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Highly-deformable materials, from synthetic hydrogels to biological tissues, are becoming increasingly important from both fun-
damental and practical perspectives. Their mechanical behaviors, in particular the dynamics of crack propagation during failure,
are not yet fully understood. Here we propose a theoretical framework for the dynamic fracture of highly-deformable materials,
in which the effects of a dynamic crack are treated with respect to the nonlinearly deformed (pre-stressed/strained), non-cracked,
state of the material. Within this framework, we derive analytic and semi-analytic solutions for the near-tip deformation fields
and energy release rates of dynamic cracks propagating in incompressible neo-Hookean solids under biaxial and uniaxial loading.
We show that moderately large pre-stressing has a marked effect on the stress fields surrounding a crack’s tip. We verify these
predictions by performing extensive experiments on the fracture of soft brittle elastomers over a range of loading levels and prop-
agation velocities, showing that the newly developed framework offers significantly better approximations to the measurements
than standard approaches at moderately large levels of external loadings and high propagation velocities. This framework should
be relevant to the failure analysis of soft and tough, yet brittle, materials.

1 Background and motivation

Material failure is mediated by the propagation of cracks,
which are spatially-extended dissipative defects that concen-
trate large deformation and stresses near their tips. The lat-
ter is an essential physical property of cracks that highlights
their basic role in material failure: cracks strongly amplify re-
motely applied stresses near their tips, precipitating fracture
as they propagate.

The classic approach to the fracture of brittle materials, Lin-
ear Elastic Fracture Mechanics (LEFM)1–3, is a perturbative
approach that treats all relevant physical quantities to linear or-
der in the elastic deformation with respect to the undeformed
state of the material. Here, all nonlinearities and dissipation
are assumed to be confined to a microscopically small region
near the crack tip, and are neglected.

LEFM does not treat separately the effects of the exter-
nally applied loading (pre-stress/strain) and the presence of
the crack itself, due to the linearity assumption. This physi-
cal picture makes sense as long the materials of interest fail
when the applied forces are small and the deformation is in-
deed linear elastic (i.e. infinitesimal) everywhere except for
the immediate vicinity of the crack tip. This has always been
the case in “traditional” brittle materials such as glasses, ce-
ramics and brittle polymers, where failure occurs at applied
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strains of the order of 1%.
Recently, an extended theory of dynamic fracture – the

“Weakly Nonlinear Theory of Dynamic Fracture” – was de-
veloped4–8. This theory still treats the large scales of a frac-
ture problem as linear elastic, but explicitly takes into account
the leading order nonlinear elastic corrections near the tip of a
crack. In the latter region, strains are necessarily large and
nonlinearities of the elastic fields are important for under-
standing the physical state that actually drives material failure.

The weakly nonlinear theory introduced a new intrinsic
length scale (i.e. independent of the external geometry and
crack’s dimensions) that emerges from the competition be-
tween linear and weakly nonlinear deformation. The new
length scale, which is missing in LEFM and characterizes the
scale near the crack tip where LEFM breaks down, has been
argued to play an important role in determining the crack’s
path9 and has been shown to play a decisive role in crack in-
stabilities10–13. This theory has recently received significant
experimental support13,14.

Of late, classes of materials in which large deformations
precede failure have become increasingly important and have
been extensively studied in various contexts. These highly-
deformable materials include synthetic elastomers, biopoly-
mers, gels and a broad range of soft biological tissues (e.g.
arterial walls, veins, skin, tendons etc.). Reviewing even a
small portion of the work done on the fracture of soft, highly-
deformable, materials — which encompass various scientific
disciplines and communities — goes well beyond the scope of
this paper. We can only mention here a few examples.

The fracture resistance of some synthetic materials, such as
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double-network hydrogels made of ionically and covalently
crosslinked networks15–20, can be made to be enormous and
new applications are expected to abound. Basic phenomena
such as delayed fracture of soft solids21, and surface tension-
induced and capillary fracture of gels22–25 have been studied.
Finally, the work of Baumberger and coworkers on the quasi-
static fracture of soft materials has both elucidated the frac-
ture mechanisms of biopolymer gels26–28 and established the
existence of an intrinsic length scale associated with elastic
nonlinearities10–12.

It is important to note that many of the materials of interest
here, although highly-deformable and tough, are still brittle.
The materials that we are considering here are materials where
high-deformability is dominated by nonlinear elastic behavior,
with little ductility. This type of behavior is typical in many
of the new tough elastomers that are being developed. Since
the bulk dissipation can be ignored, these materials are indeed
brittle – as the only dissipation takes place in the near vicinity
of the crack tip.

When failure occurs under the application of large back-
ground deformation (pre-stress/strain), the deformation is
nonlinear everywhere in the material, invalidating the assump-
tion of remote linear elastic deformation. To address this prob-
lem, some works considered the fully nonlinear field equa-
tions for certain classes of highly-deformable materials and
non-perturbatively derived the leading asymptotic fields in
the inner most crack tip region. The vast majority of these
works focussed on static cracks29–33, though not all34–36. Such
an asymptotic approach would be useful if the asymptotic
fields are generic and universally linked to the remote load-
ing, something which has not yet been established. Marder,
following a different approach combining numerical and an-
alytic techniques, developed a rather comprehensive dynamic
fracture theory of rubber37. Despite these important efforts,
we are still far from having a well-established general theory
of the dynamic fracture of highly-deformable, strongly non-
linear, materials.

In this paper, we develop a theoretical framework in which
the background, possibly finite (nonlinear), deformation in-
duced by the external loading in the absence of a crack (pre-
stress/strain) is treated non-perturbatively. Then, the effects
of the crack on its near-tip region are treated perturbatively
to second order with respect to the background deformation.
This theory will be shown to offer quantitatively good approx-
imations to experimental data at moderately large background
deformation. Consequently, we occasionally refer to it as the
moderately large deformation theory.

The development of a perturbative fracture theory in the
presence of non-infinitesimal background deformation is con-
ceptually non-trivial. It raises the following question: if the
background deformation is finite (nonlinear) and a crack sig-
nificantly amplifies the background (remotely applied) defor-

mation near its tip, is it justified to treat the latter as a relatively
small correction to the former?

To quantitatively address this issue, we first develop the
moderately large deformation theory and derive its near
crack tip solutions (both analytically and semi-analytically).
We then systematically and quantitatively compare it to the
weakly nonlinear theory. Both theories are also compared
to extensive direct measurements of the near-tip deformation
fields of dynamic cracks propagating in a brittle elastomer gel,
where the background deformation is increased in a controlled
manner.

Our results show that while the two theories agree with each
other at relatively small background deformation, the moder-
ately large deformation theory offers significantly better ap-
proximations to the experimental data at moderately large lev-
els of external loadings (pre-stress/strain) and high propaga-
tion velocities.

Theoretical frameworks that invoke perturbations of a pre-
stressed state – which are sometimes referred to as “Me-
chanics of incremental deformation” – are not new in them-
selves38,39. A classical example is the theory of small ampli-
tude waves in nonlinearly pre-stressed materials, which has
recently attracted renewed attention40. In this case, a pertur-
bative approach relative to the pre-stressed/strained state of
the material is fully justified as the wave amplitude can re-
main small relative to the large background deformation. As
explained above, this is not automatically the case in fracture
dynamics where the background deformation is significantly
amplified near the crack tip and hence in principle may not be
treated as a small perturbation.

A number of authors have previously discussed such ap-
proaches to fracture39,41, where the effect of the crack was
treated perturbatively to linear order with respect to the back-
ground deformation. As far as we can tell, however, these
authors did not address at all the range of validity of the ap-
proach. In particular, their perturbative approach was confined
to linear order, which – as we show below – is insufficient
since higher order effects (in particular, weakly nonlinear ef-
fects with respect to the background deformation) play an im-
portant role.

Furthermore, to the best of our knowledge, quantitative
comparisons of theoretical predictions to detailed experimen-
tal data, as we do here, have not previously been performed.
We believe that the combined theoretical-experimental results
presented in this paper offer a useful framework to quantita-
tively address the fracture properties and dynamics of highly-
deformable materials.

2 Theoretical framework

To lay down the theoretical grounds for the approach we pro-
pose, consider a dynamic crack propagating in a 2D non-
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linear elastic solid described by an energy functional U(F ).
The deformation gradient tensor F is defined as F (x, t) =
∇xφ(x, t), where the motion φ(x, t) is a continuous, differ-
entiable and invertible mapping between a reference (unde-
formed) configuration described by x and a deformed config-
uration described by x′, such that x′=φ(x, t)=x+ u(x, t).
u(x, t) is the displacement vector field. Linear momentum
balance can be expressed in the reference configuration as42

∇x ·s = ρ φ̈ , (1)

where s is the first Piola-Kirchhoff stress tensor, s=∂FU(F ),
and ρ is the time-independent reference mass density.

The crack is assumed to follow a straight trajectory and to
propagate steadily at a velocity v along the positive x-axis.
Under symmetric tensile loading along the y-axis, that is under
mode-I fracture conditions, the crack faces are being separated
and hence are traction-free. These traction-free boundary con-
ditions on the crack faces can be expressed in the undeformed
configuration as42

sxy(r, θ = ±π) = syy(r, θ = ±π) = 0 , (2)

where (r, θ) is a polar coordinates system co-moving with the
crack tip (r=0 is the tip location and θ=0 is the propagation
direction).

The solution of Eq. (1), with the boundary conditions of
Eq. (2) and a constitutive relation s= ∂FU(F ) for a general
nonlinear energy functional U(F ), is analytically intractable.
To make progress, some approximations are invoked, most no-
tably in situations in which fracture occurs under small back-
ground deformation. In such cases, the displacement gradient
tensor H ≡∇xu is treated as small everywhere except for a
small zone around the crack tip, and a perturbative approach is
developed. LEFM1–3 and the weakly nonlinear theory of frac-
ture4–8 fall under this category. Highly-deformable materials,
on the other hand, fail at large, nonlinear, background defor-
mation and in principle the status of a perturbative approach is
not clear.

2.1 General formulation

To develop our approach, we write the motion φ(x, y, t) as

φx(x, y, t) = λx x+ Ux(x, y, t) ,

φy(x, y, t) = λy y + Uy(x, y, t) . (3)

Here we decompose the total motion into a contribution
emerging from the external loading λx,y in the absence of a
crack (the pre-stress/strain), which are the stretches in the x
and y directions respectively, and into the effect of the crack
quantified by U(x, y, t). For simplicity, and to later allow di-
rect comparison with experiments, we assume hereafter that

λx,y are constants. When λx = λy = 1, U(x, t) becomes
the ordinary displacement field u(x, t). In this case, LEFM
corresponds to the linear approximation in the displacement
gradient H and the weakly nonlinear theory to the second or-
der approximation in H (leading order nonlinearity)4–8. The
decomposition in Eq. (3) is sketched in Fig. 1.

y
 >

1y
 =

 1
 

x
y

z 

v 

a

b 

Fig. 1 A sketch that illustrates the decomposition in Eq. (3). (a) An
undeformed configuration is uniformly stretched in two directions,
described by two principal stretches λx,y>1, corresponding to the
first terms on the right-hand-side of Eq. (3). The effect of the crack
relative to this pre-stretched state is described by the field
U(x, y, t). (b) The actual motion is described by φ(x, y, t) which
takes into account both the presence of the crack and the external
stretch. On the left, the undeformed configuration with an unopened
crack is shown. On the right, the stretched configuration with an
opened crack propagating at a velocity v is shown. The coordinate
system showing the propagation direction (x), the tensile loading
direction (y) and the thickness direction (z) is added for clarity.

We now consider situations where λx,y deviate to a finite
degree from unity. When the motion φ of Eq. (3) is substi-
tuted in s= ∂FU(F ), which is then substituted in Eq. (1), a
nonlinear set of equations in U is obtained. In this paper we
solve this problem perturbatively to second order in ∇xU , i.e.
employ the expansion

U ≃ U (1) + U (2) (4)

in the near tip vicinity of a dynamic crack, which is understood
as a displacement gradients expansion.

The expansion in Eq. (4) corresponds to an expansion of the
stress of the form s ≃ s(0) + s(1) + s(2), where s(0) simply
corresponds to the pre-stress. Using the latter and transform-
ing into a frame of reference moving with the crack tip, mo-
mentum balance in Eq. (1) translates into two linear problems
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which take the form

∇x ·s(1) = L[U (1)] = ρv2∂xxU (1) , (5)

∇x ·s(2) = L[U (2)] +F [U (1)] = ρv2∂xxU (2) , (6)

and Eq. (2) gives rise to the corresponding boundary condi-
tions on U (1) and U (2). L[ · ] is a vectorial linear differential
operator, which depends on the nonlinear energy functional
U(F ) and λx,y, and has the form of an effective anisotropic
linear elastic operator. Anisotropy here emerges due to nonlin-
earity in U(F ) and the possibly symmetry-breaking external
stretches λx,y. Since L[ · ] is a linear elastic operator, we ex-
pect the asymptotic near tip solution of Eq. (5) to give rise
to the standard singularity ∇xU (1) ∼ 1/

√
r at small r. This

square root singularity implies a parabolic crack tip opening
profile2.

What do we expect to occur to second order? We are
guided by the intuition gained by solving the weakly non-
linear problem for infinitesimal deformations4–8. Hence, the
second order problem, i.e. Eq. (6), features the same linear
operator L[ · ] as in the first order problem, but also an effec-
tive body force F [U (1)] corresponding to quadratic contribu-
tions emerging from the first order solution. In particular, we
have F [U (1)] ∼ ∇x[∇xU (1)]2 ∼ 1/r2. The boundary condi-
tion which U (2) satisfies, emerging from a consistent expan-
sion of Eq. (2), features an effective surface force propor-
tional to 1/r. As in the weakly nonlinear theory derived for
small background strains, this structure is expected to lead to
∇xU (2) ∼ 1/r, i.e. to a stronger singularity than the linear
problem. U (2) is expected to modify the crack tip shape and
to introduce a new lengthscale into the problem4–8, the length
at which |∇xU (1)|≃|∇xU (2)|.

The elastic fields transport a finite amount of energy into
the tip region, as quantified by the J-integral2

J=

∫
C

[(
U(F )+ 1

2ρ [∂tφi]
2
)
v nx + sij nj ∂tφi

]
dC , (7)

where C is a contour encircling the tip and n is an outward
unit vector on C. This integral is path-independent for steady-
state crack propagation and for any contour C within a non-
dissipative region described constitutively by the elastic en-
ergy functional U(F ). G(v) = J/v, the energy release rate
whose dimensions are energy per unit crack area, is dissipated
near the tip. This dissipation is quantified by the fracture en-
ergy Γ(v) – a measure of the material’s resistance to crack
propagation – which is a fundamental material function as-
sumed to depend only on the crack propagation velocity. En-
ergy balance implies that G(v) = Γ(v), which enables us to
use G(v) to calculate Γ(v) (see below).

The approximate solution for the motion φ(x, y) depends
in a nontrivial way on the nonlinear energy functional U(F )
and on the background stretches λx,y. In the next subsections

we will demonstrate how to actually derive the solution and
explore some of its physical properties.

2.2 Analytic example of first order asymptotic fields

To see how all of this works, we discuss an explicit example
that can be worked out analytically in a rather straightforward
manner. We consider an incompressible neo-Hookean ma-
terial under plane-stress conditions, whose nonlinear energy
functional takes the form43

U(F ) =
µ

2

(
FijFij +∆2

z − 3
)
. (8)

Here µ is the shear modulus, F is the 2D deformation gradient
and ∆z(x, y) = [det(F )]−1 = [∂xφx ∂yφy − ∂xφy ∂yφx]

−1

is the out-of-plane stretch. We choose this energy functional
because it is relevant for many highly-deformable materials
and it will allow us later to compare our predictions to direct
experimental measurements.

The stress tensor s corresponding to U(F ) in Eq. (8) reads
sij=µ

(
∂jφi−∆3

z ϵik ϵjl ∂lφk

)
, where ϵij is the 2D alternator

(i.e. ϵxx= ϵyy =0, ϵxy =−ϵyx=1). The momentum balance
of Eq. (1) takes the form

µ∇2φx + µ
[
∂y∆

3
z ∂xφy − ∂x∆

3
z ∂yφy

]
= ρ φ̈x ,

µ∇2φy + µ
[
∂x∆

3
z ∂yφx − ∂y∆

3
z ∂xφx

]
= ρ φ̈y , (9)

while the traction-free boundary conditions of Eq. (2) read

sxy(r, θ=±π) = µ(∂yφx +∆3
z ∂xφy)|θ=±π = 0 ,

syy(r, θ=±π) = µ(∂yφy −∆3
z ∂xφx)|θ=±π = 0 . (10)

We focus now on pre-stressing/straining of the form λx =
λy=λ, i.e. on a biaxial stretch, which is simpler than uniaxial
stretching due to its symmetry. This loading corresponds to
a pre-stress of the form s

(0)
ij = (λ − λ−5)µ δij . Substituting

Eqs. (3)-(4) in Eqs. (9), we obtain to linear order (again in the
co-moving frame of reference)

µ∇2U (1) + 3λ−6µ∇(∇ · U (1)) = ρ v2∂xxU (1) , (11)

which has the structure Eq. (5). Using Eqs. (10) we obtain the
following boundary conditions at θ=±π

µ∂yU (1)
x + λ−6µ∂xU (1)

y = 0 ,

(1 + 3λ−6)µ∂yU (1)
y + 2λ−6µ∂xU (1)

x = 0 . (12)

Obviously, LEFM is recovered in the limit λ→1 (as the mate-
rial is incompressible, the resulting LEFM plane-stress prob-
lem involves a Poisson’s ratio of 1

2 ). Equation (11) has the
structure of an isotropic linear elastic problem (Lamé equa-
tion) with a λ-independent shear modulus and a first Lamé
coefficient of the form (3λ−6−1)µ. Consequently, we can em-
ploy rather standard complex functions techniques2,3 to obtain
the following asymptotic (near tip) analytic solution
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U (1)
x (r, θ; v, λ) =

2KI
√
r

µ
√
2πD(v, λ)

[
(λ−6 + α2

s)
√
γd cos

(
θd
2

)
− (1 + λ−6)αdαs

√
γs cos

(
θs
2

)]
,

U (1)
y (r, θ; v, λ) = − 2KI

√
r αd

µ
√
2πD(v, λ)

[
(λ−6 + α2

s)
√
γd sin

(
θd
2

)
− (1 + λ−6)

√
γs sin

(
θs
2

)]
. (13)

The quantities αs,d, γs,d and θs,d are analogous to their
standard LEFM counterparts, rather with a pre-stretch depen-
dent dilatational wave-speed cd(λ)=

√
1 + 3λ−6cs, where the

shear wave-speed cs =
√
µ/ρ is unaffected by λ. In par-

ticular, αs,d =
√
1−(v/cs,d)2, γs,d =

√
1−(v sin θ/cs,d)2

and tan(θs,d) = αs,d tan(θ). The pre-stretch dependent
analog of the Rayleigh function takes the form D(v, λ) =
2(1+λ−6)αdαs−

(
1 + α2

s

) (
λ−6 + α2

s

)
and KI is the mode-

I stress-intensity-factor2,3. The solution in Eq. (13) features
the expected singularity, ∇xU (1)∼ 1/

√
r, where the standard

LEFM solution2 is recovered in the limit λ→1.
The analytic solution in Eq. (13) has several physical im-

plications. First, it can be used to calculate the J-integral of
Eq. (7), employing the linear elastic approximation of U(F ),
yielding

G(v)=
v2αdK

2
I (v, λ)

2 c2sD
2(v, λ)µ

[
(1 + λ−6)2αdαs − (λ−6 + α2

s)
2
]
.

(14)
The stress-intensity-factor KI cannot be obtained from the
asymptotic solution, rather from the global boundary value
problem. It can be calculated analytically only in relatively
simple cases and in general it is obtained numerically or mea-
sured experimentally. Once it is available, Eq. (14) allows one
to calculate the fracture energy Γ(v), a basic material property,
through the relation Γ(v)=G(v).

Alternatively, if Γ(v) is known (either from a proper dis-
sipation theory, which is very rare, or through independent
measurements) one can calculate KI(v, λ) using energy bal-
ance and Eq. (14). This clearly demonstrates that KI depends
on λ; not being aware of this pre-stretch dependence can in-
duce mistakes.

Finally, Eqs. (3), (4) and (13) can be used to calculate
the shape of the tip (often called crack tip opening displace-
ment/profile) as φx(r, π) = −κ(v, λ)φ2

y(r, π), where the tip
curvature reads

κ(v, λ) =

(
µ
√
2πD(v, λ)

2αd(v, λ)(α2
s − 1)

)2
λ

K2
I

. (15)

Since the tip curvature κ is, in principle, a directly measur-
able quantity, the last result can be used to extract the stress-

intensity-factor KI . Again, we see that not being aware of the
λ-dependence (e.g. using instead the λ = 1 result) will lead
to mistakes. More generally, analysis of the solution in Eqs.
(13)-(15) reveals that the pre-stretch λ has a marked effect on
various important physical quantities, and that this effect in-
creases significantly with increasing propagation velocity v.

Up to now we considered the asymptotic solution to linear
order in U , which provided us with some insight into what
kind of effects can be associated with the pre-stretch (related
points were made in39,41). We know, however, that even for
small background deformation second order nonlinearities are
essential4–8. Consequently, in the next subsection we consider
the solution for both U (1) and U (2) under uniaxial background
stretch.

2.3 Semi-analytic second order asymptotic solution

Here we focus on pre-stressing/straining of the form λx =
λ−1/2 and λy = λ, i.e. on uniaxial stretch, which is a more
commonly used experimental loading configuration (note that
the out-of-plane pre-stretch is λz = λ−1/2, ensuring incom-
pressibility, λxλyλz = 1). It corresponds to a pre-stress
s
(0)
yy =(λ−λ−2)µ, where the other components of s(0) vanish.

Following the same procedure as above, Eq. (5) takes the form

4∂xxU (1)
x +3λ−3/2∂xyU (1)

y +∂yyU (1)
x =

v2

c2s
∂xxU (1)

x , (16)

∂xxU (1)
y +3λ−3/2∂xyU (1)

x +(1+3λ−3)∂yyU (1)
y =

v2

c2s
∂xxU (1)

y ,

with the following boundary conditions at θ=±π

µ∂yU (1)
x + λ−3/2µ∂xU (1)

y = 0 ,

(1 + 3λ−3)µ∂yU (1)
y + 2λ−3/2µ∂xU (1)

x = 0 . (17)

Equations (16)-(17), which manifestly exhibit elastic
anisotropy, can in principle be solved analytically in the
asymptotic regime of small r. The solution, however, is rather
lengthy and we present here instead a semi-analytic procedure
to obtain it. To leading order in small r, we expect U (1)∼

√
r

and the angular dependence to be expressed as a half-integer

1–11 | 5

Page 5 of 12 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Fourier series. The sub-leading term in small r (i.e. in the
expansion in space), which has not been discussed up to now
and which will be included below to enable direct comparison
with the experiments to follow, makes a contribution ∝r cos θ

to U (1)
x and ∝ r sin θ to U (1)

y (the boundary conditions deter-
mine the ratio between the amplitudes).

Therefore, we have

U (1)
x (r, θ) = U0 + K̄I

√
r Γ

µ

N∑
n=1

an cos

[
(2n− 1)θ

2

]
+

T

12µ
(1 + 3λ−3) r cos θ ,

U (1)
y (r, θ) = K̄I

√
r Γ

µ

N∑
n=1

bn sin

[
(2n− 1)θ

2

]
− T

6µ
λ−3/2 r sin θ . (18)

Here U0 is a constant (U (1)
y does not include such a constant

due to the mode-I symmetry), K̄I is a dimensionless stress-
intensity-factor and {an, bn} are dimensionless coefficients.
The coefficients of the sub-leading term have been chosen so
as to satisfy the boundary conditions of Eq. (17). Note that
in the limit λ → 1 this term corresponds to the so-called T -
stress and consequently we have chosen the yet undetermined
amplitude to agree with the standard result in this limit, where
T is a quantity of stress dimensions1–3.

The coefficients {an, bn}n=1−N are determined by the set
of linear algebraic equations obtained upon substitution of
Eqs. (18) in Eqs. (16)-(17), where N is chosen to be suf-
ficiently large to ensure convergence. K̄I is determined by
evaluating the J-integral in Eq. (7) (with the linear elastic ap-
proximation of U(F )) and equating G(v) to the fracture en-
ergy Γ(v). T will be extracted from experimental data.

As stated above, previous work has conclusively demon-
strated that second order nonlinearities are important4–8.
Hence we wish to calculate U (2). To that aim, we follow
the procedure described above to calculate s(2), from which
Eq. (6) can be obtained. A very detailed, step-by-step, expla-
nation of the mathematical procedure can be found in section
4.2 of8 and in9. Based on the solution obtained in the frame-
work of the weakly nonlinear theory of fracture4–8, we expect
the solution for U (2) to take the form

U (2)
x (r, θ) =

Γ

µ

(
c0 log r +

N∑
n=1

cn cos [nθ]

)
,

U (2)
y (r, θ) =

Γ

µ

(
d0 θ +

N∑
n=1

dn sin [nθ]

)
. (19)

Note that, in principle, the argument of log r should have been
made non-dimensional, but this would simply redefine U0 in
Eq. (18) and hence is not essential.

The solution in Eq. (19) has the property that ∇xU (2) ∼
1/r. As was shown previously, this singularity is special in the
sense that it can produce a spurious force in the crack parallel
direction6,7,44. To eliminate it, we supplement the equations of
motion and boundary conditions with the additional constraint

fx =

∫ π

−π

[
s(2)xx (r, θ) cos θ + s(2)xy (r, θ) sin θ

]
r dθ=0 , (20)

where fx is the net force per unit sample thickness acting in
the x direction on a line of radius r encircling the crack tip6,7.

By satisfying all of these equations, we can calculate the
coefficients {cn, dn}n=0−N , where N is chosen to be suffi-
ciently large to ensure convergence. Note that the equation for
U (2), cf. Eq. (6), as well as the boundary conditions, require
the knowledge of U (1). Once done, the solution in Eq. (4), in
the asymptotic region of small r, is at hand. In the limit λ→1,
the weakly nonlinear theory of fracture is recovered. The next
step will be to quantitatively test the predictions of the theory
developed above against direct experimental measurements at
various values of λ and v.

3 Comparison to experiments

Our goal here is to experimentally test the new theoretical
framework. In particular, we would like to compare the pre-
dictions of the weakly nonlinear theory (obtained in the limit
λ → 1 in the theory above) to the predictions of the mod-
erately large deformation theory (which is formulated rela-
tive to a finite λ), against experimental data. To that aim,
we conducted experiments with polyacrylamide gels, which
are transparent, homogeneous, brittle and incompressible elas-
tomers. The gel composition used here is 14% acrylamide/bis-
acrylamide with a 2.7% cross-linker concentration, providing
a shear modulus µ= 32.3 ± 1.6KPa and a shear wave-speed
cs=5.6± 0.15m/sec. µ is measured prior to each experiment
to mitigate any small variations of the gel properties. The en-
ergy functional in Eq. (8) quantitatively describes the gel36.

The typical dimensions of our samples are (x × y × z)
120× 120× 0.3mm in the crack propagation, tensile loading
and thickness directions, respectively. The thickness was cho-
sen to statistically suppress micro-branching45; while micro-
branching can occur for all velocities 0.3cs < v < 0.9cs, the
probability of exciting them decreases for both thin samples
and increased crack accelerations. All of the results presented
are for single-crack states in which micro-branching is not ob-
served.

The experiments are performed under uniaxial tensile load-
ing in the y-direction in accordance with the uniaxial theory
presented in the last section. The sample was held at a constant
stretch in the range λ=1.058−1.129 prior to crack initiation at
the mid-edge of the sample’s vertical boundary, as described
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in Fig. 2a. Measurements of the crack and its surrounding
displacement fields were made with a fast camera (IDT-Y7)
focused on an area of 17.4 × 9.8mm with a spatial resolu-
tion of 1920 × 1080 pixels and frame rates of 7400 − 8100
frames/sec. The crack velocity for each measurement was set
essentially by varying both the imposed strain and position of
the measurement area used. All of the cracks are accelerating
in accordance with the initial strain imposed by displacing the
vertical boundaries of the sample. We achieved desired veloc-
ity ranges in each experiment by varying the location of the
measurement area according to the initially imposed strain.
Due to the small size of the measurement area, the crack ve-
locities were approximately constant throughout the measure-
ment region.

As in14,46, the gels are cast in a mold upon which a rect-
angular grid is printed on one of its xy surfaces. The grid
was formed by lithographic printing on a spin-coated epoxy
layer. This process created a perfect square mesh of depth
2µm (in the z-direction) and lattice spacing 60µm (in the xy
plane). Upon casting, this grid is imprinted on one face of the
gel sheets as shown in Fig. 2b. Shadowgraphy, using strobed
lighting (2µsec duration), is used to image both the deformed
grid and crack opening profile as a crack’s tip propagates
across the field of view (Fig. 2a). The location of the center of
each grid point in the deformed grid is determined to within
10µm resolution. The displacement fields were acquired by
comparing the position of the grid points under deformation
to their position in a deformation-free system. Fig. 2c demon-
strates a typical measurement of the displacement-gradient
field (here the εyy=∂yuy component is shown).

In Fig. 3 we compare the experimental measurements with
both the weakly nonlinear theory and the moderately large de-
formation theory for a moderate stretch λ= 1.058 and crack
propagation velocity v = 0.29cs. The basic field of interest
is the displacement field u(x, y), which is measured directly
and is theoretically obtained from Eq. (4) through ux(x, y)=
(λ−1/2−1)x+Ux(x, y) and uy(x, y)=(λ−1) y+Uy(x, y).
Each theory contains three parameters {U0, T,Γ} that are not
determined by the asymptotic analysis. U0 and T correspond,
respectively, to a small constant shift of the crack tip location
and to the T -stress. As our measurements are not solely within
the asymptotic (singular) region, both of these quantities are
needed for a good quantitative comparison.

For both theories, we determined the values of {U0, T,Γ}
by the following procedure. We considered both ux(r=x, θ=
0) and φx(r, θ=π) [φy(r, θ=±π)] (in the latter, r parameter-
izes the function), i.e. the crack parallel displacement ahead
of the tip and the crack tip opening profile, respectively. The
first function is quite sensitive to T , whereas the latter is very
sensitive to Γ. We iteratively performed a 3-parameter fit over
these two functions until the best fit with the same T and Γ
is obtained. U0 is not constrained to be the same, but turns

Fig. 2 (a) Experiments are performed with transparent thin sheets of
a brittle elastomer gel with an imprinted grid on one xy face (y is the
tensile loading direction and x is the crack propagation direction).
Collimated light passed through the sample enables shadowgraph
visualization of the grid while pictures are taken with a fast camera.
(b) Typical photograph of a crack propagating at v=0.53cs through
the grid. (c) The measured displacement-gradient field
component εyy(x, y)=∂yuy(x, y) extracted from panel (b).

out to be so. The resulting fits for ux(r = x, θ = 0) and
φx(r, θ=π) [φy(r, θ=±π)] are shown in Figs. 3a-b, respec-
tively. The convergence in the Γ − T parametric plane, for
both the weakly nonlinear and moderately large deformation
theories, is demonstrated in the inset of Fig. 3c.

Figures 3a-b suggest that at this level of pre-
stressing/straining (relatively low in the context of the
results to follow) and crack propagation velocity the two
theories appear to be almost indistinguishable, at least as
far as the quantities shown are considered. The parameters,
however, are not the same. In particular, as the inset of Fig.
3c clearly demonstrates, in this case Γ is quite similar while T
is not. The latter difference is expected since the background
stretches in the moderately large deformation theory, cf. Eq.
(3), directly affect the T -stress term and actually make T
positive (while it is negative in the weakly nonlinear theory).
We emphasize, though, that when considered relative to the
undeformed configuration, the T -stress in the moderately
large deformation theory is also negative (as is common for
uniaxial loading).

Once {U0, T,Γ} are determined, there are no longer any
free parameters and the two theoretical frameworks can be
independently tested against other experimentally measured
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Fig. 3 Measurements of a crack propagating at v=0.29cs under
uniaxial stretch of λ=1.058. (a) The measured displacement in the
crack parallel direction ahead of the tip ux(r=x, θ=0) (blue
circles). Fits to the weakly nonlinear theory (red solid line) and to
the moderately large deformation theory (black dashed line) are
superimposed. (b) The measured crack tip opening profile
φx(r, θ=π) [φy(r, θ=±π)] (blue solid line). As in panel (a), the
fits to the two theories are superimposed. The fitting parameters
{U0, T,Γ} were obtained for each theory, where the convergence of
the iterative procedure in the Γ− T parametric plane is shown in the
inset of panel (c), for the weakly nonlinear theory (left) and
moderately large deformation theory (right). The intersections in the
Γ− T plane, denoted by black squares, are the values chosen by our
fitting procedure (see text). In addition, we obtained U0≃25µm for
both theories. Note that the green and blue curves were obtained by
the fits to the crack opening profile and ux(x, y=0), respectively.
(c) The measured tensile strain ahead of the tip
εyy(x, y=0)=∂yuy(x, y)|y=0 (blue circles). The predictions of
the two theories, using the parameters obtained by the fits displayed
in panels (a) and (b), are superimposed (lines as above).

quantities. In particular, we will use two types of tests:
• Comparing the predictions of the two theories to the mea-
sured tensile strain ahead of the tip, εyy(x, y = 0) =
∂yuy(x, y)|y=0.
• Comparing the predictions of the two theories for the frac-
ture energy to Γ(v) = G(v) = J/v independently obtained
from the J-integral in Eq. (7) (using the measured φ(x, y), as
in36).

The results of these parameter-free comparisons are shown
in Fig. 3c (main panel) and Fig. 6 (focus on v = 0.29cs).
Figure 3c shows that the predictions of the two theories are
in good agreement with the measured data, where the weakly
nonlinear theory is doing slightly better. Figure 6 shows that
for v = 0.29cs, the fracture energies Γ predicted by the two
theories are in agreement with the one independently calcu-
lated through the J-integral. All in all, we conclude that for
relatively low levels of pre-stressing/straining and crack prop-
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Fig. 4 Measurements of a crack propagating at v=0.74cs under
uniaxial strain of λ=1.096, where everything is as in Fig. 3, except
for the inset of panel (c). In the inset, we plot the difference between
predictions of the moderately large deformation and weakly
nonlinear theories for εyy(x, y=0) (shown in the main panel),
denoted by ∆εyy . The difference is a nontrivial spatially-varying
function that increases significantly as the crack tip is approached.

agation velocities, the two theories appear rather consistent
with one another and quantitatively agree with the experi-
ments. Furthermore, this analysis reconfirms the validity of
the weakly nonlinear theory, as reported previously4–8. The
main question now is what happens as the pre-stress/strain and
the crack propagation velocity are significantly increased.

In Fig. 4 we repeat the analysis presented in Fig. 3 for a
crack propagating at v=0.74cs under significantly increased
pre-stressing/straining corresponding to λ = 1.096. Figures
4a-b indicate that both theories can be reasonably fitted to the
measured ux(r = x, θ = 0) and φx(r, θ = π) [φy(r, θ=±π)],
where the moderately large theory is doing better with respect
to the former. The parameter-free comparison shown in Fig.
4c, however, reveals a striking difference between the two the-
ories; the prediction of the moderately large deformation the-
ory for εyy(x, y=0) is significantly better than the prediction
of the weakly nonlinear theory and is in good quantitatively
agreement with the measurements. Furthermore, Fig. 6 shows
that the moderately large deformation theory predicts a frac-
ture energy Γ much closer to the independent J-integral esti-
mate than the weakly nonlinear theory (focus on v=0.74cs).

It is crucial to understand that the pre-stretching λ affects
all physically relevant quantities in the problem, as in the ana-
lytic example of Sec. 2.2, in a nontrivial way. For example, in
the inset of Fig. 4c we show the difference between the pre-
dictions of the two theories shown in the main panel, which
is a nontrivial spatially-varying function that increases signifi-
cantly as the crack tip is approached. The quantitative analysis
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Fig. 5 The same as Fig. 4, except that the weakly nonlinear analysis
is replaced with a moderately large deformation analysis truncated
to first order (green solid line). For the latter, we follow the same
fitting procedure as before, but set U (2)=0. The best fitting
parameters are U0=100µm, T/3µ=0.01 and Γ=19.8 J/m2. The
necessity of the second order nonlinearities is evident from the
panels (b) and (c), where significant discrepancies between the first
order truncated moderately large deformation theory and the
experimental data are observed.

presented in Figs. 4 and 6 has been repeated for many cracks
with propagation velocities in the range v = 0.26cs − 0.75cs
and pre-stretching levels in the range λ=1.058−1.129 (since
the cracks are mildly accelerating, each pre-stretch produces
a range of crack velocities). As in Fig. 4c, at stretches of
about λ= 1.1 or higher and large propagation velocities, the
moderately large deformation theory predicts εyy(x, y = 0)
significantly better than the weakly nonlinear theory.

Before we discuss the predictions for fracture energy Γ(v),
we briefly highlight the importance of second order nonlin-
earities in the expansion relative to the pre-stretched config-
uration. This has been previously established in relation to
the weakly nonlinear theory, cf. Fig. 1 in4. To show that
this remains valid in the case of the moderately large defor-
mation theory, we plot in Fig. 5 everything as in Fig.4, except
that the weakly nonlinear analysis is replaced with a moder-
ately large deformation analysis truncated to first order. For
the latter, we follow the same fitting procedure for {U0, T,Γ}
as before, but set U (2) = 0. The results clearly demonstrate
that second order nonlinearities are indeed essential. In par-
ticular, the footprints of the missing logarithmic term (which
appears in U (2)

x , cf. Eq. (19)) and the stronger singularity
(∇xU (2) ∼ 1/r) are evident in Figs. 5b-c. The rather dra-
matic failure of the linear order moderately large deforma-
tion theory to predict ∂uuy(x, y = 0) is related to the prop-
erties of the LEFM asymptotic fields, which predict a negative
∂uuy(x, y=0) for sufficiently high velocities4.

Figure 6 shows Γ(v) for the full range of pre-stretches

and propagation velocities considered in this study, indicat-
ing that the moderately large deformation theory predicts frac-
ture energy values closer to the independent J-integral estimate
than the weakly nonlinear theory (accurately predicting the J-
integral values up to ∼ 10%). We would like to stress that
the performed fits are robust. In fact, we checked that using
εyy(x, y = 0) and φx(r, θ = π) [φy(r, θ=±π)] to determine
{U0, T,Γ} and then testing the predictions for ux(r=x, θ=0)
and Γ (independently obtained through the J-integral) yielded
similar results to those reported above.
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Fig. 6 The measured fracture energy Γ(v) (squares) with
propagation velocities in the range v=0.26cs − 0.75cs and
pre-stretching levels in the range λ=1.058− 1.129 (different
colors correspond to different λ, cf. legend). Γ(v) was estimated
from the J-integral of Eq. (7), using the measured φ(x, y). The
predictions of the weakly nonlinear theory (triangles) and of the
moderately large theory (circles) are presented for comparison.

Taken together, we believe that the quantitative analysis pre-
sented here clearly shows that the moderately large deforma-
tion framework offers significantly better approximations to
the direct measurements than the weakly nonlinear theory at
moderately large levels of external loadings and high propa-
gation velocities.

4 Concluding remarks

In this paper we developed and experimentally tested a dy-
namic fracture theory of highly-deformable materials which
fail under the application of large external strains. The the-
ory is based on a second order expansion in the displacement-
gradients with respect to a nonlinearly stretched reference
state. While the theory is mathematically well-defined, its
physical range of applicability – and the mere existence of
such a range – are not a-priori guaranteed. The reason for
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this is that as the background strains are already rather large,
amplification of deformation near the crack tip may render a
perturbative approach inappropriate.

Our direct experiments showed firstly that the background
strain has a significant effect on the deformation fields sur-
rounding crack tips. Even at moderate strains, the standard
theory fails to provide a good description of the near tip fields.
Secondly, and quite surprisingly, the experiments showed that
the new theory provides a good description of these fields.
This central finding emerged because the amplification of de-
formation in the region of interest was not enormous and due
to the inclusion of second order terms in the theory. These
results imply that the theory may have a robust range of ap-
plicability, at least at moderately large background strains and
high propagation velocities, but possibly also at larger back-
ground deformation.

This convincing experimental support indicates that the pro-
posed theoretical development offers a framework to under-
stand the dynamic fracture of soft materials that fail under
large pre-stressing/straining (of the order of ∼ 10 − 20% or
larger), going significantly beyond the standard fracture theory
of ordinary materials that fail under strains of ∼1%. The the-
ory shows that in order to quantitatively understand the fields
that drive material failure near crack tips, the deformation-
induced anisotropy and fundamental material properties such
as the fracture energy, the pre-stressing/straining needs to be
properly taken into account in such materials. The theory may
find applications in a range of problems dealing with the fail-
ure of soft materials, from food processing to tissue rupture.

It is important to note that while some existing literature
exclusively focusses on the inner most asymptotic crack tip
region in highly-deformable materials29–35, our theory takes
into account the pre-strained/stressed large scales and links
them to the near tip region as approached from the outside. As
such, the theory should be regarded as intermediate asymp-
totics. The experiments presented above, which quantitatively
support the theory, are able to probe this intermediate asymp-
totic region.

One insight emerging from this work is that the form of
these intermediate asymptotic solutions is highly influenced
by the magnitude of the background deformations. In the
classic LEFM theory, the loading and background stresses are
solely accounted for by their influence on the intensity of the
universal singularity, the stress intensity factor. Here, we have
shown that large strains inherent in the external loading actu-
ally influence the fields in a variety of subtle ways that can not
solely be accommodated by a change in the value of the stress
intensity factor.

Finally, note that various highly-deformable materials
fail under background deformation of the order of 100%
or even larger, a regime that has not been probed by the
experiments presented above. Therefore, it remains to be

seen in future work how far one can push the theoretical
framework developed here.
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