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We study a basic theoretical model for a deformable vesicle immersed in a solution of particles that can adsorb to one of the two
surfaces of a membrane. The model consists of an adsorption energy gain for the adsorbing particles and the Canham-Helfrich
membrane bending energy, in which the spontaneous curvature is coupled with the adsorption area. We demonstrate that bud,
pearling, and tube conformations can be stabilized after minimizing the free energy and that the pearling-tubulation transition
has the characteristics of an abrupt structural transition.

1 Introduction

In recent years, significant theoretical and experimental at-
tentions have been directed towards understanding the mor-
phology formed by fluid membranes that interact with other
molecules. A challenge is to provide a fundamental expla-
nation of the rather simple structural formation in real soft-
matter and biological systems which otherwise have a highly
complex molecular nature1–19. While budding, tubulation
and pearling are ubiquitously seen in biological systems, the
mechanisms that lead to these structural formations have long
been the subject of carefully designed biophysical experi-
ments which targeted at cell-shape instability by changing bi-
ological or physical conditions2,4,5,15,20–22. Experiments have
shown that when a membrane surface is collectively modi-
fied in the form of molecular insertion into the lipid bilayer
or multi-particle adsorption on the lipid surface, extraordinary
tubulation and pearling transitions can occur in a membrane
system on a length scale much greater than the modifying-
particle size4,5,15,22. Hydrophilic polymers with hydropho-
bic side groups, for example, were used as anchors to modify
the outer monolayer of a membrane tube or vesicle and to in-
duce shape instability4,5,23. Alternatively, cationic nanoparti-
cles encapsulated within DOPC vesicles can modify the inner
monolayer and produce tubulation and pearling15.

Theoretically, the profound structural properties in these
systems are usually discussed in the context of coarse-grained
models with a few key physical parameters to capture the ba-
sic mechanisms24,25. The Helfrich curvature energy was pre-
viously analyzed for a single-component vesicle to yield con-
formations containing a large mother cell connected to sev-
eral smaller cells, with and without additional area-difference
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Fig. 1 Shape diagram in terms of the reduced vesicle volume v and
adsorption-induced spontaneous-curvature coupling parameter c̃0
with a fixed reduced chemical potential µ̃ =−5.1, yielded from this
work. The diagram is colored according to the shape parameter γ
defined in the text; a high γ (red) indicates the formation of one or
several pearl beads; a low γ (blue) indicates a tubular protrusion.
Each band from blue, white, to red (or yellow) contains a particular
number of beads within the protrusion.
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considerations, for membranes preferring a spontaneous cur-
vature26–28. In addition, the generalization of the models to
account for the difference in spontaneous curvatures of two-
component vesicles is also possible, where the spontaneous
curvature is assumed to be linearly coupled to the compo-
sition density26,28,29; a budding state, for example, can be
established through such a model30. While the membrane
pearling instability has been theoretically explored in other
context20,31,32, here we aim at understanding the curvature-
generating and adhering-particle aggregation mechanisms for
particle-adhering vesicles4,33,34. The model contains two fun-
damental energetic terms: the Canham-Helfrich bending en-
ergy for the membrane and an adsorption energy term for
the adhering particles, applicable when the adsorption energy
dominates over the entropic effects of the adhering particles.
It is much simpler than those proposed to study tubulation
and pearling due to particle anchoring4,33,34. Simultaneously
treating coupled vesicle deformation and particle adsorption,
we show the existence of tubular structures with a hint of
pearling formation, which are seen experimentally but not pre-
viously determined in either single- or two-component vesicle
models. An example of the calculated structural properties can
be viewed in Fig. 1.

2 Model

We consider a vesicle surface, where one side, either exterior
or interior, is in contact with a particle solution. No interaction
between these particles themselves is considered. They can
adsorb onto the surface of a membrane due to a short-range
surface force. All length variables are reduced by the factor

R = (A/4π)1/2 (1)

where A is the vesicle surface area. The total reduced free
energy F is then

F
κ

=
1
2

∫ [
2M̃− c̃0ϕ(x)

]2dÃ+ µ̃
∫

ϕ(x)dÃ, (2)

where c̃0 = c0R, µ̃ = µR2/κ , M̃ =MR and dÃ= dA/R2. Here,
the area fraction covered by adsorbing particles, ϕ(x), is cou-
pled to the spontaneous curvature by c0

35. The first term is
the Canham-Helfrich energy which contains the mean curva-
ture M for a surface element dA36,37. The particle adsorbing
chemical potential, µ , is reduced by the bending energy mod-
ulus κ . The model is suitable for a system with strong adsorp-
tion such that the entropy of the adsorbing particles can be ig-
nored. In addition, we assume that the closed two-dimensional
vesicle has a constant surface area A and constant internal vol-
ume V , subject to shape deformation. Mathematically, two
constraints need to be invoked, as customarily considered in
previous studies38. The relaxation of the volume constraint

)

 

 

Fig. 2 Discretization scheme of the shape curve representing the
vesicle in an axisymmetric setting. The curve is discretized into N
nodes by a distance d. Variables rk and ψk (k = 1,2, ...,N) were
treated as independent variables in our minimization scheme.

will be discussed later for a solvent-permeable vesicle. The
model contains three basic parameters: the reduced vesicle
volume

v = 3V/4πR3, (3)

c̃0, and µ̃ . Here we ignore the thermal fluctuations of the
membrane and take the conformation corresponding to the
free-energy minimum as the stable state24,25.

3 Numerical scheme

In previous treatments on related membrane models where
both physical properties were considered, the membrane
shape was determined according to an a priori assumption that
the area fraction ϕ(x) has a specific function form33,34,39–43.
Here, for a deformable vesicle that has an axisymmetric shape
about the z axis, we introduced a shape function, r(s) and z(s),
where s is the arcvariable along the shape, together with an ax-
isymmetric distribution ϕ(s). Minimization of F with respect
to all three functions was performed simultaneously, subject
to energy penalty terms that deal with the constraints in the
system44,45.

In our numerical procedure, the curve is discretized into N
nodes, each separated by an equal distance d. We further intro-
duce an angle variable ψ , the angle between the neighboring
nodes and the horizontal line. The coordinates r and z depend
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on ψ through

ri+1 = ri +d cosψi, (4)
zi+1 = zi +d sinψi, (5)

where i is the node index. This discretization scheme is illus-
trated in Fig. 2. With axisymmetry the adsorption of particles
onto the membrane surface is described by the area fraction
ϕ(s) as a function of the arcvariable s. We also discretize ϕ(s)
into ϕi for node i under the constraint 0 ≤ ϕi ≤ 1.

The approach of solving the Euler-Lagrange equation for
the shape functions was taken previously25,38,46–48, where the
mathematical constraints on the total surface area and total
internal volume were incorporated through the Lagrange mul-
tipliers. In the current work, we take a different numerical
approach, in which all mathematical constraints such as the
total area, total volume, and the ri-ψi relation in Eq. 4 are
expressed by energy penalty terms44,45. We introduce a di-
mensionless target function using a discretized form of Eq.
(2),

F
κ

=F̃ [{ψi},{ri},{ϕi};d]

=
1
2 ∑

i

[ψi+1 −ψi

d
+

sinψi

ri
− c̃0ϕi

]2∆Ai

+ µ̃ ∑
i

ϕi∆Ai

+ΛA
[
1− 1

4π ∑
i

∆Ai
]2

+ΛV
[
1− 3

4v ∑
i

( ri+1 + ri

2
)2d sinψi

]2

+Λd ∑
i
(ri+1 − ri −d cosψi)

2,

(6)

where
∆Ai = πd(ri+1 + ri). (7)

The terms with coefficients ΛA and ΛV reproduce the area and
volume constraints and force the reduced volume at v; the last
term with a prefactor Λd were introduced because {ri} and
{ψi} are treated as independent variables in our minimization
scheme. We increase ΛA, ΛV , and Λd until a satisfactory nu-
merical precision is achieved.

For a fixed set of c̃0, µ̃ , and v, within an iteration step,
we numerically minimized the target function, treating it as
a multi-variable minimization problem that can be efficiently
dealt with by the L-BFGS-B algorithm49. At the next itera-
tion step, the penalty factors ΛA, ΛV , Λd were increased by
one percent, starting from 500 to arrive at a final 107. The
error tolerance of the minimization was selected such that
the contribution of the penalty terms was less than 0.1 per-
cent to the final minimized target function. In order to test
the numerical scheme, we enforced c̃0 = µ̃ = 0 to reproduce

vesicle shape

Fig. 3 Optimized shape function for a system at c̃0 = 7.6,
µ̃ =−0.51 and v = 0.70. To the left scale, the solid curve illustrates
the vesicle shape; to the right the dashed curve represents the
adsorption area fraction ϕ . Note that r and z are reduced by the
factor R given in the text.

the stability regions of typical vesicle conformations. We can
show that the prolate conformation is stable within the region
v = (0.65,1.0], the oblate conformation is stable within the re-
gion v = (0.59,0.65] and the stomatocyte conformation is sta-
ble within the region v = (0.0,0.59], which can be compared
with the previous results v = [0.652,1.0], v = [0.592,0.651],
and v = (0.0,0.591] for these phases determined by Seifert
et al. using a different numerical technique38. All numerical
results in the current paper are based on N = 301.

To demonstrate the coupling among r(s), z(s) and ϕ(s), in
Fig. 3 an example is displayed, containing an almost spheri-
cal mother vesicle, and a protrusion. The latter is an almost
uniform string of pearls, in connection with a constant ϕ = 1
over the entire region — adsorbing particles aggregate in this
region. The radius of a pearl bead is close to 2/c̃0. Hence we
can estimate c̃0 in an experiment by the observed bead size. In
both pearling experiments of a nanoparticle-adsorbing giant
unilamellar vesicle (GUV)15 and a polymer-anchoring tubu-
lar phospholipid membrane4, no evidence of nonuniform ac-
cumulation of adsorbing molecules at regions with different
curvatures was found when the entire system transformed into
a string of pearl beads; our result is consistent with the ex-
perimental observations. However, within the mother vesicle
region, ϕ(s) is approximately a constant less than 1. Near the
neck connecting the protrusion and the mother vesicle, ϕ(s)
decreases sharply to 0 at the location where vesicle has a mean
curvature 0, displaying a catenoid shape. This was also seen
in Ref. 30 based on a different model.

4 Protrusion conformation

A shape parameter γ is defined to measure the conformation
in the protrusion,

γ =
⟨r⟩−1/c̃0

π/(2c̃0)−1/c̃0
, (8)
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Fig. 4 (a) Total energy F as a function of v for systems having
µ̃ =−3.56 and various c̃0. As two neighboring branches of F cross,
the system undergoes an abrupt shape transition between shapes
having different number of pearling beads. (b) Shape parameter γ as
a function of v and (c) Membrane shape as a function of v for
µ̃ =−3.56 and c̃0 = 5.0.

where ⟨r⟩ ≡
∫

r(s)dA/
∫

dA is the mean radius and the integral
covers the protrusion portion only. In an ideal case, when the
protrusion forms a perfect tube with radius 1/c̃0, γ = 0. On
the other hand, when it forms a string of perfect spheres with
radius 2/c̃0, ⟨r⟩ = π/2c̃0, then γ = 1. Thus γ indicates the

protrusion shape continuously ranging from a string of beads
to a cylinder.

The coupling constant c̃0 controls the protrusion radius and
the entire vesicle is constrained by the reduced volume v; as
such the vesicle conformation strongly depends on both c̃0 and
v. In Fig. 1, using γ we plot the shape diagram in the (c̃0,v)
plane. Starting from the top-left corner of the figure, a one-
bead (bud) conformation exists; moving through each band,
we see distinct conformations where one additional bead is
added to or taken from the vesicle protrusion. Examples of
conformation can be seen from the shapes plotted in Fig. 1.
In the region v < 0.3, the vesicle adopts the shape of a long
narrow capped cylinder. Likewise, in the region c̃0 > 10, the
protrusion forms a tubular structure.

The total energy F in Fig. 4(a) together with γ in Fig. 4(b)
shows that there is a discontinuous transition each time the
protrusion grows one additional bead. A series of shape tran-
sitions take place stage by stage between conformations hav-
ing different number of beads; a similar behavior was reported
from studying curvature-driven component sorting in lipid
membranes42. At every transition point, the two branches of
F cross and γ drastically jumps from the value at one state to
another. Figure 4(c) illustrates the shape changes before and
after the transition.

An interesting feature that can be deduced from Fig. 4(c)
is within the parameter region v < 0.4. Soon after the entire
vesicle becomes a string of beads, the vesicle’s surface is uni-
formly covered by adhering particles, where ϕ = 1 throughout
the vesicle. As v is further lowered, the vesicle undergoes
a transition from a seven-bead conformation to an eight-bead
conformation and finally becomes a long narrow capped cylin-
der. The free energy plot F shows a behavior similar to that
discussed in Ref. 38, in which a vesicle with a uniform spon-
taneous curvature was discussed; there the system undergoes
a transition from two beads to three beads and finally becomes
a long prolate.

In the above we mainly focused on the discussion of a sys-
tem where c̃0 = 5.0 in Figs. 4(b) and (c). As can be viewed
from Fig. 4(a), for other c̃0 similar sequences of stage-by-
stage transitions exist. At the transition points, the magnitudes
of free energy cusps become smaller in a greater-c̃0 system.
Especially in the small v region, the energy difference between
two neighboring multi-pearling states containing n and n+ 1
beads is no longer large, if n ≫ 1. These pearling-to-pearling
and the final pearling-to-tube shape transitions appear much
weaker within the same energy scale plotted in Fig. 4(a). This
can be viewed from the color variations in Fig. 1 as well. The
contrast of color between neighboring bands demonstrates the
magnitude of the structural difference. For a c̃0 as large as 14
(to the right potion of Fig. 1), as v varies, a few first steps
of pearling-to-pearling transitions can be clearly identified but
soon, the structural difference becomes very weak.
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Fig. 5 Structure diagram in terms of the reduced volume v versus
the reduced chemical potential µ̃ for the reduced spontaneous
curvature c̃0 = 7.6. The color scheme is the same as the one in Fig.
1. The shapes of protrusion are affected by both v and µ̃ . Increasing
µ̃ transforms the membrane into a string of beads while the number
of beads solely depends on v and c̃0.

5 Tubulation-pearling transition

An example of the structure diagram in the (µ̃,v) plane with
a fixed c̃0 is displayed in Fig. 5. The stripe pattern again
represents the value of γ and implies that the pearling struc-
tures of the vesicle is mainly determined by c̃0 and v as long
as |µ̃ | is large enough. In the weak-|µ̃ | region, there is a sig-
nificant area on the diagram colored by light blue, where the
protrusion part forms a tubular shape. Increasing |µ̃ | generally
drives the membrane into a pearling shape. This is because a
larger |µ̃| prompts the system to take more membrane area
from the mother vesicle, which stays in a spherical shape it-
self, to form the shape according to c̃0 in protrusion. Forming
spherical beads can accommodate the largest volume in the
protrusion and enables more membrane area from the mother
vesicle to adopt the shape according to c̃0. Hence for a fixed
v, a high |µ̃| area corresponds to the pearling regime.

To further demonstrate the effects of µ̃ on a system with
fixed v and c̃0 in more details, we display an example of shape
transformation from a tube-like structure to a pearl necklace
in Fig. 6(a). The tube-like structure at a low |µ̃| gradually
evolves into a shape with a hint of pearling when it reaches
|µ̃ | ≃ 0.34 where a discontinuous transition takes place. Be-
yond |µ̃ | ≃ 0.34, a clearly-defined pearling structure is stabi-
lized. Both the membrane energy in Eq. (2) and γ , to the left

Fig. 6 (a) Membrane shape as well as (b) membrane energy Fmem
and γ as functions of µ̃ for c̃0 = 7.6 and v = 0.51. At the reduced
chemical potential µ̃ =−0.34, Fmem and γ exhibit a jump.

and right scales of Fig. 6(b) respectively, undergo an abrupt
transition at the transition point. The value of γ is significantly
larger in the pearling state than in the pre-pearling, tube-like
state.

From the discussion in this and last sections, we can sum-
marize the basic physical picture here. The adsorption energy
is the drive force that enables the tubulation-pearling transition
and stabilizes a structure. This changes the effective sponta-
neous curvature ϕc0 as well as lowers the total adsorption en-
ergy. The parameters v and c̃0 determines the structure of the
stable states, such as the number of beads in a pearling state.
By varying these two parameters, as demonstrated in the last
section, various states are available.

6 Comparison with experiments

A dynamic tubulation/pearling process was presented in a se-
ries of fluorescence images by Yu and Granick 15. The initial
state was a GUV formed and stablized in a nanoparticle solu-
tion, displaying a spherical shape. At time t = 0, the nanopar-
ticle solution outside GUV was diluted, and the initially ad-
sorbed nanoparticles on the exterior surface started a desorb-
ing process; structural transformation then took place. The
adsorption area-fraction difference between interior and exte-
rior surfaces can serve as the net ϕ in our model.
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The process accompanies solvent filtration through the
membrane surface, as such the enclosed volume is not con-
strained. The equilibrium state of a volume-constraint-free
system can be deduced from the minimum in the F-v curve
presented in, for example, Fig. 4. Before dilution, both
membrane sides contain an almost equal amount of nanopar-
ticles, i.e. ϕ = 0; hence the spontaneous curvature term van-
ishes15,22. GUV takes an optimal shape corresponding to the
bending-energy minimum, i.e, a sphere where v = 138 [see
Fig. 7(a)].

Strictly speaking, our study here only concerns about the
equilibrium states. The initial spherical GUV has an equilib-
rium radius ∼ 10 µm and the final equilibrium state contain-
ing pearls that have a radius ∼ 2.5 µm. Thus c̃0 can be esti-
mated from 10×2/2.5 ∼ 8.0. In order to qualitatively explain
the evolution of pearling kinetics observed in the above ex-
periment, we assume that the nanoparticle desorption dynam-
ics on the surface and solvent filtration across the membrane
is slower than the membrane deformation response. In other
words, during the pearling evolution, the vesicle is in a quasi-
equilibrium state controlled by the time-dependent µ and v.
If this assumption is false, the final pearling structure would
quickly form without going through the intermediate states.

In the following, we examine a series of simulation results
with c̃0 = 7.6. After t = 0, once nanoparticles start to desorb
from GUV’s exterior surface, the system can be effectively de-
scribed by a weak |µ̃| and prefers a smaller v. The solvent
permeability across the membrane surface, on the other hand,
prevents an immediate reduction of v. The GUV conforma-
tion now corresponds to Fig. 7(b). As the exterior nanoparti-
cles further leave the surface (i.e., the effective |µ̃| increases)
and solvent filtrates through the membrane (i.e., v is reduced),
a tube starts to emerge and is elongated [Fig. 7(c)]. Pro-
gressively, more nanoparticles leave the exterior surface and
the system is effectively in a |µ̃ | region where a long tube
forms, which contains some structures resembling the initial
formation of beads [Fig. 7(d)]. At a certain stage the vesicle
undergoes a tubulation-pearling transition. Finally, the equi-
librated system reaches an energy minimum and becomes a
necklace connecting a string of fifteen pearls, which is com-
parable to the number of final pearls formed in the experiment.
The above qualitative description, of course, does not take the
initial multiple protrusions seen in a real experiment into ac-
count.

Tsafrir et al. observed the pearling instability of a mem-
brane tube by introducing hydrophilic polymers with hy-
drophobic side groups in the outside solvent4. They showed
that the radius of pearls strongly depend on the adsorbing
polymer concentration, justifying the idea of a concentration-
coupled spontaneous radius, used in our model and in their
work. Most equilibrium states of the current model contain a
large-radius mother cell connected to a string of pearls with

   

|   

 

exterior particles 

removed 

  

(a) 

(b) (c) 

(d) (e) (f) 

Fig. 7 Illustration of a transition path similar to the observation in a
recent experiment15. All the shapes were obtained from free energy
minimization for c̃0 = 7.6.

almost identical small radius (Fig. 4). This is consistent with
the final equilibrium state of the nanoparticle-induced pearling
experiment15. In contrast, the final snapshot of Tsafrir et al.’s
experiment (Fig. 1d of Ref. 4) displays a gradient of radius
of the pearls from the large-radius mother cell to the smallest,
un-explained by the current model.

Summary

A free-energy model is used to study the tubulation and
pearling transition for a vesicle interacting with a particle so-
lution. The mechanism responsible for generating the sponta-
neous curvature was described by a chemical potential, which
controls the surface fraction affected by adsorbing particles.
Two key physical effects were taken into account within the
coarse-grained Helfrich model: change in the spontaneous
curvature and the adsorption energy. Through minimization
of the free energy, we show that two main types of structures
are possible: a vesicle connected to a tubular or pearling pro-
trusions. The morphology of protrusion depends on a subtle
balance between the spontaneous curvature, the chemical po-
tential, and the reduced volume.

Examining the structure of the free energy in Eq. 2, one
could interpret it as a model for a two-component vesicle; the
last term is just an energy penalty with a Lagrange multiplier
µ̃ to maintain the overall composition constant on the vesi-
cle. Mixing entropy needs be considered in this case, and µ̃
must be re-expressed as a function of the total composition
ratio as the control parameter. We are, however, facing a dif-
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ferent problem here where µ̃ , the adsorption energy between
particles in the solution and the membrane surface, is the con-
trol parameter and dominates over the entropic effects. By
solving this model, not only we demonstrate that tubulation
and pearling are possible in such a simple model, but we also
show that “phase” separation between the ϕ -rich and ϕ -poor
regions can be completely driven by segregation of the cou-
pled spontaneous curvatures in different domains.
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TOC FIGURE: Model of vesicle tubulation and pearling induced by
adsorbing particles
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A transition path sequence is found, similar to the observation in a recent
experiment, for the tubulation and pearling transition of a vesicle immersed
in a nanoparticle solution.
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