surface screening gets stronger, the sys-
tem crosses the adsorption-desorption boundary, and the
chain desorbs from the interface (see also Fig. 6 of
the main text). Parameters: the spherical cavity with

Figure A3: The main figure shows the same as in Fig. 5
for inverted adsorption inside a spherical cavity (black), cyl-
indrical tube (red), and planar slit (blue symbols) for vary-
ing salt conditions κ. The results are plotted in the linear
scale. The polymer stiffness is lp,0 = 8 Å (open symbols)
and lp,0 = 50Å (full symbols). Parameters for the main fig-
ure: a = 54 Å and N = 20. The inset is the critical charge
density for a spherical cavity as obtained based on the adsorp-
tion criterion of kBT/10 average binding energy per monomer.
The results for flexible PE chains (lp,0 = 8Å) with N = 20
and N = 100 monomers are shown respectively as crosses and
stars in the inset. The theoretical prediction for the functional
dependence of σc(κ) are the dashed curves, plotted according
to Eqs. (5), (6), and (7) in Ref. [39] and adjusted vertically
to fit the simulation data.

Figure A4: The same as in Fig. 5 but for varying radius
a of the spherical cavities. The high-salt asymptote (8) for
the charge density (in units of C/m2) is obtained from Eq.
(8) as σc(κ)/[C/m

2] = C2κ3br0/(πlB) ∼ κ3, the dashed line.
Parameters: N = 100, a = 50Å, lp,0 = 8Å.

the surface charge density of σ = −0.1/(4π) C/m2, the
sphere radius is a = 50Å, and the chain polymerization
degree is N = 100, simulated at κa = 1 (video 1) and 10
(video 2). The cylindrical pore for the same values of σ,
N , and a simulated for κa = 1 (video 3) and 10 (video
4). The polyelectrolyte adsorption inside planar slits for
the same σ, N , and the slab thickness of a = 100Å were
simulated for κa = 1 (video 5) and 10 (video 6). Every
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Figure B1: TOC graphics

video contains about 106 elementary simulation steps.
Note that the length of the trace shown is about 0.1 of
the entire trajectory length used in Fig. 5 to determine
the adsorption-desorption boundary.
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