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The membrane bending stiffness of nearly spherical lipid vesicles can be deduced from the analysis of their thermal shape

fluctuations. The theoretical basis of this analysis [Milner and Safran, Phys. Rev. A, 1987, 36, 4371-4379] uses the mean

field approximation. In this work we apply Monte Carlo simulations and estimate the error in the determination of the bending

stiffness due to the approximations applied in the theory. It is less than 10%. The method presented in this work can also be used

to determine the changes of the bending stiffness of biological membranes due to their chemical and/or structural modifications.

1 Introduction

Biomembranes are one of the main building blocks of living

matter. Due to their important role in biological systems, there

is a large interest in their structure and functioning principles.

A widely accepted description of the biomembrane struc-

ture is given by the model of Singer and Nicolson1 represent-

ing the biomembrane as a lipid bilayer embedded with integral

proteins. One of the factors determining the functioning of

biomembranes are their mechanical properties, which play an

important role in defining intermembrane interactions, mem-

brane fusion, the motion of cells in flow, etc. The mechani-

cal properties of biomembranes are determined to a great ex-

tent by the mechanical properties of their lipid bilayers. The

lipid bilayer can be considered as a simplified model of the

biomembrane and theoretical and experimental investigations

of the mechanical properties of lipid bilayers are continuously

rising2–5.

In most cases the thickness of the lipid bilayer is much

smaller than the typical dimension of the studied object (cell,

vesicle, etc.) and the bilayer can be considered as a two-

dimensional structure. The macroscopic mechanical proper-

ties of such membranes are determined by their stretching,

bending, and shear moduli6. In this paper we consider a spe-

cial case of membranes with zero shear modulus, correspond-

ing to a two-dimensional liquid. We assume that during the

characteristic observation time, i.e. during the measurement,
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the number of amphiphilic molecules in each of the two mono-

layers comprising the bilayer does not change and that the vo-

lume enclosed by the membrane remains constant. This per-

mits us to consider the studied object as an equilibrium struc-

ture. Note, however, that we do not impose a restriction for

the membrane to be tensionless.

One of the most commonly used experimental methods for

determining the bending stiffness of lipid membranes is the

analysis of the thermal shape fluctuations of a nearly spheri-

cal lipid vesicle7–15. The theoretical basis of this analysis was

proposed by Milner and Safran16 by considering the fluctuat-

ing vesicle as an ensemble of non-interacting harmonic oscil-

lators. The time mean squares of the amplitudes of these oscil-

lators depend on several factors, including the lateral stretch-

ing of the membrane that induces a lateral membrane tension.

When such time and position dependent membrane tension is

taken into account, the Hamiltonian of the fluctuating vesicle

is not a function of an ensemble of independent oscillators.

In order to obtain that, a mean field approximation is used,

where the fluctuations of the membrane tension are neglected

and the fluctuating tension is replaced with its mean value.

A question arises, whether this approximation provides ade-

quate results. Recently, an essay on this topic was done by

Bivas and Tonchev17, who used the Bogolyubov inequalities

and the method of the approximating Hamiltonian18. Neces-

sary conditions assuring the validity of the Milner and Safran

theory were found. One of these conditions is the high enough

value of the mean lateral tension of the vesicle membrane.

One of the aims of the presented work is the verification of

the results of the Milner and Safran theory by means of Monte

Carlo simulations of the shape fluctuations of a nearly spheri-

cal lipid vesicle. The results of the simulations are considered

as experimental data whose accuracy increases with the in-
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crease in the length of the simulation. The obtained results

show that the determination of the bending stiffness is pos-

sible using the theory of Milner and Safran with acceptable

precision.

The analysis of simulations presented in this work can serve

as a tool to quantitatively measure the changes of the ben-

ding stiffness of biological membranes due to the chemical

and/or structural modifications of lipid bilayers. This can be,

for example, the change of the composition of lipid molecules

in the bilayer (multicomponent lipid bilayers), the insertion of

inclusions (like peptides and other proteins) in the bilayer19,

or the polymer coating of the vesicle (like PEGylated20,21 and

polyelectrolyte-grafted22,23 vesicles).

2 The model

2.1 Bending energy

We consider thermal fluctuations of a lipid vesicle in thermo-

dynamic equilibrium. The membrane of the vesicle is a fluid

lipid bilayer. For the bending energy Wb of the membrane we

use the standard Helfrich expression6 for a tensionless mem-

brane with a zero spontaneous curvature and a fixed topology

(the contribution of the Gaussian curvature to the bending en-

ergy does not depend on the fluctuations):

Wb =
κ

2

∮

A

(c1 + c2)
2 dA, (1)

where κ is the bending stiffness of the membrane, c1 and c2

are the principal curvatures of the vesicle membrane at the

point under consideration and the integration is performed

over the membrane area A.

The lipid bilayer is on a timescale of thermal fluctuations

impermeable for water molecules and due to the low com-

pressibility of water we can assume the vesicle’s volume to

be constant during thermal fluctuations.

With thermal fluctuations some lateral stretching of the

membrane occurs on the scale of phospholipid molecules,

however, the energy required to significantly change the area

of the membrane greatly exceeds the thermal energy kT (pro-

duct of the Boltzmann constant and the absolute tempera-

ture), therefore we can assume that the overall area A of the

membrane remains almost constant during thermal fluctua-

tions (∆A ≪ A).

2.2 Randomly triangulated surface

The membrane of the vesicle is described by a set of N ver-

tices linked with bonds of flexible length d to form a closed,

randomly triangulated, self-avoiding network24–26. Lengths

of the bonds can vary between their minimal value dmin and

maximal value dmax. All vertices experience a hard-core re-

pulsive potential at their mutual distances dmin.

In our simulations the initial state of triangulation is a pen-

tagonal dipyramid with all the edges divided into equilateral

bonds so that the network is composed of 3(N − 2) bonds

forming 2(N − 2) triangles. The system is initially thermali-

zed – evolved into the nearly spherical equilibrium state using

the Metropolis-Hastings algorithm (as described below).

The thermal fluctuations of the vesicle membrane are sim-

ulated by employing the Monte Carlo method, where Monte

Carlo steps are vertex moves, assuring shape fluctuations, and

bond flips, assuring lateral fluidity within the membrane. The

vertex move includes a random displacement of the vertex

within a sphere with radius s positioned at the center of the

vertex. In this work we choose dmax/dmin = 1.7 and s/dmin =
0.15, resulting in a self-avoiding nearly spherical network with

approximately one-half of vertex moves accepted. The bond

flip involves four vertices of the two neighboring triangles.

The bond shared by the neighboring triangles is cut and re-

established between the other two, previously unconnected,

vertices.

The microstates of the vesicle are sampled according to the

Metropolis-Hastings algorithm. To obtain the canonical en-

semble representing the system in a thermodynamical equi-

librium, each individual Monte Carlo step (vertex move or

bond flip) is accepted with probability min [1,exp(−∆E/kT )],
where ∆E is the energy change due to the vertex move or bond

flip.

Some discussion was done in the past on choosing an ap-

propriate discretization of the bending energy on a triangu-

lated surface (for example, see Sec. 2 in Gompper and Kroll,

199625, Eq. 70 in Gompper and Kroll, 200424, or Ramakrish-

nan et. al., 201126). In this work we used for the discretization

of the bending energy (Eq. 1) the relation27,28

∫

A

(c1 + c2)
2 dA = ∑

i

1

σi

[

∑
j(i)

σi j

di j

(Ri −R j)

]2

, (2)

where the outer summation runs over all vertices and the in-

ner summations run over all their nearest neighbors, Ri is the

radial vector of vertex i, di j is the distance between vertices i

and j,

σi =
1

4
∑
j(i)

σi jdi j (3)

is the area of the cell in the dual lattice27 in vertex i. Here

σi j = di j[cot(θ1)+cot(θ2)]/2 is the distance between vertices

in the dual lattice, θ1 and θ2 being opposite angles to side i j

in the two triangles that share the common bond i j.

The volume of the vesicle is kept constant at the given value

V0 by the constraint |V −V0| < εV , where εV must be small

enough to fulfill the condition εV ≪ V0, but still not so small
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to completely suppress the out-of-plane shape fluctuations of

the membrane. The choice of εV depends on the discretization

and is in our work taken to be the volume of the tetrahedron

consisting of equilateral triangles with areas A0/Nt, where A0

is the area of the spherical vesicle with volume V0 and Nt the

number of triangles in the triangulated surface:

εV =
4
√

2π

33/4

V0

N
3/2
t

. (4)

The evolution of the system is measured in Monte Carlo

sweeps (mcs). One mcs consists of individual attempts to dis-

place each of the N vertices, followed by 3N attempts to flip

a randomly chosen bond. Let us just note that the bond flip

to vertex move attempt ratio is connected to the lateral diffu-

sion coefficient within the membrane, that is, to the membrane

viscosity29,30. Diffusion also introduces a real timescale in

the simulations and allows simulations of the dynamics of the

modeled system, which is not considered in this work.

2.3 Obtaining elastic properties through spectral analy-

sis of thermal fluctuations

Using the theory of Milner and Safran16 the bending stiffness

Kc of the membrane can be measured from the spectral analy-

sis of thermal fluctuations of our randomly triangulated sur-

face of the nearly spherical vesicle. Note that the bending

stiffness κ is an input parameter in our simulations and that

we used a different symbol (Kc) for the bending stiffness ob-

tained from the spectral analysis of thermal fluctuations. From

now on, to distinguish the two values κ and Kc, we name them

the input bending stiffness and the measured bending stiffness,

respectively.

Let us consider our triangulated nearly spherical vesicle

with volume V0 and let R0 be the radius of a sphere with

the same volume. The length of the radial vector Ri(t) =
R(ϑi,ϕi, t) from the origin to the vertex i at time t is then de-

fined as

R(ϑi,ϕi, t) = R0[1+ r(ϑi,ϕi, t)], (5)

where ϑi and ϕi are the spherical coordinates of the i-th vertex

and r(ϑi,ϕi, t) is the relative displacement of the i-th vertex.

Relative displacements r(ϑi,ϕi, t) are decomposed into a

series with respect to the spherical harmonics Y m
l (ϑi,ϕi):

r(ϑi,ϕi, t) =
lmax

∑
l=0

l

∑
m=−l

um
l (t)Y

m
l (ϑi,ϕi), (6)

where cutoff lmax is of the order of R0/dmin and the spherical

harmonics are defined as

Y m
l (ϑ ,ϕ) =

√

(2l +1)

4π

(l −m)!

(l +m)!
Pm

l

(

cos(ϑ)
)

eimϕ (7)

using associated Legendre polynomials Pm
l .

The complex coefficients um
l (t) can then be calculated using

the relation

um
l (t) =

∫

Ω
r(ϑ ,ϕ, t)(Y m

l (ϑ ,ϕ))∗ dΩ, (8)

where the integration runs over the solid angle Ω of the sphere.

The discretization of the above expression can be done as

um
l (t) =

N

∑
i=1

Ωi(t)ri(t)(Y
m
l (ϑi(t),ϕi(t)))

∗ , (9)

where Ωi(t) is the solid angle corresponding to vertex i and

the sum runs over all vertices of the triangulated surface.

The mean squared amplitudes of spherical harmonics
〈

|um
l |2

〉

are calculated by averaging the |um
l (t)|2 values over

an ensemble of microstates of the vesicle in the thermal equi-

librium. Using the expression of Milner and Safran16,

〈

|um
l |2

〉

=
kT

Kc

1

(l −1)(l +2)(σ̄ + l(l +1))
, (10)

the bending stiffness Kc and the dimensionless mean lateral

tension σ̄ of the membrane can be obtained.

Note that Eqs. 10 were deduced for vesicles the membranes

of which are lipid bilayers with a zero spontaneous curvature

as well as for emulsion droplets the membranes of which are

monolayers consisting of amphiphilic molecules with a zero

spontaneous curvature16. In the case of lipid bilayers Kc is

the bending stiffness at free flip-flop15 (for the definition of

bending elasticity at blocked and free flip-flop, see Helfrich6).

If the stretching of the membrane of the emulsion droplet is

high enough, then the sufficient condition for the validity of

Eqs. 10 will be fulfilled17. The same is valid for the stretched

enough vesicle membrane.

Since the rhs of Eqs. 10 do not depend on the order of sphe-

rical harmonics m, the mean squared amplitudes of spherical

harmonics obtained from simulations are first averaged over

m and then the obtained values
〈

|ul |2
〉

are used on the lhs of

Eqs. 10:

〈

|ul |2
〉

=
kT

Kc

1

(l −1)(l +2)(σ̄ + l(l +1))
. (11)

To obtain the bending stiffness Kc and the dimensionless mean

lateral tension σ̄ of the membrane together with their standard

errors, the
〈

|ul |2
〉

from simulations are fitted with the formula

of Milner and Safran (Eqs. 11) using an inverse squared vari-

ance weighted nonlinear fit.

3 Results and discussion

For each set of parameters the system is initially thermalized

into a nearly spherical vesicle and then the volume is fixed.
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Fig. 1 Autocorrelation functions f (|um
l |2,τ) of the lowest relevant

degrees of spherical harmonics l = 2 and l = 3, for N = 1127 and

κ = 20 kT . The dashed gray horizontal line indicates the value 1/e.

The decay time of a given mode is defined as time when the

autocorrelation function falls below this value.

The squared amplitudes of spherical harmonics |um
l |2 are ob-

tained from Monte Carlo simulations as described in Sec. 2.

To obtain the ensemble of microstates that are stati-

stically independent, the autocorrelations of squared ampli-

tudes f (|um
l |2,τ) are calculated with the autocorrelation func-

tion

f (x,τ) =

T−τ

∑
t=1

(x(t)−〈x〉)(x(t + τ)−〈x〉)
T−τ

∑
t=1

(x(t)−〈x〉)2

, (12)

where the sums run over the discrete “time” t denoting conse-

cutive microstates and T is the number of microstates used in

the calculation of the mean 〈x〉. Let us define the decay time

of |um
l |2 as the value of τ when the autocorrelation function

f (|um
l |2,τ) falls bellow 1/e.

Fig. 1 shows the autocorrelation functions of the few lowest

relevant modes for a system with N = 1127 vertices and input

bending stiffness κ = 20 kT . It can be seen that the longest

decay times are for |um
2 |2 i.e. the decay time decreases with the

increasing degree of the spherical harmonics l, as expected.

Let us denote the largest decay time of all the relevant modes

for a given system with N vertices as τN (in Fig. 1 we have

τ1127 ≈ 60000). The largest decay time τN decreases with the

increasing input bending stiffness κ , while it increases with

the number of vertices N in the triangulated network.

The decay time τN is important for our spectral analy-

sis since it can be used to estimate the “time” interval be-

tween two microstates that can be regarded as statistically un-

correlated. The ensemble of statistically uncorrelated states

is needed for the estimation of the standard errors together

with the means of squared amplitudes of spherical harmonics.

0 50 100 150 200
0

0.002

0.004

τ/4 ·105 mcs

〈

|u
m 2
|2
〉

m = 0

m = 1

m = 2

Fig. 2 Mean squared amplitudes
〈

|u0
2|2

〉

(full),
〈

|u1
2|2

〉

(dashed) and
〈

|u2
2|2

〉

(dotted) as a function of the number of statistically

independent measurements used in the averaging. The input bending

stiffness κ = 20 kT and the membrane is triangulated with N = 1127

vertices.

0 1 2 3 4
0

0.001

0.002

m

〈

|u
m 2
|2
〉

l = 2

l = 3

l = 4

Fig. 3 Mean squared amplitudes
〈

|um
l |2

〉

for l = 2,3 and 4, obtained

from 1000 measurement for a vesicle with input bending stiffness

κ = 20 kT and triangulated with N = 1127 vertices. The error bars

indicate the standard error (standard deviation divided by the

square-root of the number of measurements). Lines connect the

points with the same degree l and are for the guide-of-eye only.

Those standard errors of
〈

|um
l |2

〉

have to be taken into account

in the fitting procedure in Eqs. 11, to obtain relevant values

of the bending stiffness Kc and the dimensionless mean lateral

tension σ̄ of the membrane. In this work the interval between

two consecutive microstates in an ensemble of statistically

uncorrelated states, i.e. between two consecutive “measure-

ments”, was always larger than three times the largest decay

time τN . In Fig. 1, for example, the x-axis spans the “time”

interval between consecutive measurements for a system with

N = 1127 and κ = 20 kT .

When squared amplitudes |um
l |2 are averaged over the en-

semble of microstates, the obtained
〈

|um
l |2

〉

with the same or-
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der m converge towards the same value, as shown in Fig. 2

for |um
2 |2. This is in accordance with the theory of Milner and

Safran (rhs of Eqs. 10 are independent of m). Also Fig. 3

shows that the mean squared amplitudes obtained from simu-

lations are independent of m. Note that our previously re-

ported31 inability to observe this independence of
〈

|um
l |2

〉

on

m was a result of numerical errors.

5 10 15 20
19

19.5

20
κ

Max l

K
c

Fig. 4 Measured bending stiffness Kc together with standard error

(error bars) as a function of the maximal degree l of spherical

harmonics used in the calculation of Kc and σ̄ . The value of the

input bending stiffness κ = 20 kT is indicated with a horizontal

dashed line. The membrane is triangulated with N = 3127 vertices

and 200 statistically independent microstates are measured (between

each measured microstate is an interval of 2×106 mcs). Lines

connecting the points are for the guide-of-eye only.

The measured bending stiffness Kc and the dimensionless

mean lateral tension σ̄ are obtained from the mean squared

amplitudes as described in Sec. 2.3. The result of a fitting pro-

cedure for Kc is shown in Fig. 4 as a function of the maximal

degree l of spherical harmonics used in the fitting of
〈

|ul |2
〉

in Eqs. 11 (Eqs. for all values from l = 2 up to the maximal

degree l are taken into account).

The measured bending stiffness Kc is shown in Fig. 5 as a

function of the number of vertices N of the triangulated sur-

face. As expected, the difference between the measured ben-

ding stiffness Kc and the input bending stiffness κ = 20 kT

decreases as we increase the number of vertices in the triangu-

lation (i.e. as we increase the resolution of the discretization).

Fig. 5 also shows the obtained values of the dimensionless

mean lateral tension σ̄ for the same sets of measurements. Let

us note that the measured Kc should not depend on the value

of σ̄ . The mean lateral tension in the membrane depends on

the value of the fixed volume of the vesicle, i.e. how much the

vesicle is “swollen”. This is somewhat arbitrarily chosen by

picking a random microstate in the thermodynamical equilib-

rium when fixing the volume and starting the measuring pro-

cedure for Kc and σ̄ . As expected, the exact choice of the

1000 1500 2000 2500 3000

17

18

19

N

K
c

−2

−1

0

σ̄

Kc

σ̄

Fig. 5 Measured bending stiffness Kc together with standard error

(error bars) as a function of the number of vertices N used in the

triangulation of the membrane, for the input bending stiffness

κ = 20 kT . The dimensionless mean lateral tension σ̄ for the same

sets of measurements is also shown. Lines connecting the points are

for the guide-of-eye only.

equilibrium microstate used when fixing the volume, i.e. the

value of σ̄ , does not observably influence the measured Kc.

10 20 30 40 50 60 70

−0.1

−0.08

−0.06

−0.04

κ

K
c
/κ

−
1

Fig. 6 Relative difference between the measured and the input

bending stiffness as a function of the input bending stiffness for the

membrane triangulated with N = 1447 vertices.

Fig. 6 shows the relative difference between the measured

and the input bending stiffness, Kc/κ −1, for different values

of the input bending stiffness κ . It can be seen that increasing

the input bending stiffness decreases the mismatch between

the input and the measured bending stiffness. Note that, as

already reported above, the correlation times of squared am-

plitudes decrease with the increasing bending stiffness of the

membrane.

A group of methods for the investigation of lipid-water sys-

tems exists, the results of which are explained by the fluc-

tuations of the membranes of these systems. These are the
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different kinds of scattering: neutron32,33, laser light34, etc.

Zilman and Granek32,33, investigating the neutron scattering

in the lamellar lipid-water phase, used periodic boundary con-

ditions and developed the out-of-plane fluctuations of the lay-

ers in the Fourier series. The periodic boundary conditions

resemble monodisperse vesicular suspensions, with their re-

peating distance being the analog of the radius of the vesicle.

The authors determined the decay rate of different fluctuation

modes from their experimental data. Due to the absence of

real timescale in our Monte Carlo simulations, we cannot de-

termine the true values of these decay rates from simulations

and a direct comparison with the experimental results cannot

be made. As already noted in Sec. 2.2, real timescale could be

introduced in our simulations through the lateral diffusion of

vertices on the randomly triangulated surface, which is beyond

the scope of this work.

Brocca, et al.34 have investigated the shape fluctuations of

large unilamellar lipid vesicles using laser light scattering.

The analysis of their experimental results permits the simul-

taneous deduction of the time mean squares
〈

|um
l (t)|2

〉

(see

Eqs. 10) of the amplitudes um
l (t) and the decay rate of these

amplitudes. According to the theory of Milner and Safran16

a relation between these two quantities exists, however the re-

sults obtained by Brocca, et al.34 do not satisfy it. This dis-

crepancy could be explained by the fact that in the systems

studied by Brocca, et al.34 the requirements, assuring the va-

lidity of the theory of Milner and Safran are not fulfilled: the

thickness of the membrane needs to be much less than the ra-

dius of the vesicle; the viscosity of the liquid environment

inside and outside the vesicle needs to be constant; etc. It

must be noted that these authors used the theory of Milner and

Safran that does not take into account the dissipation of the en-

ergy due to the friction between the monolayers of the bilayer,

which yields a double-exponential decay of each fluctuation

mode15 instead of the mono-exponential one in the theory of

Milner and Safran16. The results of our Monte Carlo simu-

lations cannot be used for the explanation of the discrepancy

found by Brocca, et al.34. As in the case when the data of Zil-

man and Granek32,33 were considered, the reason is the fact

that our data from the simulations do not permit the determi-

nation of the true decay rate of the fluctuation modes.

4 Conclusion

The analysis of thermally induced shape fluctuations of a

nearly spherical giant lipid vesicle is one of the commonly

used methods to determine the bending stiffness of the vesi-

cle’s membrane. The theoretical basis of this analysis, pro-

posed by Milner and Safran16, uses the mean field approxi-

mation. In the present work, the error of the determination

of the bending stiffness due to the approximations used in the

theory was estimated.

Monte Carlo simulations of the fluctuating nearly spherical

vesicle have been performed using a randomly triangulated

surface. The results for the time mean squares of the ampli-

tudes of the fluctuations, obtained from the simulations, can

be determined with an arbitrarily high precision, depending

only on the length of the simulation. One of the parameters

in the simulations is the input value of the bending stiffness.

The obtained time mean squares of the amplitudes of the fluc-

tuations can be considered as experimental values, which can

be used for the determination of the output value of the ben-

ding stiffness by means of the theory of Milner and Safran.

The theory would be “exact” if the output value of the ben-

ding stiffness would have been equal to the input one. Our

results show that the difference between the two values of the

bending stiffness decreases with the increase of the resolution

of the triangulated network and can be well below 10%.

Therefore, we can conclude that the theory of Milner and

Safran can be successfully used in the determination of the

bending stiffness of the membrane of a nearly spherical lipid

vesicle. According to our results, the errors due to the approx-

imations adopted in the theory are less than 10%.

In conclusion, the analysis presented in this work can be

a useful tool to predict the change of the bending stiffness

of biological membranes due to their chemical modification.

Altering the properties of the triangulated surface and/or in-

troducing other membrane-interacting objects in the simula-

tions, and then measure the change of the bending stiffness,

offers many useful applications. Multicomponent lipid bi-

layers, membranes decorated with inclusions like peptides,

polymer coated vesicles like PEGylated and polyelectrolyte-

grafted vesicles, just to name a few.
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Simulations of thermally fluctuating vesicles are used to obtain the bending

stiffness of their membranes.
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