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We computationally investigate the dynamics of a vesicle exposed to uniform DC or AC electric fields. We employ the two-
dimensional boundary integral method in order to simulate vesicle deformation under experimental conditions where peculiar
drum-like (“squared”) shapes have been observed. The vesicle membrane is modeled as an infinitely thin, capacitive, area-
incompressible interface, with the surrounding fluids acting as leaky dielectrics. Our simulations capture the “squaring” phe-
nomenon, in which vesicles deform into rectangular profiles with corner-like regions of high curvature, as vesicles undergo
dynamic transitions between oblate and prolate ellipsoidal shapes.

1 Introduction

Electrodeformation of giant vesicles (cell-size sacs made of
lipid or block-copolymer bilayers) is a classical approach to
probe the electromechanical properties of biomimetic fluid
membranes1,2. Elongation of a quasi–spherical vesicle in a
uniform AC field is commonly used to measure bending rigid-
ity1,3. The frequency-dependence of the vesicle asphericity,
namely the transition between prolate and oblate spheroidal
shapes, has been recently utilized to infer membrane capaci-
tance4. The time-dependent dynamics of intact, non-porated
vesicles in DC pulses yields information about membrane vis-
cosity, as well as bending rigidity and tension5. Poration fol-
lowing DC pulses and pore closure serve to determine line
tension6. Electric fields have also been used to modulate
the phase transitions in tri-component membranes (made of
neutral lipids), and found to decrease the miscibility tempera-
ture7.

Interpretation of electrodeformation experiments relies on
theoretical models3,5,8–15. These models, however, are limited
to nearly spherical3,5,8–12 or strictly spheroidal shapes13–15,
and cannot explain the peculiar drum-like shapes observed in
the experiments with quasi-spherical vesicles16. Such drastic
shape distortions can be captured only with numerical simu-
lations. While vesicle dynamics in external flows has been
extensively simulated17–26, few papers have considered the
effects of electric fields27,28. The electrohydrodynamics of
vesicles is challenging computationally because one needs to
consider both the evolution of the electric field and the fluid
motion accompanying vesicle deformation. We have devel-
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oped a computational approach based on the Boundary Inte-
gral Method in two dimensions to simulate vesicle responses
to electric and flow fields27. Our previous paper was devoted
to the development of the numerical method and provided only
few illustrative examples of vesicle electrohydrodynamics in
the case of DC field and fast bulk conduction. In this paper, we
apply our numerical method to comprehensively study vesicle
dynamics to DC and AC fields and map vesicle responses on
phase-diagrams of relevant physical parameters.

2 Model

The vesicle is neutrally-buoyant and filled with an electrolyte
solution with viscosity µin, permittivity εin, and conductivity
σin. It is suspended in a second electrolyte solution with differ-
ent viscosity µex, permittivity εex, and conductivity σex. The
contrast in physical properties of the bulk fluids is character-
ized by the ratios

η =
µin

µex
, ξ =

εin

εex
, Λ =

σin

σex
. (1)

Vesicle deflation is quantified by its reduced area ∆ =
A/(πa2), where A is its area (2D volume), L is its perimeter,
and a = L/(2π) is the radius of a circle with the same perime-
ter (2D area). A value of ∆= 1 indicates a perfect circle, while
smaller values indicate increasingly deflated shapes. Through-
out our calculations we use a as the characteristic length scale
and set the dimensionless perimeter to be L = 1.

The lipid bilayer membrane is assumed to have no net
charge, and to be of uniform conductivity σm and dielectric
permittivity εm. In the zero–thickness model of the mem-
brane, these properties yield an effective surface capacitance
Cm = εm/h and conductivity Gm = σm/h, where h is the mem-
brane thickness (typically h∼ 5nm.)
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Fig. 1 Sketch of the problem: an initially elliptical vesicle placed in
a uniform electric field. The interface is parametrized in terms of
arclength s measured from the vesicle equator.

The molecular thickness of the bilayer gives rise to re-
sistance to bending; the simplest relation between surface
stresses and changes in curvature is described by the Helfrich
model29,30. Moreover, the total number of lipid molecules in
each monolayer is conserved, which renders the membrane
virtually inextensible and gives rise to nonuniform tension (2D
pressure). The membrane stresses are given by31,32

τττ
m =−κ(Hss +H3/2)n− (Σxs)s , (2)

where x = x(s, t) is the position of the vesicle membrane as a
function of arclength s and time t, n̂ is the outward pointing
normal to the membrane, κ is the bending modulus, H is the
mean curvature, and Σ is the membrane tension. The subscript
s denotes a derivative with respect to arclength. As a result
of the membrane’s area–inextensibility, the tension is not a
material parameter, but a Lagrange multiplier enforcing the
inextensibility condition, i.e., zero surface-divergence of the
interfacial velocity.

The vesicle is placed in a uniform electric field E∞ (see Fig-
ure 1) with magnitude E0

E∞ = E0 f (t)ŷ , (3)

where f (t) describes any time dependence, e.g., in an AC
field, f (t) = sin(2πωt). The vesicle dynamics in the elec-
tric field are described within the framework of the leaky–
dielectric model which consists of Ohm’s law for the elec-
tric current and Stokes equations for fluid motion, see Sav-
ille33 for a derivation from the Poisson-Nernst-Planck equa-
tions. Accordingly, the electric field is irrotational, E =−∇φ ,
and the electric potential satisfies the Laplace’s equation

∇
2
φk = 0, k = in,ex. (4)

The interfacial capacitance leads to a jump of the electric po-
tential at the interface Vm = φin − φex. This transmembrane
potential, Vm, is calculated from the conservation of electrical
current in the normal direction34,35

σexEex
n −GmVm =Cm

DVm

Dt
− εex

DEex
n

Dt
(5a)

σinE in
n −GmVm =Cm

DVm

Dt
− εin

DE in
n

Dt
, (5b)

where D/Dt = ∂

∂ t +v ·∇ is the material derivative along the in-
terface and E in

n and Eex
n are the normal components of the elec-

tric field on the interior and exterior of the membrane, respec-
tively. The electric potential and field are determined from
Eq.(4) subject to the boundary conditions Eq.(3) and Eq.(5).
The electric forces acting on the membrane can then be de-
termined from the jump in the Maxwell stresses across the
membrane given by

τττ
el = n · (Tel

ex−Tel
in) , (6)

where Tel = ε(EE− 1
2 E ·EI).

Vesicle deformation is determined from the kinematic con-
dition for the position of the interface,

dx
dt

= vex = vin (7)

which simply matches the velocity of the interface, dx/dt, to
the velocities of the fluid on either side of the interface, vex
and vin. This formulation treats the membrane as a water-
impermeable surface which, coupled with the incompressibil-
ity of the fluid, ensures that the volume of the vesicle is con-
served.

The fluid velocity v is a solution of the Stokes equations
(since the fluid motion at the scale of the micron-sized vesicle
is dominated by viscous effects and inertia is negligible)

µk∇
2vk−∇pk = 0, ∇ ·vk = 0. (8)

where p is the fluid pressure. The forces due to fluid motion
acting on the membrane are computed from the jump in the
hydrodynamic stress tensor across the interface

τττ
hd = n · (Thd

ex −Thd
in ) (9)

where T hd
i j = −δi j p + µ( ∂vi

∂x j
+

∂v j
∂xi

). To solve for the flow,
one needs one more boundary condition. It is provided by
the condition for mechanical equilibrium at the interface,
which requires that the shape-distorting hydrodynamic and
electric stresses, Eq.(6) and Eq.(9), are balanced by the shape-
preserving membrane elastic stresses, Eq.(2)

τττ
hd + τττ

el = τττ
m . (10)

Henceforth we nondimensionalize all variables using the
vesicle radius a as the characteristic length scale and a
time scale set by the charging of the membrane capacitor
tm = aCm/σex. Accordingly, the characteristic stress is τc =
µex/tm. The scaling introduces several dimensionless param-
eters: membrane conductivity G = aGm/σex, field strength
β = εexE2

0/τc, bending rigidity χ = κ/a3τc =Cmκ/σexµexa2,
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Table 1 Dimensionless parameters: definitions and typical range

Dimensionless parameter Description Range of values

β ≡ εexE2
0 aCm/µexσex electric field strength 10−4 to 102

χ ≡Cmκ/σexµexa2 bending rigidity 10−4 to 10−3

G≡ aGm/σex membrane conductivity ≈ 0 for intact bilayer
α ≡ εex/aCm bulk charge relaxation time 10−3

Λ≡ σin/σex conductivity ratio 10−2 to 10
η ≡ µin/µex viscosity ratio 10−1 to 101 (typically near 1)
ξ ≡ εin/εex dielectric permittivity ratio typically near 1
Ω≡ ωaCm/σex AC field frequency 0 to 100

charge relaxation time in the bulk α = εex/aCm, and dimen-
sionless AC field frequency Ω = ωaCm/σex. The dimension-
less parameters and their typical values in experiments are
listed in Table 1. The estimates are based on the typical values
from experiments5,16,36–39: vesicle radius a ≈ 10µm, electric
field strength E0 ≈ 1−100kV/m, membrane bending modu-
lus κ ≈ 10−19J, bulk fluid viscosity µex ≈ 10−3Pa · s, permit-
tivity εex ≈ 10−10F/m, and conductivity σex ≈ 10−4S/m. For
pure, intact lipid membranes Gm ≈ 0 because the membrane
is impermeable to ions. Membrane conductivity becomes sig-
nificant in the presence of ion channels or pores, and its values
can vary widely.

3 Summary of the computational method

While small deformations of a nearly–spherical vesicle allow
analytical solutions, large deformations are tractable only by
numerical simulations. Here we outline our approach27. The
boundary integral method utilizes potential theory and the di-
vergence theorem to transform the equations of electric poten-
tial Eq.(4) and fluid velocity Eq.(8) from partial differential
equations over the entire domain to line integrals along the
vesicle interface, thereby reducing computational complexity.
As the equations for the fluid velocity, Stokes’ equations can
be reformulated into boundary integral form as

1+η

2
vi(x0) = v∞

i (x0)−
∫ L

0

1
4π

Ghd
i j (x,x0) f j(x)ds

+
∫ L

0

1−η

4π
T hd

i jk (x,x0)v j(x)nk(x)ds (11)

where Ghd
i j (x,x0) =−δi j lnr+ x̂ix̂ j/r2 is the two-dimensional

Stokeslet, T hd
i jk =−4x̂ix̂ j x̂k/r4 is the stresslet, and f j is the sum

of all interfacial forces. In these expressions x̂ = x− x0 and
r = |x̂| is the distance between x0 and x, another point on the
interface40.

Following a similar procedure, the equations for the electric
potential at a point x0 either inside or outside the vesicle are

given in boundary integral form by

φin(x0) =2
∫ L

0

(
Gel(x,x0)∇φin

−φin∇Gel(x,x0)
)
·nds (12a)

φex(x0) =2φ
∞(x0)−2

∫ L

0

(
Gel(x,x0)∇φex

−φex∇Gel(x,x0)
)
·nds (12b)

where Gel(x,x0) = − lnr/2π is the free space Green’s func-
tion for the Laplace equation, ∇Gel(x,x0) = −(x̂ ·n)/2πr2 is
its gradient, and x̂ and r are defined as previously. Introducing
Vm = φin− φex and Um = φin + φex, we can add and subtract
Eq.(12a) and Eq.(12b) to get

Vm(x0) =−2φ
∞(x0)−2

∫ L

0

(
(E in

n (x)+Eex
n (x))Gel(x,x0)

+Um∇Gel(x,x0)
)
·nds (13a)

Um(x0) = 2φ
∞(x0)−2

∫ L

0

(
(E in

n (x)−Eex
n (x))Gel(x,x0)

+Vm∇Gel(x,x0)
)
·nds. (13b)

This equation must be solved subject to the current conti-
nuity equation at the interface Eq.(5), which in dimensionless
form is

DVm

Dt
+GVm = Eex

n +α
DEex

n

Dt
= ΛE in

n +ξ α
DE in

n

Dt
. (14)

The other drivers of the vesicle dynamics are the elastic
membrane forces and the electric forces, which appear in the
term f j in Eq.(11). These forces are derived from the stress
balance defined in Eq.(10), and are given in dimensionless
form by

f = χ
(
xssss− (Σxs)s−β‖EiE j−δi jE2/2‖ni

)
(15)

where ‖EiE j−δi jE2/2‖= (E in
i E in

j −δi jE in2
/2)−ξ (Eex

i Eex
j −

δi jEex2/2) represents the jump in the Maxwell stress at the
interface.

1–7 | 3

Page 3 of 7 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



The equations of fluid motion Eq.(11) and electric potential
Eq.(13) have a complicated, nonlinear interdependence. The
electric field at the interface depends on the vesicle shape, and
the vesicle shape, in turn, depends on the forces derived from
the electric field. Further complicating matters is the innate
computational stiffness of the fluid equations (due to the de-
pendence of the membrane force on fourth–order derivative
terms), which gives explicit solution methods dramatically re-
strictive stability conditions. To circumvent this issue, we
employ a semi-implicit, second-order backwards difference
scheme41 which allows for accurate and stable solutions of
the equations.

In each of our simulations, the initial profile of the vesicle
is an ellipse centered at the origin with its major axis aligned
vertically (in the same direction as the imposed electric field).
Theoretically, the fact that the shape of the vesicle, the electric
field, and the forces acting on the vesicle are all symmetric
should keep the vesicle dynamics symmetric for all time as
well. Unfortunately, in some cases computer round-off error
introduces enough small asymmetry to destabilize the dynam-
ics and lead to non-physical, asymmetric results. To prevent
this from happening, we actively enforce a two-fold symme-
try on the vesicle at each timestep so that its shape remains
identical from left to right and top to bottom for all times. To
do so, the computations from the first quadrant are reflected
across both axes to get the full vesicle shape. This preserves
all symmetry in vesicle shape, fluid flow, and electric field that
should theoretically be present.

The deformations are characterized by the aspect ratio ν ,
which compares the lengths of the vesicle contour parallel and
perpendicular to the applied field. Using this definition, a vesi-
cle has two primary shapes of interest. In three-dimensions,
prolate ellipsoids (resembling hot dogs) are characterized by
having one long major axis and two identical, smaller, minor
axes. Oblate (hamburger shaped) ellipsoids are characterized
by having one short minor axis and two identical, larger, ma-
jor axes. In general, vesicles are often characterized using this
same terminology for convenience despite the fact that they
are not, generally speaking, perfectly ellipsoidal. In the con-
text of this 2D study, values of ν > 1 correspond to prolate
shapes, while values of ν < 1 correspond to oblate shapes.

4 Results

Next we present a parametric study of vesicle behaviors in DC
and AC uniform electric fields. Unless otherwise noted, ξ = 1,
η = 1, χ = 0.0005, and ∆ = 0.9. We explore the effects of
conductivity ratio Λ, field strength β , bulk charge relaxation
α , membrane conductivity G, and AC field frequency Ω.

4.1 DC electric field: oblate-prolate transition and
squaring

For a DC electric field, f (t) = H(t) is the step function (uni-
formly 0 for t ≤ 0 and uniformly 1 for t > 0).

Analytical theory12 and experiments5 have shown that a
vesicle with Λ/ξ < 1 may initially deform into an oblate
spheroid but eventually becomes a prolate spheroid (note that
the excess area needed for the ellipsoidal deformation of a
quasi-spherical vesicle comes from the ironing of thermal
shape undulations. Our simulations do not consider shape
fluctuations, hence the initial vesicle shape needs to be ellip-
tical). In the context of our simulations, a vertically oriented
elliptical vesicle (ν > 1) transitions to a horizontally extended
oblate state (ν < 1) and then back into a prolate (ν > 1)(POP
transition). Figure 2 illustrates the shape evolution and the
POP transition for a vesicle with Λ/ξ < 1 upon application of
a uniform DC field.
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Fig. 2 Vesicle deformation upon application of a uniform DC field
with strength β = 25. Conductivity ratio is Λ = 0.1, membrane
conductivity G = 0, and bulk conduction is fast (α = 0). The blue
line denotes the aspect ratio ν of the vesicle; snapshots of vesicle
contours are also shown. The red line shows the strength of the
applied electric field β .

The transition depends strongly on the field strength and
the mismatch in fluids conductivity and permittivity. Figure 3
shows that the POP transition can occur only if Λ/ξ < 1 and
for a sufficiently strong electric field. Upon application of the
electric field, the vesicle begins as a prolate ellipse. The elec-
tric field initially induces vertically compressive forces which
act to squeeze the vesicle into an oblate profile. Over time, as
the membrane charges, these compressional forces shift from
vertical to horizontal, eventually causing the vesicle to elon-
gate into a prolate shape where it remains indefinitely at its
equilibrium orientation. This is the typical POP transition.
However, the higher the excess area, the stronger the com-
pression forces required to make the vesicle oblate. If the ver-
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Fig. 3 The critical electric field strength βc required to induce the
POP transition increases with conductivity ratio Λ and vesicle
deflation. G = 0 and α = 0.
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Fig. 4 The behavior of the vesicle as a function of the electric field
strength β and membrane conductivity G. The vesicle either remains
prolate (P) for all time, undergoes the prolate-oblate-prolate (POP)
transition, or adopts steady oblate profile (O). Λ = 0.1 and α = 0

tically compressive forces experienced by the vesicle are not
strong enough, the vesicle compresses only slightly, remaining
in a prolate state (ν > 1), before approaching the equilibrium
shape. Consequently, a full POP transition is not observed.

Another factor affecting the POP transition is the mem-
brane conductivity. While increasing the membrane capaci-
tance only increases the time scale of the charging, membrane
conductance not only shortens the charging time but also re-
duces the transmembrane voltage. If Vm = 0 then the electric
field at equilibrium is not expelled from the vesicle interior,
and the vesicle experiences only oblate steady deformation

for Λ/ξ < 1. Thus the effect of the membrane conductance
is not only to suppress the POP transition, but also to create a
range of field strengths in which the vesicle remains an oblate
at equilibrium, see Figure 4. Membrane conductivity range is
chosen based on Sens and Isambert42.

The POP transition is also suppressed if charge relaxation
in the bulk or charge convection along the interface are im-
portant, i.e., α is non-negligible. Similar behavior is reported
for drops, where charge convection decreases oblate deforma-
tions43,44. Figure 5 demonstrates that the critical strength of
the electric field β required to induce the POP dynamics on
the vesicle increases with α .
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Fig. 5 Vesicle behavior as a function of the electric field strength β

and charge relaxation in the bulk α . There are two behavior
regimes: one in which prolate to oblate to prolate (POP) shape
transitions occur, and one in which the vesicle remains prolate for
all time (P). Λ = 0.1 and G = 0.

4.2 AC field: breathing

For an AC electric field, f (t) = sin(2πΩt) the vesicle dynam-
ics become frequency-dependent, see Figure 6. In qualitative
agreement with the experiments45, vesicles are steady prolates
at low frequencies, Ω� 1, and steady oblates at higher fre-
quencies, Ω� 1. A new feature is predicted in strong fields
and low frequencies, see Figure 7. Under the same conditions,
in a DC field the vesicle remains in a prolate configuration
at all times (β < βc), while in the AC field, the vesicle under-
goes “breathing” (vesicle shape oscillates between prolate and
oblate shape). Since the electric stresses responsible for vesi-
cle deformation are quadratic in field strength, the vesicle un-
dergoes elongation-compression cycle twice per one period of
the field oscillations, i.e., vesicle deformation oscillates with
twice the frequency of the applied field. Note however, that
the strong fields in this regime are likely to induce poration
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before breathing dynamics can be observed experimentally. A
modified AC field profile analogous to the DC pulse profile
used in Salipante and Vlahovska 5 may circumvent this issue.
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Fig. 6 Vesicle dynamics as a function of field strength and AC
frequency. Λ = 0.1 and α = 0.
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Fig. 7 The shape evolution of a vesicle in a AC field with strength
β = 5 and frequency Ω = 0.075. Λ = 0.1 and α = 0. The line in
blue shows the time evolution of the aspect ratio ν of the vesicle,
while the red line shows the corresponding electric field strength β

at that time.

4.3 Electroporation

Poration due to electric fields is of great practical and funda-
mental interest46,47. While our computational methodology
does not allow us to simulate the actual pore formation be-
cause it involves topological changes in the vesicle structure,
there is insight to be gained about electroporation from our

simulations. Opening of pores in the membrane is related to
the electric field induced tension37,48. Areas of high tension
are associated with regions of the membrane where the com-
bined effect of the external forces is to pull the lipid molecules
of the membrane apart, while areas of high negative tension
are associated with regions of the membrane where the lipid
molecules are being compressed. Accordingly, one might ex-
pect pores to form exclusively in regions of high tension and
not in regions of low or negative tension. For instance, con-
sider a vesicle undergoing the POP transition mentioned pre-
viously. Initially, the highest tension is at the poles (see Figure
8.a) and a prolate-shaped vesicle may porate there14 if the ten-
sion is higher than the lysis tension37. If the field strength is
insufficient to cause poration initially, as the vesicle “squares”
the location of the highest tension shifts toward the corners
(see Figure 8.c) and the high curvature edges can become the
sites of poration16.
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Fig. 8 A vesicle exposed to a DC electric field of strength β = 25.
The membrane tension, Σ, is plotted as a function of arclength, s,
along with the vesicle profile at times (a) t/tm = 0, (b) 0.1, (c) 0.17,
(d) 0.22, and (e) 0.6. The maximum tension occurs in the corner
regions of (c) during vesicle squaring while transitioning between
prolate and oblate states. Λ = 0.1, G = 0, and α = 0.
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5 Conclusions

We computationally studied vesicle dynamics in electric
fields. Upon application of a uniform DC field, an initially
prolate vesicle deforms into an oblate but eventually adopts
a prolate shape. Our study shows that this prolate–oblate–
prolate transition is possible only if Λ/ξ < 1, and it is sensi-
tive to field strength, vesicle deflation, membrane conductiv-
ity, charge relaxation in the bulk and charge convection along
the interface. During the prolate-oblate transition the vesicle
can form corners and become “square”. The corners are the
locations of highest tension. An AC field evokes richer dy-
namics: in the case Λ/ξ < 1, a vesicle deforms into either an
oblate spheroid for high AC frequencies, a prolate spheroid
for low AC frequencies, or oscillates (“breathes”) between the
two states at intermediate AC frequencies. Our simulations
also quantify tension variations along the membrane thereby
suggesting potential sites for poration. Our work provides
insights into the dynamics and stability of biomembranes in
electric fields.
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