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Abstract

We examine the bond-breaking dynamics of transiently cross-linked semiflexible networks using a single filament model in

which that filament is peeled from an array of cross-linkers. We examine the effect of quenched disorder in the placement of the

linkers along the filament and the effect of stochastic bond-breaking (assuming Bell model unbinding kinetics) on the dynamics of

filament cross-linker dissociation and the statistics of ripping events. We find that bond forces decay exponentially away from the

point of loading and that bond breaking proceeds sequentially down the linker array from the point of loading in a series of stochastic

ripping events. We compare these theoretical predictions to the observed trajectories of large beads in a cross-linked microtubule

network and identify the observed jumps of the bead with the linker rupture events predicted by the single filament model.

1 Introduction

Semiflexible networks are materials composed of stiff fila-

ments cross-linked densely on the scale of their own ther-

mal persistence length. As such, the constituent filaments

can support stress via bending as well as stretching. The

study of such semiflexible gels has been inspired by their im-

portance in cellular mechanics, where the semiflexible net-

work of the cytoskeleton confers mechanical rigidity and is the

source of force generation in eukaryotic cells. These studies

have yielded a rich phenomenology including nonaffine defor-

mation1–3, continuous, zero-temperature phase transitions4–6,

complex nonlinear elasticity7–10, and the active mechanics of

motor-driven networks11–16.

Understanding the collective mechanical response of such

networks has implications for the dynamics17 and mechanobi-

ology of cells18–20, but also offers new insights into funda-

mental mechanical properties of this special class of polymer

gels – fiber networks rather than flexible (Gaussian coil) poly-

mer gels. One feature of these networks receiving renewed

attention is the role of cross-linker mechanics in the collec-

tive response of the network. These include exploring the me-

chanical effect of flexible cross-linkers21,22, cross-linker pro-

tein domain unfolding23,24, and cross-linker unbinding8,25,26.

The latter effect is particularly interesting as this allows for

structural rearrangements on long time scales either as the net-

work approaches thermal equilibrium27 or in the response to

applied loads28,29.
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Our previous experiments28 on the motion of a bead (with

a radius much larger than the mesh size of the network) show

that there is a regime of creep in which the bead moves with

constant velocity v in response to a constant applied force F .

Energy dissipation in the network results primarily from bond

breaking as can be inferred from the observed force-velocity

relation, log(v) ∼ F , consistent with a Bell model for ligand

unbinding rates30. In spite of this bond breaking, the modu-

lus of the network remains essentially unchanged. One infers

that bond breaking and reformation occur at equal rates in the

loaded network. Closer examination of the beads’ trajecto-

ries reveals many small stochastic hops on the scale of tens of

nanometers, suggesting that one can indeed resolve individual

bond breaking events within the large-scale drift of the bead

under load.

In this article we explore a single filament model for such

bond breaking events, which we use to understand a few fun-

damental features of the dissipative dynamics in the constant

velocity regime. In order to apply our results to cross-linked

microtubule networks, which is the system of experimental

interest, we ignore entropic effects. This very stiff network

is effectively a zero temperature system; as such our analy-

sis should apply equally well to a variety of fiber networks

and fiber-reenforced composites. We examine the spatial dis-

tribution of mechanical loading of the many non-covalent

cross-linking bonds between filaments and develop a statis-

tical model for the bond breaking dynamics. Using this model

we reexamine the apparently uniform motion of the bead,

which can be resolved into a series of microscale jumps, and

conclude that these dynamics are consistent with the bond-

breaking of just the highly loaded cross-linkers in the imme-

diate vicinity of the bead. This bond breaking is consistent

with a picture of bond breaking occurring on many different
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filaments rather than sequential breaking of bonds along a sin-

gle filament. The network remodels with many independent

events occurring on many filaments rather than in the peeling

away of any one filament in particular. We conclude with a

discussion of further experimental tests of this emerging un-

derstanding of the network’s failure and a few speculations on

the appearance of cross-linker unbinding deformation in such

transiently cross-linked fiber networks.

2 Single Filament Model

We begin with a single filament model. As shown in Fig. 1a,

the filament in question (shown as a dashed line) is being

deflected by the bead (large sphere); it is also bound to the

network (solid lines) by a random set of cross-linkers (small

spheres). In our single filament analysis we replace the entire

network by an array of posts along the ẑ axis to which the sin-

gle filament is bound – see Fig. 1b. The bead is replaced by

point loading at the origin of the coordinate system. Here we

control either the load or the displacement. If the bead fila-

ment interaction allows for slip, it may generate only perpen-

dicular forces; sticky beads may also apply longitudinal forces

along the filament leading to tension. We consider both cases

below, but begin with the more simple case of slip boundary

conditions and perpendicular loading of the filament.

We assume that bond breaking, when it occurs, is instanta-

neous and that the time between bond breaking events is long

compared to the relaxation time of filaments, so that filament

evolves from one static mechanical equilibrium configuration

to the next upon each bond breaking event. This separation

of time scales is explored more fully in appendix A. To under-

stand the loading of these bonds in static equilibrium, we must

first determine the forces on the cross-linkers for a semiflexi-

ble filament linked to a spatially random set of cross-linkers.

Taking the undeformed state of the single filament to be

straight and ζ (z) to be the perpendicular displacement of the

filament in response to the applied force F acting at the ori-

gin, we write the elastic free energy F of the filament under

uniform tension τ as31

F =
∫

Lc

dz
[κ

2

(

∂ 2
z ζ (z)

)2
+

τ

2
(∂zζ (z))

2+

+
V (z)

2
(ζ (z))2 −F δ (z)ζ (z)

]

. (1)

Here κ is the bending rigidity of the filament, which is related

to the filament’s elastic moduli and cross sectional geometry

in the usual way31. The function V (z) represents the harmonic

interaction of filament with the cross-linkers and the rest of the

network. We take this to be

V (z) = K ∑
i

δ (z− zi), (2)

2 3 4 5

x

x

Fig. 1 (a) A single filament of interest (dashed line) embedded in a

cross-linked filament network (solid lines) being deformed by a

force F transmitted by the probe particle (large shaded circle). (b)
The deflection ζ (z) of that same filament in a two-dimensional,

single filament model, where the undeformed (straight) filament is

bound to a random array of cross-linkers along the ẑ-axis. x is the

position of the nearest cross-linker to the applied force.

where the set of linker locations {zi|i = 1, . . . ,N} are

quenched stochastic variables chosen so that there is a Poisson

distribution of lengths between adjacent linkers – see Ref.1

for details – with mean length ℓ̄ between consecutive cross-

linkers. The elastic compliance K−1 of the linkers is meant

to reflect the combined compliance of the linking molecules

and the filament network in which they are embedded. The

latter compliance dominates the former so that K ∼ 6πG0a,

where G0 is the plateau modulus of the network and a a

size characteristic of the bond to network connection. Tak-

ing a ∼ 10−9m and gel moduli in the kPa or softer range, we

find K ∼ 102pN/µm.

Minimization of Eq. 1 with respect to the deflection field

yields the condition for force balance obeyed by the filament

in between bond breaking events

κ ∂ 4
z ζ (z)− τ ∂ 2

z ζ (z)+V (z)ζ (z) = F δ (z). (3)

From this equation and the mean length between consecutive

cross-linkers, one obtains two fundamental length scales – the
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potential length ℓp and the bending length ℓκ defined respec-

tively to be

ℓp =

(

144κ ℓ̄

K

)1/4

; ℓκ =
(κ

τ

)1/2

. (4)

The potential length is a measure of how far the deflection

field of the filament due to the applied point force penetrates

past the first unbroken cross-linker. As one might expect, this

penetration depth grows with the elastic compliance of linkers

K−1 and with the bending modulus of the filament∗.

The bending length measures the relative importance of

bending and tension in the force balance relation. Forces asso-

ciated with filament bending are related to higher derivatives

of the filament configuration, and thus always dominate at suf-

ficiently short distances. At distances greater than the bending

length ℓκ , tension rather than bending plays the dominant role

in the force balance relation, Eq. 3. At those length scales, the

mechanics of the filament is more analogous to that of a taut

string. We will see that for distances small compared to the

bending length ℓκ the stiff filament acts like a lever, leading to

an acceleration of the rate of subsequent unbinding events, as

described in Section 2.2-see Fig. 4 inset.

Our analysis proceeds as follows. First we calculate all of

the forces on the cross-linkers by solving Eq. 3 for states of

mechanical equilibrium either with prescribed displacement

or force at the origin. Using the calculated forces on the cross-

linkers, we calculate the dissociation rates of the cross-linkers.

We note that, due to the exponential dependence of the linker

unbinding rate on force and the exponential decrease of the

loading on the cross-linker with distance from the point of

force application, it reasonable to assume that linkers break

in sequence – the surviving linker currently nearest the point

of force application is overwhelming most likely to break next.

Using this observation, we make the sequential unbinding ap-

proximation and then compute the dynamics of filament un-

binding. We then turn to the experiments. For the reader’s

convenience we provide a complete list of variables used in

Table 1.

2.1 States of mechanical equilibrium

The solution of the mechanical equilibrium of the filament is

facilitated by a transfer matrix approach. In the intervals of

length ℓi+1 = zi+1 − zi between consecutive cross-linkers, we

solve Eq. 3 with a shifted independent variable:

yi = z− zi, (5)

∗The numerical prefactor 144 is included to simplify later calculations.

where we define z0 = 0. In this way the deflection field ζi(yi)
between the ith and (i+1)th linker is simply given by

ζi(z) =ζ
(0)
i +ζ

(1)
i yi +ζ

(2)
i ℓ2

κ

[

cosh
yi

ℓκ
−1

]

+ζ
(3)
i ℓ3

κ

[

sinh
yi

ℓκ
−

yi

ℓκ

]

, (6)

in terms of the (as yet unknown) boundary conditions: ζ
(n)
i ,

n = 0, . . . ,3 representing the displacement ζ
(0)
i at the ith linker

and its first three derivatives. In the limit of no tension, Eq. 6

becomes

ζi(z) =ζ
(0)
i +ζ

(1)
i yi +ζ

(2)
i

y2
i

2!
+ζ

(3)
i

y3
i

3!
, (7)

as is clear from taking the appropriate limit of Eq. 6. In both

cases, the solution is written in terms of the four unknown

parameters.

Since the filament must be continuous and have contin-

uous first and second derivatives, knowing the solution for

the filament in the ith segment ℓi = zi − zi−1 provides these

three boundary conditions for the solution of the filament tra-

jectory in the next segment ℓi+1 = zi+1 − zi. Integration of

Eq. 3 across zi yields the discontinuity in ζ ′′′(z), which is

determined by the harmonic force provided by that linker:

ζ ′′′
i (0)−ζ ′′′

i−1(ℓi) =−K
κ ζi−1(ℓi).

Imposing these boundary conditions across the ith cross-

linker amounts to solving a linear system of equations for ζ
(n)
i+1

in terms of the analogous information at the previous cross-

linker ζ
(n)
i . Thus, the effect of the solution of the differential

equation for the filament trajectory between cross-linkers is to

propagate that boundary condition information forward via a

linear transformation, which may be described in terms of a

transfer matrix

ζi+1 = T (ℓi)ζi, (8)

where ζi = {ζ
(0)
i ,ζ

(1)
i ,ζ

(2)
i ,ζ

(3)
i }. The full transfer matrix is

readily computed from the solutions given in Eqs. 6,7 for the

cases of finite and zero tension respectively. The matrix is

shown in Appendix C.

Iteration of the transfer matrix on the vector represent-

ing the state of the filament at the point of force application

yields the state of the filament at an arbitrary cross-linker: ζn:

ζn = [T (ℓn)T (ℓn−1) . . .T (ℓ1)]ζ0. The differential equation so-

lutions then give the correct form of the filament’s trajectory

in force balance in between these site. However, since our

interest is solely in the forces at the linkers, the full filament

trajectory information is unnecessary.

It remains to determine the initial boundary condition vector

ζ0 at the site of force application. We choose to apply a point

force F and we require a zero tangent condition: ζ
(1)
0 = 0,
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Table 1 List of variables. Dimensions: [L] =Length, [t] =time, and [F ] =Force.

Symbol Dimensions Description

z [L] Position along contour length of undeformed filament

zi [L] Position of ith cross-linker down filament’s undeformed contour length, Lc

ℓi = zi − zi−1 [L] Distance between ith and (i−1)th cross-linker

x [L] Distance to nearest unbroken cross-linker from applied force, F

ζ (z) [L] Deflection field of filament perpendicular to undeformed configuration

ζi {[L],1,[L]−1,[L]−2} Vector of derivatives of the deflection field at ith cross-linker

κ [F ][L]2 Bending modulus of filament

τ [F ] Applied tension on filament

K−1 [L] [F ]−1 Elastic compliance of cross-linkers

ℓp [L] Potential length

ℓκ [L] Bending length

ℓ̄ [L] Mean distance between cross-linkers

F [F ] Applied force

T (ℓi) Multiple dimensions Transfer matrix (see appendix C for dimensions of elements)

k [t]−1 Bell model dissociation rate (base rate of cross-linker dissociation)

k0 [t]−1 Base rate of cross-linker dissociation

F0 [F ] Thermal force scale

T [t] Total time of dissociation of a filament from cross-linker density

Pm(t) 1 Probability that m cross-linkers have dissociated by time t

v⊥(x) [L] [t]−1 Normal velocity of point of loading for a cross-linker at x

PN(n) 1 Probability of n sequential peeling events occurring over one mean dissociation time τ

on a filament bound to N cross-linkers

i.e, a “clamped” boundary condition. Of course, there are

two other boundary conditions needed to determine the ini-

tial value of the vector ζ0, as is expected for the fourth order

differential equation Eq. 3. We must specify these at the other

end of the filament. There are two classes of problems that

one may address. For finite length filaments, we may require

the far end to be both force and torque free. For infinite length

filaments, we will assume that the filament and its local slope

both approach zero: ζ
(0,1)
i → 0 for i → ∞. Both cases are dis-

cussed further below.

2.2 An infinite filament interacting with a lattice of link-

ing sites

The simplest solution is obtained for the case of an infinite

filament with an ordered lattice of binding sites. In this case

ℓ̄= zi+1 − zi for all i and the product of transfer matrices nec-

essary for the solution becomes simply the nth power of one

transfer matrix. This problem is best addressed by working in

the eigenbasis of the transfer matrix. There are four complex

eigenvalues λi, which are the roots of the polynomial

λ 4
i +1− (λ 3

i +λi)(2+2coshγ +144
α

γ2
−144

α

γ3
sinhγ)

+2λ 2
i (1+2coshγ +144

α

γ2
coshγ −144

α

γ3
sinhγ) = 0.

These roots are functions of two dimensionless control pa-

rameters: α =
(

ℓ̄/ℓp

)4
and γ = ℓ̄/ℓκ . The first measures the

(fixed) distance between binding sites in terms of the poten-

tial length. The second compares the same inter-binding site

distance to the bending length.

In Fig. 2a we plot the logarithm of the modulus of these four

eigenvalues λi = λi(α,γ) as a function of α for fixed γ = 5.

This plot shows a number of generic features that character-

ize all solutions. Two of the four eigenvalues have a mod-

ulus greater than one and two less than one; this point will

be essential when studying the infinite filament solutions be-

low. For any nonzero value of γ (i.e., for finite tension in the

filament) there are three classes of roots λi = λi(α,γ). For

sufficiently small α , one finds the high tension regime where

there are four distinct real eigenvalues, shown in the figure as

dashed lines. The subspace spanned by the eigenvectors with

eigenvalues having magnitudes less than one span the set of all

monotonically decaying displacement field solutions. In this

limit where the tension is high and the linker compliance is

also large, the relaxation of the filament back to the axis con-

taining the linkers is generically a double exponential decay.

A typical solution is shown by the dashed line in Fig. 2b.

For larger α , one encounters the incommensurate regime

where the eigenvalues come in two complex conjugate pairs.

These four solutions are represented by the solid lines in

Fig. 2a (the complex conjugate pairs necessarily have the same

modulus). The subspace spanned by the decaying solutions
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Fig. 2 (Top) The log of the modulus of the four eigenvalues as a

function for α for a tensed filament: γ = 5 showing the high tension,

incommensurate, and lock-in regimes, as described in the text.

(Bottom) Typical filament deflections for a filament of infinite

length interacting with a a lattice of linker sites in the high tension

(dashed), incommensurate (solid) and lock-in (dash-dotted) regimes.

(corresponding to eigenvalues with modulus less than unity)

takes the form ζn ∼ exp(−kn)cos(nφ). The filament’s dis-

placement decays exponentially but overshoots the linkers po-

sitions. Since the phase angle φ is generically not a rational

fraction of 2π , the periodicity of the height field at the linkers

is typically incommensurate with the linker lattice – a solu-

tion of this type is shown by the solid line in Fig. 2b. For even

larger α corresponding to more incompliant linkers, these in-

commensurate undulations lock-in with the lattice leading to a

form ζn ∼ exp(−kn)cos(nπ). A typical solution of this form

is shown by the dash-dotted line in Fig. 2b. For zero tension,

the transition from incommensurate to commensurate filament

undulations remains, but the high tension region vanishes.

We first consider the case of infinitely long filaments. Fi-

nite length effects are addressed in the next section. The

known applied force at the origin and the clamped (zero slope)

boundary condition determine two of the four unknown coef-

ficients ζ0 =
{

ζ
(0)
0 ,0,ζ

(2)
0 ,−F/κ

}

. To solve the filament tra-

jectory and, from that, the loading on each of the linkers for

an infinite filament one must work in the subspace spanned

by the eigenvectors w1,2 corresponding to the small modulus

(|λ1,2|< 1) eigenvalues in order to obtain decaying solutions.

We expand the solution in terms of two unknown coefficients

ζ0 = b1w1 +b2w2. These are given by

b1 =
F

κ

(λ1 −1)(λ2 +1)(λ1 − coshγ)

(λ1 −λ2)(λ1λ2 +λ1 +λ2 −2coshγ −1)

b2 =
F

κ

(λ2 −1)(λ1 +1)(λ2 − coshγ)

(λ2 −λ1)(λ1λ2 +λ1 +λ2 −2coshγ −1)
.

Recalling that each linker is a Hookean spring, it is simple to

obtain the force on each linker: the force on the ith linker Fi is

simply linear in the deflection at that point and proportional to

the spring constant

Fi = K
(

b1 λ i
1 w0

1 +b2 λ i
2 w0

2

)

(9)

where w0
i is the first component of the ith eigenvector corre-

sponding to ζ (0), the deflection field.

In order to follow the dynamics of bond breaking, one needs

to know how these forces are redistributed after each linker

dissociation event. Anticipating the sequential breaking as-

sumption (to be justified by the exponential decay of forces

along the filament) we focus on the case in which the first p

cross-linkers have failed. To take into account the load redis-

tribution after p cross-linkers have been dissociated, we re-

place the first (p+ 1) transfer matrices in the product by one

with an increased inter-linker distance. The solution for the

filament trajectory at the surviving linker sites n > p+ 1 is

then given by ζn with

ζn = T [ℓ̄]n−(p+1) T
[

(p+1) ℓ̄
]

ζ0. (10)

The analysis now proceeds along the same lines, but the state

vector of the filament after the first unbroken cross-linker must

remain in the subspace spanned by the two decaying modes.

Thus, the boundary conditions at the point of force application

are chosen to give T
[

(p+1) ℓ̄
]

ζ0 = b1w1 +b2w2.

We show in Fig. 3 the absolute value of the deflection field

for an infinite semiflexible filament interacting with a lattice

linker sites before any bond dissociations. Parameters are cho-

sen so that the filament is in the locked-in regime – see Fig. 2b.

The semilog plot demonstrates the exponential decay of the

envelope of oscillations the deflection amplitude (dotted line).

As consequence, the cross-linker loading is largest on the first

unbroken linker. In fact, for a total force F , the load on the

first linker is typically greater than the applied force ∼ 2F .

This and Bell model for cross-linker disassociation rates justi-

fies our sequential unbinding approximation for the dynamics

– see Sec. 3.

Given the sequential breaking assumption, one must deter-

mine the load on the first unbroken linker after the first p link-

ers have already been broken. This is straightforward using
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Eq. 10 and the harmonic linker potential to convert the deflec-

tion to a force. We plot the result in Fig. 4. For τ = 0, there

is a linear increase in the force due to a lever arm effect32,33.

The array of unbroken cross-linkers provides the fulcrum

0 5 10 15 20 25 30 35 40

10−9

10−7

10−5

10−3

10−1

z/ℓ̄

lo
g
ζ
/ℓ̄

Fig. 3 Absolute value of the deflection of an infinite semiflexible

filament interacting with a lattice of binding sites in the locked-in

regime showing oscillations and an exponential envelope (dashed

line).

of the lever, and the lever arm is the section of the filament

that has already undergone cross-linker dissociation – see in-

set. Subsequent breaking events increase the lever arm and

the mechanical advantage of the load, suggesting that peeling

dynamics should accelerate. Finite tension τ > 0 cuts off this

growth at ∼ ℓκ . More details on the effect of finite tension on

the configuration of and force distribution on the filament are

discussed in appendix B.

2.3 Finite length corrections

We now examine the forces on the finite contour length fil-

ament for an ordered array of cross-linkers. We take the

end of the filament to be force and torque free, setting ζN =

{ζ
(0)
N ,ζ

(1)
N ,0,0} at the end of the filament so that there are two

boundary conditions to be satisfied on each end of the fila-

ment. We recapitulate the transfer matrix solution for the finite

filament with p broken linkers using Eq. 10 and solving for the

four unknown constants, x = {ζ
(0)
0 ,ζ

(2)
0 ,ζ

(0)
N ,ζ

(1)
N }. Solving

this linear system of equations can be done as follows. Writ-

ing the matrix M = T N−(p+1)
[

ℓ̄
]

T
[

(p+1)ℓ̄
]

in terms of the

column vectors (~m1,~m2,~m3,~m4), and introducing unit column

vectors in the 1 and 2 directions, ê1,2 respectively, one may

write linear system of equations in the form

ζ
(0)
0 ~m1 +ζ

(2)
0 ~m3 −ζ

(0)
N ê1 −ζ

(1)
N ê2 =−

F

κ
~m4, (11)

which may be inverted to obtain the four undetermined coef-

ficients. To briefly summarize, we find that for ordered arrays

2 4 6 8 10

2

4

6

8

0 x/ℓp

Fi

F x
Lc

!Fi

ℓκ,5 pN ℓκ,1 pN

0 pN

1 pN

5 pN

Fig. 4 Force on the first unbroken cross-linker after i cross-linkers

have already broken in the linker lattice at various tensions. The

lever arm effect provides increasing mechanical advantage for

subsequent linker peeling over distances ℓκ . x is the distance to the

nearest cross-linker to the applied force, F . Lengths measured in

units of ℓp Inset: Diagram of the “class two” lever where the load

(cross-linker force, Fi) lies between the effort (applied force, F) and

the fulcrum (the remaining cross-linkers not undergoing

dissociation).

of linkers, the effect of finite length becomes significant only

in a region of length ∼ ℓp near the ends, assuming that the

filament is at least of order ℓp. For disordered arrays of the

linkers, it appears that the infinite length filament approxima-

tion also remains valid for some region at least a few ℓp away

from the ends.

2.4 Random arrays of linkers

In a random isotropic network, one expects that the distribu-

tion of distances between consecutive cross-linkers to be ran-

dom with a Poisson distribution. Specifically, given a mean

distance ℓ̄ between cross-linkers, the probability of finding a

distance between consecutive linkers between z and z+ dz is

P(z)dz = exp
[

−z/ℓ̄
]

/ℓ̄ dz. This implies that there will be ex-

ponentially rare long gaps, i.e., much larger than the mean

spacing, between cross-linkers. Understanding the effect of

such quenched random linker positions on the unpeeling pro-

cess is important for assessing the implications of the simple

lattice model for more physical random filament networks.

To explore this issue, we generated an ensemble ran-

domly pinned filaments using products of transfer matrices

ΠN
i=1T (ℓi), with the distance between the cross-linkers, ℓi, se-

lected from a Poisson distribution in place of the simple prod-

uct of identical transfer matrices used in Eq. 10. For all sim-

ulations discussed below, the following values of material pa-

rameters of the semiflexible filament were used: (when appli-

cable) τ = 5pN and K = 100pN/µm. The results are sum-

marized in Fig. 5, where we see that the distribution of load-
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gin, Pm(t). This may be written as a integral over all intervals

of time tk between the rupture of bonds k−1 and k for the first

k = 1, . . .m−1 bonds. These bonds must break before the mth

bond, which is next to break (assuming sequential breaking).

The sum of these intervals and time that the mth bond has sur-

vived as the next to break must add to the total time t. The

integral is given by

Pm(t) =
∫ t

0
dtm

∫ tm

0
dtm−1 . . .

∫ t2

0
dt1 exp [−k1 t1]k1×

exp [−k2(t2 − t1)]k2 . . .km exp [−km+1(t − tm)],

(13)

where the breaking rates k1, . . . ,km+1 are determined by the

solution of the mechanics problems previously discussed. The

evaluation of those rates lies at the heart of the calculation.

Assuming those rates are known, the evaluation of the inte-

gral is straightforward:

Pm(t) = (−1)m

(

m

∏
i=1

ki

)(

m+1

∑
q=1

exp [−kq t]

Y (q,m)

)

;

where

Y (q,m) =
j≤m+1

∏
j 6=q

(kq − k j). (14)

Taking the time derivative of Pm(t) in Eq. 13, one may ob-

tain a recursive set of differential equations for the various

bond-breaking probabilities. These have a simple interpreta-

tion, which is discussed in appendix E.

The probability for bond m to break is the negative deriva-

tive that bond’s survival probability36

fm(t) =−
d

dt

(

m

∑
q=0

Pq(t)

)

= km+1Pm(t). (15)

From this we compute the quantity of primary interest: the

mean time for the rupture of the mth linker along the filament.

This mean τm, which is the first moment of the distribution

fm(t) given by Eq. 15 is equal to the product of the m breaking

rates of that bond and the earlier bonds

τm =
∫ ∞

0
dt fm(t) t =

m

∑
q=1

1

kq

. (16)

Setting m = N and using Eq. 12, we obtain the total time for

filament peeling

T = k−1
0

N

∑
i=1

e−Fi/F0 , (17)

where Fi is the force on the first unbroken bond after bonds

1, . . . , i−1 have broken. The result is proportional to the fun-

damental rupture time scale 1/k0, specific to the linkers in

question.

3.1 Asymptotic peeling rates for long filaments

From this linker-breaking scenario for the dissipative dynam-

ics of the network, one must associate the loading time suffi-

cient to cause plastic deformation with the time required for a

typically filament to be peeled off of its original links to the

network. Thus the mean time for rupturing a significant frac-

tion of linkers from a very long filament gives a prediction

of the model for the loading time required for plastic defor-

mation as a function of applied force. Calculating the mean

peeling time remains a complex problem for disordered linker

arrays and even for ordered linker lattices since the loading on

the ith linker generically has a nontrivial dependence on linker

number i.

For peeling a very long filament, however, the asymptotic

peeling dynamics reached after many bond ruptures is more

easily analyzed. Examining Fig. 4, we note that in the ten-

sion free case, the linker loading increases linearly with linker

number: Fi = Ξ i due to the lever arm effect. For the case of

tensed filaments, the loading plateaus after a finite number of

linker ruptures: Fi = Ξ′, independent of i. Using these approx-

imations for all of the rupture events contributing to the mean

peeling time, one may simply perform the sum in Eq. 17 to

find for the tension-free case with accelerating peeling

T k0 =
e−Ξ/F0 − e−Ξ(N+1)/F0

1− e−Ξ/F0
. (18)

Due to the unbounded acceleration of the peeling, an infinite

number of linkers N → ∞ may be broken in finite time. This

unphysical outcome results from our neglect of inertia in the

problem, but the high peeling velocity case is not of physi-

cal interest as larger displacements of the filament associated

with the massive lever arm effect necessarily generate tension.

Turning to the case with tension, leading to constant velocity

peeling, we find the simple result

T k0 = Ne−Ξ′/F0 . (19)

We tested these approximate solutions to the problem of av-

erage peeling dynamics for both ordered and disorder linker

arrays using respectively analytic solutions and numerical

simulations. In all cases, mean peeling time scaled with load

F as predicted by the above results and the best fit was ob-

tained using Ξ′/F = 1.92 and Ξ/F = 0.25 (using the values

from Fig. 6). The first result demonstrates the force overshoot

leading to a linker loading almost twice that of the applied

force; the second shows that, without tension, the loading on
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4 Comparison to experiment

There are really two classes of experiments to which our the-

ory should apply. Single filament manipulation of biopoly-

mers such as F-actin or microtubules should provide the most

direct test of the theory. One may imagine a single filament be-

ing pulled from a regular or disordered array of sticky sites on

a substrate (generated perhaps by micro-contact printing tech-

niques37). Given that the Bell model parameters are known

with reasonable precision for a number of biologically ubiq-

uitous noncovalent bonds (e.g., biotin avidin binding) and that

the elastic properties of the semiflexible filaments are well

characterized, such single filament measurements provide the

most stringent test of the model, one with no fitting parame-

ters.

0 0.02 0.04 0.06 0.08
0

20

40

60

80

∆ζ
(0)
0 (ℓ̄ ) (µm)

P
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ζ
(0

)
0

(ℓ̄
))

Fig. 10 Dashed Line: Probability distribution of jump sizes for a

probe particle under an applied force of 150pN in a microtubule gel

with mesh size∼ 0.25 µm. Solid Line: Prediction of jump size

distribution for first linker rupture from a disordered linker array

with ℓ̄= 0.25 µm for an untensed filament. κ = 20pN(µm)2,

K = 100pN/µm, and F = 5pN

As discussed in the introduction, the original inspiration for

the theoretical work, however, is found in the many filament

experiments in which a large bead (i.e., much bigger than the

mesh size of the gel) is moved through the network. This sort

of test of the single filament model is necessarily less direct,

but we believe that the present single-filament calculation pro-

vides at least two key insights into the more complex problem

of the gel’s dynamics.

First and most generally, the calculations show that the

loading of cross-linkers is strongest near the point of force

application. In the experiment, there are only a small number

(order ten) of filaments in direct contact with the bead. Based

on the single filament calculations presented here, we see that

the total applied force appears essentially on the first cross-

linker away from the bead; the small number of filaments in

contact with the bead then divide that load over just a few

cross-linkers. This assumption was previously made in order

to explain the observed linker-breaking rates as a function of

force28. The present calculation justifies this assumption.

Our present calculation allows us to address a second and

more subtle issue of the observed bead dynamics. Within the

apparently constant velocity drift of the bead under load, one

observes a spectrum of essentially discontinuous (i.e., more

rapid than the data acquisition rate of 60 Hz) jumps of the

bead’s position, typically on the scale of tens of nanometers.

A typical bead trajectory is shown in Fig. 9 by the solid (blue)

line. The initial elastic jump and relaxation of the network

occur to the left of the dashed vertical line (t < 5s); the set

of small jumps making up the ”constant velocity” drift of the

bead occurs for larger times. From these data at larger times,

we plot in Fig. 10 the observed distribution of such jumps us-

ing a dashed line. Given our predictions for the relative proba-

bility of larger ripping events along a single filament, we may

ask whether the observed distribution of jumps is consistent

with large n rips – coordinated ruptures of many linkers along

one filament – or simply the result of individual linker ruptures

happening independently on different filaments.

To explore the latter hypothesis, we show the expected dis-

tribution of bead displacements associated with single rupture

events on a filament having a Poisson distribution of inter-

linker spacing consistent with the experimental gel’s mesh size

of 0.25µm. This prediction, shown by the solid line in Fig. 10,

is consistent with the observed jump distribution once the ap-

plied force on that filament is adjusted to 5pN. This suggests

that ∼ 30 filaments are involved in supporting the full 150pN

load on the bead. That estimate is predicted on using a stiff

linker spring constant of 100pN/µm. If this is reduced, one

finds the same jump distribution at a larger applied force im-

plying that fewer filaments are engaged. If we were to attempt

the to fit the experimental jump frequency data assuming that

these jumps are occurring due to multiple sequential rupture

evens on one filament, the model would predict larger jumps

with too high a frequency to fit the data. Ripping along one

filament is inconsistent with these jump frequency data. The

picture emerges that the bead’s motion is the result of many

individual linker ruptures occurring on different filaments in

an uncorrelated manner.

Finally, we note that there is a distinct lack of jumps larger

than 10nm found in the data. To understand this, consider

a simple geometric model of the gel as shown in the inset of

Fig. 9. Here the bead is shown as a circular arc while filaments

(heading into the page) are shown as crosses +, separated by

the mesh size ℓ. To calculate the largest expected jump, we as-

sume that when one linker ruptures, that filament no longer is

able to support the applied load. The filament with the broken

linker is shown as × in the inset. Upon the rupture, the bead

1–14 | 11

Page 11 of 16 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



moves forward a distance h until it impinges upon new fila-

ments in the network. This simple geometric argument leads

to an upper limit on bead jumps h ∼ 10nm, again consistent

with the data. These two lines of evidence support the picture

that, in the network, bead motion results from the uncorrelated

rupture of linkers on one of the few filaments in direct contact

with the bead. We conclude that there are no catastrophic rip-

ping events at least for these loads. In other words, there is

nothing like crack propagation as a failure mode.

The single filament peeling dynamics in our single filament

model are dominated by the interplay between bending and

tension, as demonstrated by the role of ℓκ in controlling the

lever arm effect. Calculations based on the stochastic peel-

ing dynamics of the filament from a regular array of linkers

provides a useful and broadly accurate understanding of the

more complex problem of peeling a filament from a disordered

array of linkers with two caveats: (1) linker disorder generi-

cally slows the peeling rate relative to that of the lattice with

same mean inter-linker spacing; and (2) there is broad tail of

the peeling velocity distribution towards slow peeling rates as-

sociated with rare “tight-binding” regions consisting of many

closely spaced linkers. The analysis of multi-linker rips and

the comparison to experiment points to a picture of dissipative

dynamics in the gel associated with the uncorrelated rupture

of individual linkers on the various filaments in contact with

the probe particle. All rupture events should occur essentially

at the nearest cross-link to the probe, i.e., within one mesh

size from it. We expect this single-filament work to serve as

a foundation for more complex multifilament models of linker

rupture and dissipative dynamics in a broad class of semiflex-

ible gels.
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A Filament relaxation dynamics

We assume that as cross links are broken, the filament re-

laxes sufficiently rapidly that it is once again in a static force-

balanced state by the time that the next cross linker breaks.

Here we briefly justify this separation of time scales. In a fluid

with viscosity η , after a cross link breaks, filament segments

of length ℓ each relax exponentially to their new mechanical

equilibrium configuration on a time scale

τ ∼
ηℓ4

κ
, (21)

as may be checked simply by dimensional analysis. Shorter

segments and stiffer filaments –smaller ℓ and higher κ – re-

lax more quickly. Taking ℓ ∼ 0.5 µm (on the order of a mesh

size), the viscosity of water, and a bending modulus consis-

tent with microtubules, we find that τ ∼ 10−5 s, significantly

shorter than the typical mean time of 1s between linker break-

ing events observed in experiment – see Fig. 9. In F-actin

networks with the same mesh size, one finds the relaxation

time to be milliseconds, which is still short compared to mean

interval between bond breaking events. We expect this sepa-

ration of time scales to apply rather widely to bond breaking

dynamics in biopolymer networks.

B Effect of different tension on equilibrium

equations

We discuss in the text filament statics and peeling dynamics

for the cases of zero tension and small, but finite tension, typ-

ically chosen to be 1pN or 5pN. Here we discuss in more de-

tail how the value of the tension changes the filament profiles

and linker breaking dynamics. For any finite tension, one may

rewrite Eq. (3) using rescaled dependent ℓ̄2
κ = κ K2/τ3 and

independent variables z̄ = zK/τ to obtain

(

ℓ̄2
κ ∂ 4

z̄ −∂ 2
z̄

)

ζ̄ (z̄) =
F

τ
δ (z̄)−∑δ (z̄− z̄i)ζ̄ (z̄), (22)

with ℓ̄2
κ = κ K2/τ3. We see that, even upon scaling the applied

force by the tension, one does not obtain a universal form for

the filament configuration for all tensions. Near the point of

force application we expect to see non-universal behavior ow-

ing to the residual tension dependence in the scaled bending

length ℓ̄κ , but at long distances from the point of force appli-

cation, z̄ ≫ ℓ̄κ we expect filament configurations to approach

a universal master curve under the appropriate rescaling of the

filament vertical displacement ζ̄ and length down the filament

z̄. In Fig. 4 we show typical filament displacement fields using

tensions of 1pN and 5pN.

C Transfer matrix

The transfer matrix necessary for the solution of the mechan-
ics problem discussed in Eq. 8 is given by

T (ℓi) =













1 ℓi ℓ2κ
[

coshℓi/ℓκ −1
]

ℓ3κ
[

sinhℓi/ℓκ − ℓi/ℓκ
]

0 1 ℓκ sinhℓi/ℓκ ℓ2κ
[

coshℓi/ℓκ −1
]

0 0 coshℓi/ℓκ ℓκ sinhℓi/ℓκ

− K
κ − K

κ ℓi
(

sinhℓi/ℓκ −A
[

coshℓi/ℓκ −1
])

/ℓκ coshℓi/ℓκ −A
[

sinhℓi/ℓκ − ℓi/ℓκ
]

,













(23)

where A = (K/τ)ℓκ . Thus the transfer matrix depends on

the bending length ℓκ , the distance between consecutive cross-

linkers ℓi, and the spring constant K of the linker (though the

dimensionless parameter A, defined above). In the limit of
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zero tension, ℓκ → ∞ the transfer matrix goes to simpler lim-

iting form:

T (ℓi) =

















1 ℓi ℓ2
i /2! ℓ3

i /3!

0 1 ℓi ℓ2
i /2!

0 0 1 ℓi

−K
κ −ℓi

K
κ − K

2!κ ℓ
2
i 1− K

3!κ ℓ
3
i

















In either case, for a fixed array of binding sites, the product

of transfer matrices becomes a product of random matrices

depending on the quenched random variables ℓi. For a regular

array of binding sites, this matrix product is easily performed

in the diagonal basis. This approach returns us to the discus-

sion of the four eigenvalues of the transfer matrix found in the

main text.

D Sequential dissociation approximation

The simplification used in the study of bond breaking dynam-

ics is that we assume the next bond to break is always the first

unbroken bond, i.e., the one closest to the point of force appli-

cation. This sequential dissociation approximation allows for

all of the subsequent analysis by determining the breaking tra-

jectories, and may be justified by noting that the first unbroken

bond is most strongly loaded. Here we examine the validity of

this simplification.

Assuming that the first p cross-linkers have broken, we

compute the ratio of the breaking rates of the p+1 cross-linker

to the breaking rates of the next two bonds: p+ 2 and p+ 3.

Using the Bell model, these ratios are exp(Fp+1 −Fp+2)/F0

and exp(Fp+1 −Fp+3)/F0, respectively. As p increases both

ratios become progressively larger due to the overall force

scale increasing in response to the lever arm effect; this is par-

ticularly evident with untensed filaments, where the lever arm

effect grows without bound.

For values consistent with microtubules linked by biotin-

avidin bonds – F0 = 30pN, see section 3 – we find the break-

ing rate of the first unbroken linker over the next two to be

enhanced by a factor of 2 and 3 respectively. After a few bro-

ken bonds, this enhancement factor becomes ∼ 10. For larger

applied forces (which linearly increase all force scales in our

model) and for weaker linkers, i.e., smaller F0, the dominance

of the sequential breaking trajectory becomes even more pro-

nounced. Even for the case of moderate force (∼150pN)

and strong bonds considered here, sequential bond breaking

is clearly the dominant trajectory after at most a few linker

ruptures.

E Master equation for linker rupture

The integral formulation of the probability of the mth bond

rupture at time t given by Eq. 14 is a complete solution to the

problem of the stochastic dynamics of peeling along any one

distribution of linkers; that distribution sets the values of ki in

the integral. The result, however, is more transparent if one

takes the time derivative. In that case, due to the sequential

breaking approximation, one may write the time derivative of

Pm solely in terms of itself and the breakage probability of the

last broken cross-linker Pm−1:

Ṗm(t) = km Pm−1(t)− km+1 Pm(t), (24)

for all but the first cross-linker, i.e., for m > 0. The first term

represents the increase in breakage probability due to the loss

of the m− 1 cross-linker, making cross-linker m the next to

break. The second term represents the breakage of that cross-

linker. These equations are supplemented by two more spe-

cific to the first

Ṗ0(t) =−k1 P0(t), (25)

and last

ṖN(t) = kNPN−1(t) (26)

cross-linker, where clearly only one of these two processes are

operative. Finally, one needs the initial conditions Pm(t = 0) =
δm0, indicating that no linkers are broken initially. At long

times, PN(t → ∞) = 1; any finite filament eventually becomes

completely unbound.
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We compute bond-breaking dynamics of a semiflexible filament under loading, 
and compare to observed driven particle motion in biopolymer networks.  
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