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A new lattice Monte Carlo simulation for dielectric saturation in ion-containing liquids
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(Dated: March 17, 2015)

We develop a new, rapid method for the lattice Monte Carlo simulation of ion-containing liquids
that accounts for the effects of the reorganization of solvent dipoles under external electrostatic fields.
Our results are in reasonable agreement with the analytical solutions to the dielectric continuum
theory of Booth for single ions, ion pairs, and ionic cross-links. We also illustrate the substantial
disparity between the dielectric functions for like and unlike charges on the nanometer scale. Our
simulation rationalizes the experimental data for the dependence of the bulk dielectric value of water
on ion concentrations in terms of saturated dipoles near ions.

PACS numbers:

I. INTRODUCTION

Ion-containing materials are ubiquitous in nature.
Their biological and environmental importance have been
areas of focus for many decades; however, a vast array
of literature has also emerged on the study of recently
developed electrochemical devices, such as lithium-ion
polymer batteries, electroactive actuators, and fuel cells.
However, both modeling the complex nature of electro-
static interactions and enhancing computational perfor-
mance in the simulations remain key challenges com-
monly addressed in these studies. Importantly, recent
studies based on mean-field theories have revealed that
the solvent polarization near ions crucially affects the
dielectric response of pure liquids [1, 2], simple liquid
mixtures [3], polymer blends and block copolymer melts
[4, 5].

Among others, spatially inhomogeneous dielectric re-
sponses still pose a significant challenge in both the-
ory [3] and simulation [6, 7] despite their critical signif-
icance. First, the dielectric response of ion-containing
liquids cannot be simply captured by a single parame-
ter εr (i.e., the bulk dielectric constant) in the Coulomb
potential, e/(4πε0εrr), because the effects of the relative
coordination among ions and solvents on the dielectric
response are not considered. In other words, the effects
of the multi-body forces are largely ignored in implicit
solvent models. Indeed, Gong and Freed demonstrated
the significant disparity between the dielectric screening
functions for like and unlike charges in aqueous solu-
tions through the application of Langevin-Debye theory
[8]. Moreover, the synergistic effects of the electrostatic
fields near the ion pairs in block copolymer melts cause
considerably non-monotonic variations in the dielectric
functions and volume fractions at the nanometer scale
[5]. Second, the long-range interaction via 1/r often de-
mands the Ewald summation. However, this method re-
sults in a significant cost of computational performance.

∗Electronic address: nakamura@ciac.ac.cn

Although this drawback can be considerably improved
by the local lattice simulation algorithms for electrostatic
interactions [9, 10], the reorganization of solvent dipoles
remains elusive. Indeed, the existing simulations for the
charged systems primarily draw upon a single parame-
ter εr, which does not adequately account for the effects
of electrostatic fields that reorient the solvent dipoles,
called “dielectric saturation.” Importantly, recent mean-
field theories have suggested that the effects of the dipole
reorientation near ions cause a decrease in the bulk di-
electric constant [11–13]. This result rationalizes certain
experimental values [14] but is also likely to await a fun-
damental breakthrough for the strategy of the simula-
tions.

In this paper, we demonstrate our new lattice Monte
Carlo (MC) simulation that accounts for the reorganiza-
tion of dipoles near ions in a dielectric medium, using an
aqueous solution as an example. In the resulting figures,
we show systematic errors due to the lattice discretiza-
tion using horizontal bars. In Sec. II, we incorporate
the Booth equation into the local simulation algorithm
[9, 10], which accounts for the effects of fluctuations and
correlations caused by the electrostatic interaction be-
yond mean-field theories such as the Poisson-Boltzmann
theory, to solve the Poisson equation with local dielectric
functions. In Sec. III, we compare our simulation results
with the analytical results of the dielectric continuum
theory of Booth for single ions, ion pairs, and ionic cross-
links. The reasonable agreement between the results of
the theory and simulation suggests that our lattice MC
simulation should be applicable to various ion-containing
systems in which the dielectric response of ion-containing
liquids is unlikely to be simply captured by the bulk di-
electric constant. As an example application of our sim-
ulation, we evaluate the bulk dielectric constant of aque-
ous solutions at high ionic concentrations. In Sec. IV, we
briefly summarize our results and offer some concluding
remarks.
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II. THEORY AND SIMULATION

We start with the electrostatic energy in the generic
form,

Uel[ ~D] =

∫
d~r

[ ~D(~r)]2

2ε0εr(~r)
, (1)

where ε0 and εr(~r) are the vacuum permittivity and lo-

cal dielectric value, respectively. ~D(~r) is the electric
displacement field given by the solution of the Pois-

son equation, div ~D(~r) = ρ(~r), where ρ(~r) is the lo-
cal charge density. εr(~r) should depend on the po-
larization of local compositions at the position ~r. In
our theory, we write εr(~r) using the Booth equation,
which accounts for the reorganization of solvent dipoles
under external electrostatic fields [15], in the form of
εr(~r) = n2 + a0L(a1), where n and L(x) are the optical
refractive index of the solvent and the Langevin function,
L(x) = 1/ tanhx− 1/x, respectively. The coefficients a0

and a1 are given by a0 = αn0(n2 + 2)µ/[4ε0| ~E(~r)|] and

a1 = βµ(n2 + 2)| ~E(~r)|/(kBT ), respectively. n0 is the
number density of solvent, µ is the intrinsic dipole mo-

ment of the solvent, and ~E(~r) is the electrostatic field.

For water molecules, we employ α = 28/(3
√

73) and

β =
√

73/6, which account for the nonlinear dielectric re-
sponses caused by both the strong reorganization of the
dipoles and the effects of hydrogen bonding [15]. Here, we

employ ~D(~r) = ε0εr(~r) ~E(~r) to write εr(~r) in the Booth

equation as a functional of | ~D(~r)|.
The ion positions are denoted by ~Ri. The statistical

ensemble of S is then given by

〈S〉 =

∫ ∏
i d
~RiS exp{−U0 − Uel[ ~D]}∫ ∏

i d
~Ri exp{−U0 − Uel[ ~D]}

,

(2)

where U0 represents non-electrostatic interactions such as

a hard-core potential. The Boltzmann factor for Uel[ ~D]
can be written as a functional integral over an auxiliary

field variable ~A(~r) by the identity [9, 10]

exp(−Uel[ ~D]) = Z−1
fluc({ri})

∫
D ~A
{∏

~r

δ[div ~A(~r)− ρ(~r)]

}
× exp(−Uel[ ~A]). (3)

Here, Zfluc is given by the functional in-

tegration over the transverse vector ~At(~r),∫
D ~At{

∏
r δ[div ~At]} exp(−Uel[ ~At]), where ~At(~r)=

~A(~r) − ~D(~r). For homogeneous dielectric media, Zfluc

is constant and therefore thermodynamically inconse-
quential [9]. For inhomogeneous dielectric media, the
fluctuation potential in Zfluc was estimated to vary as
1/r6 [16]. In our coarse-grained model, this term is
absorbed into U0. By comparing the simulation results

with the analytical results, we demonstrate that this
treatment is reasonable.

Using Eq. (3), the statistical average of S can be cast
into the form

〈S〉 =

∫ ∏
~r

d ~RiD ~A
{∏

δ[div ~A(~r)− ρ(~r)]

}
S

× exp{−U0 − Uel[ ~A]}/
∫ ∏

~r

d ~RiD ~A

×
{∏

δ[div ~A(~r)− ρ(~r)]

}
exp{−U0 − Uel[ ~A]}.(4)

εr[ ~A(~r)] in Uel[ ~A] is not the physical dielec-
tric value at the position ~r but purely a func-

tional of ~A(~r). Note that the transverse vec-

tor, ~Atr(~r) = ~A(~r) − ~D(~r). We then obtain

〈div ~Atr(~r)〉 = Z−1
0

∫ ∏
d ~RiD ~Atr δ[div ~Atr(~r)]div ~Atr ×

exp{−U0−Uel[ ~Atr]} = 0, which leads to 〈div ~A(~r)〉 = ρ(~r)

and hence ~D = 〈 ~A(~r)〉. Here, Z0 denotes the normaliza-
tion factor in Eq. (4). The physical dielectric function

εr(~r) can be calculated from 〈 ~A(~r)〉 using the Booth
equation.

nm
bmn-q

mn(bmn- q)
(b)

bmn
nm

 

 

(a)
mn(bmn)

q

FIG. 1: Schematic illustration of the local algorithm for the
Monte Carlo updates. (a) Updates of the lattice variable bmn

and dielectric value εmn on the bond connecting site m to
site n. When bmn is increased by a random value ∆, all other
lattice variables on the plaquette are also increased by ∆ in
the direction of the arrows; the dielectric value εmn is then
calculated from the new bmn using the Booth equation. (b)
Updates for the position of an ion. When an ion with charge
q moves from site m to site n, bmn is shifted to bmn − q.
Accordingly, εmn is calculated from bmn − q using the Booth
equation. We then perform the procedure described in panel
(a) on the red-dashed plaquettes near the ion, which relaxes
a large activation barrier to move ions.

We now perform the MC simulation for Eq. (4) on a
lattice with a three-dimensional periodic boundary con-
dition in the NVT ensemble using the local simulation
algorithm. Interested readers refer to the detail of the
algorithm in, for example, Refs. [9], [17], [18], and [10].
In this study, we describe the essential difference in the
algorithm, which arises from the effects of the reorgani-
zation of solvent dipoles, from that used in the previous
studies.
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Ions are modeled as a particle with charge q situated on
the lattice grid. Empty sites correspond to a spatial point
in the dielectric continuum whose constituent consists of
solvent with a dipole moment ~µ. Thus, our lattice model
approaches the dielectric continuum as the lattice spac-
ing is decreased. In other words, our lattice discretization
indicates the spatial resolution to solve the Poisson equa-
tion. By applying the discrete version of the integral form
of the Poisson equation (the Gauss theorem) to a cube of
the lattice bond length, which encloses site m, we obtain
Σnbmn = qm, where n denotes the nearest neighbors of
site m, qm is the charge on site m, and the lattice vari-

able bmn is the current of the vector ~A through a surface
of the cube that bisects the lattice bond connecting m
and n. To account for the effects of saturated dipoles
caused by local electrostatic fields from the ions, we as-
sociate the dielectric value εmn to the lattice bond with
lattice variable bmn using the Booth equation; see Fig. 1
(a) for a schematic explanation of the algorithm. The
Monte Carlo sampling then involves initializing a set of
bmn for all of the lattice bonds at a given charge distribu-
tion, followed by sequential updating of the group of bmn

on a plaquette. Importantly, this update scheme always
satisfies the Gauss theorem

∑
n bmn = qm at all four ver-

tices. We determine the acceptance and rejection of the
MC updates using the Metropolis algorithm through the

Boltzmann weighting factor exp(−U0 − Uel[ ~A]).

The position update of each ion also includes the up-
dates of the lattice variable and the dielectric value as-
signed to the bond connecting the old and new positions
of the ion [9]. To enhance the efficiency of the MC up-
dates, we thermalized the lattice variables on the red-
dashed plaquettes near the old and new positions of the
ion; see Fig. 1(b). This treatment relaxes a relatively
large activation barrier in the MC updates that is caused
by the change in the lattice variable and hence the di-
electric value. In this study, we have repeated this ther-
malization 100 times for each movement of the ion.

We consider single ions, ion pairs, and ionic cross-links,
performing the order of 108 steps for the MC updates of
the auxiliary fields. The lattice units are set to u = 2.8,
1.4, and 0.7 Å. The size of the simulation box ranges from
L3 = (10u)3 to L3 = (40u)3. For ionic solutions, we per-
form the order of 109 for the MC updates of the auxiliary
fields. According to the size of the simulation box from
L3 = (10u)3 to L3 = (40u)3, each simulation took 2-
24 hours by our Dell Precision T5610 workstation (Intel
Xeon E5-2650 v2, 2.6 GHz CPU, and 16GB Memory).
To obtain the statistical ensemble, we employed com-
puter clusters at our institute and Computing Center of
Jilin Province. These two resources provided us with ap-
proximately the order of hundreds of cores. Within this
computational performance, our computation time was
reasonable. If one encounters larger system sizes or low-
dielectric media, improved simulation algorithms could
also be used [17, 19]. We perform the statistical anal-
ysis by averaging the order of 103 samples. Along the
same lines in Ref. [12], we calculate the bulk dielectric
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FIG. 2: Dielectric function εr(r) and electric displacement
D(r) (insets) for single ions. r is the distance from the ion.
The colors of the lines and symbols correspond to monovalent
(black) and divalent (red) ions, respectively. The lines and
symbols denote the analytical results and simulation results,
respectively. The lattice unit u is set to (a) 0.7 Å, (b) 1.4 Å,
and (c) 2.8 Å.

constant, εr, by averaging the dielectric function εr(~r)
over a sphere with radius of R around each ion, where
R = [3/(4πc)]1/3 denotes the mean distance between ions
in ion concentration c.

III. RESULTS

We first illustrate the remarkable agreement between
the analytical results and simulation results. The elec-
tric displacement field arising from an ion at the posi-

tion ~r0 is given by | ~D(~r)| = qe/[4πε0(~r − ~r0)2]. By solv-

ing the Booth equation with this equation and ~E(~r) =
~D(~r)/[ε0εr(~r)], we can obtain the analytical results of the
dielectric function εr(~r) as the solution of the dielectric
continuum model. In Fig. 2, we compare the simulation

results of εr(~r) and ~D(~r) with the analytical results. Our
lattice simulation largely reproduces the dielectric con-
tinuum theory of Booth for both monovalent and diva-
lent ions. The results are qualitatively robust even when
the lattice unit is relatively large with u = 2.8 Å. Inci-
dentally, our results for the dielectric saturation are also
consistent with those derived from the Langevin-Debye
theory [20, 21].

Of particular interest in ion-containing liquids is the
solvation of ion pairs [22]. We set the origin of the
r axis in the middle of the two ions. The superpo-
sition principle and spherical symmetry of the electric

displacement fields around the ions lead to | ~D(~r)| =

| ~D1(~r) + ~D2(~r)| =

√
| ~D1|2 + | ~D2|2 + 2| ~D1|| ~D2| cosϕ±,

where ϕ+ for like charges and ϕ− for unlike charges de-

note the angles between ~D1 and ~D2, with ϕ− = π − ϕ+

[5]. Using this formula, we can solve the Booth equation
analytically. Because the resultant analytical solutions
of the dielectric function exhibit unconventional behav-
iors, before the demonstration of our simulation, we first
illustrate them in Fig. 3 (a). The marked difference be-
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tween the dielectric functions for like and unlike charges
appears near the center (r = 0); ε(~r) of the like charges
(black and red dashed lines) exhibits a drastic spiky vari-
ation between the ions, whereas the variation in ε(~r) of
the unlike charges (black and red solid lines) is relatively
small. The former case is caused by the fact that the elec-
tric displacement fields are significantly weakened near
ϕ+ = π. However, ε(~r) of the unlike charges remains
small between the charges because the electric displace-
ment fields tend to be strengthened near ϕ− = 0. This
nature of the dielectric saturation still remains significant
even when the two charges are separated by the nanome-
ter scale [Fig. 3 (b)]. The substantial disparity between
the dielectric functions for the like and unlike charges oc-
curs even outside the ion pairs separated by 5.6 Å [Fig. 3
(a)]. Thus, the unlike charged pair cannot be literally
regarded as a charge-neutral species in terms of the di-
electric screening. This feature is consistent with highly
saturated dipoles near ion pairs that have been illustrated
by molecular dynamics simulations [23].

Figs. 3 (c) and (d) show the simulation results of the
electric displacement field (triangles) and dielectric func-
tion (squares) between unlike charges on the r axis.
These results correspond to those in Figs. 3 (a) and (b),
respectively. For the significant variations in the dielec-
tric function near the ions, we present the results for
only the relevant scale between the charges. Although
the sharp peak of the dielectric function in the inset of
Fig. 3 (c) cannot be fully captured by the spatial reso-
lution with the present lattice spacing, our simulation
results are highly consistent with the analytical results
for both monovalent and divalent ion pairs.

We write the solvation energy of an ion pair in a di-
electric medium in the form of the potential mean force
[8],

∆G = G−G1 −G2

=
1

2

∫ ∫ ∫
V

~D(~r)2

ε0εr(~r)
dτ − 1

2

∫ ∫ ∫
V1

~D1(~r)2

ε0εr(~r)
dτ

− 1

2

∫ ∫ ∫
V2

~D2(~r)2

ε0εr(~r)
dτ,

(5)

where G, G1, and G2 represent the energies of the two
charges and independent single charges in a dielectric
medium, respectively. We perform the integrations over
the volumes V , V1, and V2, which include all space ex-

cluding the interior of the ions. ~D, ~D1, and ~D2 represent
the electric displacement fields that apply for two-charge
and single-charge systems, respectively. To ensure the
accuracy of the integrations, we evaluate Eq. (5) using
the analytical solutions of the Booth equation instead of
the results of the lattice simulations.

Our results also suggest that the effects of the dielec-
tric saturation may substantially alter the solvation en-
ergy ∆G of unlike ion pairs. Our analysis based on
the Booth equation for an ion pair separated by several
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FIG. 3: (a) and (b): Analytical results of the dielectric func-
tion εr(r) for the like charges (dashed lines) and unlike charges
(solid lines), separated by a distance of (a) 5.6 Å and (b) 11.2
Å. The colors of the lines correspond to monovalent (black)
and divalent (red) charges. (c) and (d): Analytical results
(lines) and simulation results (triangles and squares) of D(r)
and εr(r) (insets) between unlike charges. (c) and (d) cor-
respond to (a) and (b), respectively. (e) and (f): Analyti-
cal results (lines) and simulation results (triangles) for εr(r)
of cation-centered cross-links. Two anions separated by (e)
11.2 Å and (f) 19.6 Å. The colors of the lines correspond to
(q−, q+, q−) = (-1, +1, -1) (black) and (-1, +2, -1) (red). The
lattice unit is u = 1.4 Å. The r axes are set through the ions.

angstroms reveals a noticeable activation energy in ∆G
(e.g., 1.6kBT for Na+ or Li+ and Cl− in Fig. 4) that does
not appear in linear-dielectric continuum theory. The
peak position and height of the energy barriers are con-
sistent with those typically determined from quantum
mechanical molecular dynamics simulations [24–28]; the
energy barrier tends to vanish as ion size increases. Thus,
the Booth equation captures the key qualitative features
of the solvation of ion pairs. Moreover, the contribu-
tion of the hydrogen bonding to ∆G is less than 1%.
Therefore, the solvation energy can be accounted for pri-
marily by the reorganization of the dipoles in response
to the electrostatic field in the vicinity of the ions. This
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FIG. 4: Analytical results of the solvation energy ∆G for
Na+-Cl− (black solid line), Li+-Cl− (blue dashed line), Na+-
TFSI− (green solid line), and Li+-TFSI−(red dot-dashed line)
as a function of the separation distance between the ions. The
ionic radii of Li+, Na+, Cl−, and TFSI− are 0.78 Å, 0.98 Å,
1.81 Å, and 3.81 Å, respectively. There is no distinguishable
hump in the energy of ion pairs consisting of large anions such
as TFSI−. The inset shows an enlarged section of the plot.

fact may also affect the dynamics of charge transfers or
ion transports [29, 30]. In this context, electron transfer
theory is likely to be altered [31]. Given the consider-
able interest in organic energy storages, the application
of our simulation to photovoltaic cells [32] would also be
of further interest.

Ionic cross-linking is another important class of com-
plexation that may substantially alter the mechanical
strength and electronic properties of electrolytes. For
example, ionic complexation consisting of lithium ions
and anions, such as TFSI, is the key feature to control-
ling ionic conductivity in salt-doped polymer membranes
[29]. Thus, we consider the cross-links consisting of two
anions and one cation. Again, our simulation results cor-
respond well with the analytical results [Figs. 3 (e) and
(f)]. Notably, the effects of the dielectric saturation are
significant even on the nanometer scale.

With the three-body systems examined, our simula-
tion should be able to account for the multi-body in-
teraction that causes highly non-monotonic variations in
the dielectric function. To demonstrate this fact, Fig. 5
further illustrates that our simulation rationalizes the ex-
perimental observation concerning the dependence of the
ion concentration c on the bulk static dielectric constant
εr [14]. Here, we introduced the hard-core repulsion be-
tween the ions with the ionic radius 1.4 Å as an average
of that for Li+, Rb+, Cs+, and Cl−. We changed the
simulation box size from 40u (black squares) to 10u (red
spheres) but observed no significant effect on the results.
Thus, our simulation method has the advantage of en-
abling fast statistical convergence using a relatively small
simulation box. The systematic error due to the lattice
discretization should be reduced by decreasing the lattice
unit from u = 2.8 Å (red spheres) to u = 1.4 Å (green
triangles). We then obtain high consistency between the
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FIG. 5: Bulk dielectric constant εr as a function of ion concen-
tration c. The filled and empty symbols indicate our simula-
tion and experimental results from Ref. [14], respectively. The
colors of the symbols correspond to the lattice unit, u = 2.8
Å (black squares and red spheres for L = 40u and 10u, re-
spectively) and 1.4 Å (green triangles). The inset shows the
number of ion pairs nip obtained from the simulation with the
dielectric function εr(~r) (filled symbols) and the bulk dielec-
tric constant εr = 80 (empty symbols).

simulation and experimental results; the variation in the
bulk dielectric constant εr is primarily caused by satu-
rated dipoles near ions causing significant decreases in
εr. Our present results support the mean-field theories
[11, 12] that account for these experimental observations
in terms of the saturated dipoles. In other words, the
variation in εr is attributed to the local dielectric value
lower than the dielectric constant of the salt-free system.
However, our simulation further indicates substantial in-
creases in the number of ion pairs [the inset in Fig. 5],
separated on the nearest-neighbored lattice grids under
the hard-core potential, which are not accounted for in
the previous theories. However, given the low dielectric
value of water with high salt concentrations, the forma-
tion of ion pairs is likely to be reasonable.

Finally, we demonstrate the radial distribution func-
tions for like (g++) and unlike (g+−) charged ion pairs as
a function of the ion concentration c [Fig. 6]. Our simula-
tion results are qualitatively consistent with the previous
results of the integral-equation theories [33] and MC sim-
ulations [34] based on the primitive model with the bulk
dielectric constant εr. However, in our simulation, the
effects of the saturated dipoles yield relatively stronger
electrostatic interactions, causing larger contact values
of g+−. Therefore, this result should motivate further
in-depth studies of the effects of the dielectric inhomo-
geneity on the equation of states.

IV. CONCLUSION

In summary, we developed a new lattice MC method
that accounts for the effects of the reorganization of sol-
vent dipoles under external electrostatic fields. We in-
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FIG. 6: The radial distribution functions for unlike and like
charges. The colors of the symbols correspond to 0.70 M
(black squares), 2.1 M (red spheres), 4.2 M (green triangles),
and 12.0 M (blue inverse triangles). The inset shows the simu-
lation results with the bulk dielectric constant εr. The lattice
unit is u = 1.4 Å.

corporated the Booth equation, which provides the local
dielectric function, into the local simulation algorithm [9]
to solve the Poisson equation. Our simulation results in-
clude the effects of fluctuations and correlations caused
by the electrostatic interaction beyond mean-field theo-
ries such as the Poisson-Boltzmann theory. We do not en-
counter unphysical, dynamic traps of strongly attractive
ion pairs during the simulation because of the relatively
high dielectric values of water. Our method does not em-
ploy the Ewald summation and is, thus, computationally
fast. We demonstrated that our simulation results cor-
respond well with the analytical results of the dielectric
continuum theory of Booth for single ions, ions pairs, and

ionic cross-links [Figs. 2 and 3], being robust to changes
in the simulation box size from L = 40u to L = 10u. The
functional integration over the transverse vector Zfluc is
absorbed into the non-electrostatic interaction U0. This
treatment for spatially varying dielectric values is contro-
versial [16, 18, 35]; however, our current results suggest
that Zfluc is insignificant with regard to the effects of the
dielectric inhomogeneity. We illustrated the significance
of the saturated dipoles near ions and the substantial dis-
parity between the dielectric functions for like and unlike
charges. These effects may become considerably large at
the nanometer scale. Our simulation results also ratio-
nalize variations in the observed bulk dielectric constant
upon the addition of salt ions [Fig. 5], leading to substan-
tial changes in the number of ion pairs. Accordingly, the
effect of the saturated dipoles alters the radial distribu-
tion function particularly for unlike charged pairs [Fig. 6].
Thus, we suggest that future research focus on the effects
of the dielectric saturation near the strongly correlating
ions on the phase behavior of ion-containing liquids [36].

Finally, the effects of the reorganization of dipoles
cause noticeable activation energy (e.g., 1.6kBT for Na+

or Li+ and Cl−) of ion pairing in aqueous solutions
(Fig. 4). Given this situation, we suggest that the dy-
namic property of ion-containing liquids is affected by
the saturated dipoles [37]. Similarly, the electron transfer
in photovoltaic cells would also be of particular interest,
because the recombination rate of electrons and holes is
critical to enhancing the energy efficiency [38].
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