
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Dynamic self-assembly of colloids through periodic variation of inter-

particle potentials

Sumedh R. Risbud and James W. Swan∗

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

A short-ranged and time-varying attraction drives self-assembly of colloidal crystals from a suspension of colloidal spheres.

Brownian Dynamics simulations of this process demonstrate that the envelope for self-assembly of large, low defect crystals

is broadened dramatically when this attractive interaction is switched on and off periodically in time. This process is termed

dynamic self-assembly because temporal control of the inter-particle potential requires injection and extraction of energy from

the self-assembling materials. We develop a theory using non-equilibrium statistical mechanics to determine the rate at which

particles cross a similarly switched energy barrier, and show that there is a switching rate that maximizes barrier crossing. While

barrier crossing towards thermodynamic equilibrium is limited by the Kramers hopping rate, the rate of out-of-equilibrium

barrier crossing can exceed this limit. In the context of self-assembly, barrier crossing is the rate limiting step and responsible

for both defect formation and slow nucleation. This simple theory is used to explain the optimal switching rate observed in our

simulations of dynamic self-assembly. Dynamic self-assembly via switched potentials enables growth of ordered phases without

thermodynamic constraints on the assembly kinetics.

1 Introduction

Spatially ordered structures comprising arrays of micro- and

nano-particles are the basis of many cutting edge technologies

applied to solar energy harvesting,1 energy storage,2,3 biolog-

ical and chemical sensors,4 electronic applications including

3D photonic crystals,5 low-power displays,6 bioelectronic de-

vices,7 and high performance thermal insulators8. Although

the raw materials required for manufacturing ordered arrays of

colloids are relatively inexpensive, a consistent, cost-effective

protocol for large scale fabrication of low defect structures

with high production rate has remained elusive.

Thermodynamic self-assembly (crystallization close to

equilibrium) is the principal method for laboratory-scale fab-

rication of ordered colloidal phases.9 Usually aggregation is

driven by a carefully engineered steady attraction between

suspended particles. This interaction leads to nucleation and

growth of an ordered phase.10,11 The strength of the attrac-

tion must be chosen such that nucleation of crystals is a rare

event. Otherwise ordered phases with high defect density are

produced. The process of aggregation and growth is passive,

and there exists a narrow range of operating conditions under

which low defect crystals can be grown. The potential en-

ergy landscape associated with this self-assembly process is

typically rough – presenting kinetic barriers and numerous lo-
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cal minima associated with meta-stable states such as glasses,

gels, and fluids.12

Consequently, dilute suspensions subjected to strong attrac-

tive potentials or concentrated suspensions in relatively weak

potentials must be self-assembled near the boundary for phase

separation. Although high quality and defect-free crystal do-

mains can be obtained under such conditions. The time scales

associated with nucleation and growth, are governed by slow

kinetics associated with Kramers hopping. Thermal fluctua-

tions must give rise to a crystal nucleus with sufficient size to

grow continuously. This nucleus size can be predicted by the

classical nucleation theory (CNT), and the time scales associ-

ated with observation of such a fluctuation are necessarily long

to ensure low defect rates.13,14 Moreover, nucleation rates are

known to be very sensitive to operating conditions, for exam-

ple, even a 3% variation in particle concentration decreases

the nucleation rate by a factor of 105 in the self-assembly of

colloidal hard-spheres.15

Suspensions with strong attractive interactions are driven to

quickly phase separate due to spinodal decomposition. Here,

a single particle can serve as a critical nucleus and growth

of the ordered phase is spontaneous.13 Despite the speed of

this process, the end product is usually kinetically arrested

with the condensed phase dominated by meta-stable glassy,

jammed, or gel-like structures. These meta-stable states relax

with Kramers hopping kinetics as well. Thus, purely thermo-

dynamic constraints dictate the kinetics (and hence feasibility)

of traditional approaches to self-assembly.

1–10 | 1

Page 1 of 11 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Steady potential (No pulsing) Pulsed/toggled potential

Area fraction: ~71%; Potential depth: 10 kBT, range: 0.1 particle radii

Fig. 1 For the same concentration and short-range attractive potential, a steady potential leads to a kinetically arrested glass (Left) while a

pulsed potential leads to low defect crystal coexisting in steady state with a fluid (Right). In both cases depicted above, the systems were

simulated for 3000 diffusion times (1 diffusion time = 1 a2/D, where a ≡ particle radius and D ≡ particle self-diffusivity). (Right) The

potential was pulsed at a frequency of 100 D/a2 and a duty cycle of 1, i.e., total 300000 equal duration on-off periods were simulated.

Recently, experiments by Swan and co-workers have shown

that exposing a suspension of paramagnetic colloidal particles

to a periodically switched magnetic field enables the suspen-

sion to overcome these thermodynamically imposed kinetic

constraints. They showed that simple time variation of the

inter-particle attraction can speed up the self-assembly process

by several orders of magnitude.16,17 This strategy is called dy-

namic self-assembly, owing to its inherent out-of-equilibrium

nature. The experiments further reveal that there exists an op-

timal switching rate at which the suspension finds the crys-

talline state fastest.17 It was postulated that dynamic self-

assembly lowers the kinetic barriers by allowing the particles

to relax diffusively during the portion of the cycle in which

the magnetic field is switched off.16,17 This process is akin

to annealing of crystals by raising and lowering temperature.

However, the optimal switching rate was found to be propor-

tional to the characteristic diffusion rate of the paramagnetic

particles.

In this article, we investigate dynamic self-assembly of sus-

pensions in two dimensions via Brownian dynamics simula-

tions. The particles in a suspension of hard-spheres are sub-

jected to a periodically-pulsed, short-range, attractive poten-

tial. Fig. 1 depicts the result of two simulations: the control

case in which the switching rate is zero (the attractive potential

is steady), and a case in which the potential is switched. The

simulations reveal that, for the same depth and range of the

potential, a steady attraction yields glassy, kinetically arrested

structures while an optimally pulsed time-periodic potential

leads to a low defect crystalline state (see Fig. 1). The dy-

namic variables associated with the pulsing process are: the

duration of the off portion of the pulse, the ratio of on-to-

off durations of the pulsing cycle called the duty cycle, and

the concentration of the suspension. In Section 2, we present

the methodology adopted for the Brownian dynamics simula-

tions. We observe, as in the case of experiments, that there

exists an optimal off-period which leads to fastest nucleation

and growth of crystalline domains (Section 3.1). In section 3.2

we develop a simple theory for the rate at which particles cross

a pulsed energy barrier. We use this theory and the simulation

results to validate a hypothesis that the optimal off-period cor-

responds to the rate of inter-particle diffusion over the range

of the applied potential. This relationship can be rationalized

by recognizing that the defects characteristic of kinetic arrest

can be annealed by relatively small particle displacements. Al-

lowing the particles to periodically diffuse freely to the outer

limit of the inter-particle potential creates opportunities for lo-

cal configurations of particle to find better ordered states with-

out barrier crossing. This was postulated in the context of ex-

periments by Swan and co-workers, where the ‘capture radius’

of a magnetically induced inter-particle potential was used to

identify optimal conditions for dynamic self-assembly of sus-

pensions of paramagnetic colloids.17 In Section 3.3, we study

how the duty cycle of the optimally pulsed potential affects

the self-assembly process and show that duty cycle is critical

for controlling the rate of crystal nucleation in dynamic self-

assembly.
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(a) (b)

Fig. 2 Subfigures (a) & (b) show time-lapsed snapshots of 2 sets of simulations corresponding to different ranges of inter-particle pair

potential, respectively. Both show temporal evolution of suspension microstructure for a duty cycle of η = 1 and three different off durations

(i.e., tOff): optimal (middle row), an order of magnitude shorter than optimal (top row), and an order of magnitude longer than optimal (top

row). We observe that pulsing the potential with tOff shorter than its optimal value leads to a glassy self-assembly. On the other hand, no

nucleation is observed if tOff is longer than the optimal. The bottom row of (b) consists of two sub-rows that depict the suspension structure

during on state (glassy and arrested) and off state (thermalized fluid) of pulsing cycle (tOff = 1 a2/D). The off duration in this case is

sufficiently long to dissolve any structure formed during the on duration entirely.

2 Methodology

In this work, we perform Brownian dynamics (BD) simula-

tions of hard spheres constrained to a plane using the HOOMD

simulation suite (Highly Optimized Object-oriented Many-

particle Dynamics).18 We simulate Np = 10000 identical par-

ticles of unit radius (a = 1) in an L× L simulation box; the

latter is chosen to attain a given area concentration (φ =
Npπa2/L2). The concentrations examined in this work are

φ = 0.15, 0.20, 0.26, 0.35, 0.46, 0.59, 0.65, and 0.71. All

particles have unit drag coefficients (γ = 1). Time is measured

in the units of diffusion timescale of a single particle a2/D,

where, diffusivity is given by, D = kBT/γ (consequently, fre-

quencies are measured in the units of D/a2).

Under experimental conditions, since the system under con-

sideration is planar, the particle motion is expected to be in

close proximity of a fixed wall. A wall will screen hydrody-

namic interactions between the particles, and the chief role

of hydrodynamics will be to slow the motion of the parti-

cles.19–21 In lieu of modeling such interactions, which can be

quite costly computationally, we neglect the effect of inter-

particle hydrodynamic interactions; it is an assumption typi-

cally tacit in Brownian dynamics simulations.

The motion of colloidal scale particles is overdamped. This

implies that the timescale associated with inertial relaxation

is negligible. This renders the mass of the particles irrel-

evant. HOOMD uses velocity-Verlet (two-step) algorithm

to integrate Newton’s equations of motion for the particles.

As shown in Appendix A, in the velocity-Verlet integration

scheme, if the particle mass is set to the product of its drag co-

efficient and the time-step, the integration scheme simplifies

to forward-in-time Euler integration of the exact overdamped

dynamics of a colloid, with negligible inertia. Therefore, with

this choice of mass, overdamped dynamics of colloidal par-

ticles can be simulated using a traditional MD integrator by

setting particle mass proportional to the time-step.

Two different pair potentials are employed in the simula-

tions: a hard-sphere potential (HP) which is not a function of

time and acts only if particles overlap during the course of a

simulation, and a temporally periodic, attractive, switched po-

tential (SP). The HP is modeled as a Hookean spring,

UH(r) =
γ

4∆t
(r−2a)2

H (2a− r) ,

where r is the separation between particle centers and H is the

Heaviside step function. Due to the peculiar dependence of the

spring constant: γ/(2∆t), on time-step and drag coefficient,

the relative displacement caused by the force due to the HP is

exactly (2a− r) r̂. Thus, the HP generates displacements that

exactly resolve the overlaps between touching particle pairs.22
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Observe that the potential UH is depends only on particle prop-

erties (drag and radius) and adapts to the choice of time-step.

It represents a generic and parameter-free repulsion between

particles, capturing the effect of short-ranged repulsions like

double-layer, surface roughness, etc.23 Thus, we choose it as

a representative functional form for inter-particle repulsion.

For particles of unit radius (a = 1), the switched potential

(between on and off states) is given as,

US(r) =
ε (1+δ0)

3

δ 2
0

(

3
2
+δ0

)×
[

1− 3

2

r

2(1+δ0)
+

1

2

(

r

2(1+δ0)

)3
]

×

[H (r−2)−H (r−2(1+δ0))] ,

where ε characterizes the depth of the potential and δ0 quan-

tifies its dimensionless range. This is a depletion potential,

and throughout this work, we have set ε = −10kBT when at-

tractions are on and ε = 0kBT when attractions are off. Two

attraction ranges are studied: δ0 = 0.1 and 0.3. Three dura-

tions over which the potential is off, toff are studied in detail

for each range of attraction:

δ0 toff

0.1 0.1, 0.01, 0.001

0.3 1, 0.1, 0.01

It has been shown that the reduced second virial coefficient

of a colloidal ‘sticky’ hard-sphere-system is insensitive to the

specific choice of the attractive potential.24 Thus, the partic-

ular functional form for the inter-particle attraction (i.e., the

Asakura-Oosawa depletion potential in this case) should be

understood as a representative short-ranged pairwise attractive

potential.

The duty cycle (η = ton/toff) of the switched potential is

the ratio of the duration on to the duration off. The effect of

duty cycle on the crystallization kinetics, is investigated by ex-

amining the following duty cycle-area fraction doublets with

toff = 0.01 and δ0 = 0.1:

η φ

0.5 0.59, 0.65, 0.71

1 0.52, 0.59, 0.65, 0.71

1.5 0.52

2 0.35, 0.46, 0.52, 0.59, 0.65, 0.71

3 0.20, 0.26, 0.35, 0.46, 0.59, 0.65, 0.71

4 0.15, 0.20, 0.26, 0.35, 0.46

5 0.15, 0.20, 0.26

6 0.15

3 Results and discussions

3.1 Optimal off duration of a pulse: Brownian Dynamics

First, consider the case when the potential is pulsed with unit

duty cycle, i.e., η = 1. The off duration is resposible for re-

laxation of the arrested structure and consequent annealing of

defects via diffusion. At high pulsing frequencies, the off du-

ration is short and a glassy particle cluster cannot rearrange

effectively. In fact, at very high frequencies the pulsing pro-

cess can be replaced by an effective steady potential given by

the average of the on and off states over a pulsing cycle (see

Appendix B). At sufficiently low frequencies, the off duration

is long and crystalline domains formed during the on-state dis-

solve via diffusion. However, if the off duration is ∼ δ 2
0 a2/D,

the particles can diffuse a distance of the order of δ0a and

locally glassy configurations have the opportunity to find a

well-ordered state without barrier crossing. In other words,

the optimal off duration for rapid self-assembly lies between

the two extremes of fast and slow pulsing, and is similar in or-

der of magnitude to the time required for diffusion of a single

particle through the range of the potential.

For δ0 = 0.1 and 0.3, we expect to observe rapid self-

assembly when tOff ∼ 0.12a2/D and ∼ 0.32a2/D, respectively.

Fig. 2 corroborates this prediction for a monolayer of Brow-

nian spheres with 71% area fraction. Swan et al.17 have ex-

perimentally verified a similar estimate for the specific case

of magnetic field-driven assembly of paramagnetic colloids,

wherein the range of the attractive potential is replaced by

an effective ‘capture radius’. However, this comparison is

qualitative, as the inter-particle potential used by Swan and

co-workers is long-ranged dipole-dipole magnetic interaction,

which is ‘directional’ in nature as against the short-ranged ra-

dially isotropic potential employed in this work.

Further insight into the temporal evolution of the micro-

structure during the process of self-assembly can be gained

by examining the evolution of the mean wave-number asso-

ciated with the suspension microstructure 〈q〉1. The mean

wave-number is computed from the structure factor S(q) as

follows,24

〈q〉1 =

∫ qc

0 qS(q)dq
∫ qc

0 S(q)dq
,

where qc = 3.0 is used as a cutoff value. At qc = 3.0, the cor-

responding length scale is ∼ 2πa/qc ≈ 2.1a, which is of the

order of one particle diameter. Thus, by definition, this mean

wave-number captures the characteristic length scale of par-

ticle clusters larger than two particles in size. A temporally

decreasing mean wave-number indicates that the character-

isitic length scale increases with time. The particular nature

of temporal dependence of the mean wave-number signifies

the mode of aggregation followed by the particles, leading to

a particular micro-structure. For example, in Fig. 3, the off
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Fig. 3 Top, middle, and bottom panels portray the temporal evolution of mean wave number 〈q〉1 for three concentrations, 59%, 65%, and

71%, respectively. The range of inter-particle pair potential is δ0 = 0.1 in all three cases. Each panel shows the evolution for three off

durations: 0.1, 001, and 0.001, and a pulsing duty cycle η = 1. The dot-dashed curves corresponding to tOff = 0.001 show a power law decay

consistent with gelation for all three concentrations (see text). tOff = 0.01 corresponds to the optimal off duration for δ0 = 0.1. Consequently,

signatures of nucleation and growth can be seen in middle and bottom panels (concentrations of 65 and 71%). However, a concentration of

59% is to too dilute for nucleation to take place with a duty cycle of 1 (see Section 3.3).

duration of 0.01 is near-optimal for self-assembly and the cor-

responding 〈q〉1 exhibits nucleation and growth events as in-

dicated by a sudden decrease followed by stabilization to a

steady state value, for φ = 0.65 and 0.71. On the contrary, the

most dilute suspension with φ = 0.59 does not exhibit crys-

tallization and remains in the colloidal ‘fluid’ state throughout

the simulation. Furthermore, nucleation is delayed in the sus-

pension with φ = 0.65 and results in smaller crystalline do-

mains compared to that with φ = 0.71. The nucleation and

growth processes depend on the concentration of the suspen-

sion and the duty cycle, which are discussed in Section 3.3.

In Fig. 2(a) (top row), when of tOff = 0.001, we observe

kinetically arrested, system-spanning, glassy structure without

an inherent length scale. In Fig. 3, this lack of a characteristic

length scale reflects as a power law dependence of 〈q〉1 on

time for the off duration 0.001, across all concentrations.24 On

the other hand, when the off duration is 0.1, the suspension

remains a fluid with few density fluctuations, resulting in an

almost constant 〈q〉1.

3.2 Optimal off duration of a pulse: kinetic theory

So far, the existence of an optimal off duration for pulsing has

been demostrated using scaling arguments and empirically,

through Brownian dynamics simulations in the previous sec-

Fig. 4 A schematic representing (a) the potential energy landscape

used to build a framework based on kinetic theory, and (b) the

respective probability density functions.
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tion and through experiments by Swan et al.17 Although the

problem is not amenable to a full theoretical treatment involv-

ing many-body interactions, a framework can be built in terms

of a simple model with a unidimensional potential landscape

and a population of otherwise non-interacting Brownian parti-

cles.

Suppose such a population of Brownian particles resides in

an energy landscape that changes in time. The landscape is

comprised by a potential with wells at x = ±δ0 and a barrier

between them at x = 0 that is turned on and off periodically in

time (Fig. 4). The notation has been kept consistent in the con-

text of our discussion in the previous section, and δ0 signifies

the range of the unidimensional potential. When the poten-

tial is off, the energy landscape is flat and the particles diffuse

freely. When the potential is on, the particles are localized

near x = ±δ0 (see Fig. 4). Here, the two potential wells can

be thought to signify two different phases (say, crystalline and

glassy), and the coordinate parametrizing the unidimensional

landscape can be thought of as an aproporiate order parameter.

The potential is assumed to be deep so that on time scales

short relative to the Kramers mean first passage time, the par-

ticles are fixed exactly at x = ±δ0. That is, their distribution

is

φδ (x−δ0)+(1−φ)δ (x+δ0), (1)

where φ is the fraction of particles residing in the well at

x = δ0, and δ (x) is the Dirac’s δ -function (not to be con-

fused with the range of the potential). In congruence with

the assumption that the two potential wells signify two phases,

henceforth the population in the well at x = δ0 is considered to

be the ‘favorable’ population (say, crystalline phase in terms

of the discussion in the previous section). Further, we require

that all particles to the right of x = 0 just before the potential

is turned on, go to the well at x = δ0.

An initial distribution of particles, P0(x) changes in time

when the potential is switched from off to on state, and be-

comes:

P(x, t) = δ (x−δ0)
∫

∞

0
P0(x)dx+δ (x+δ0)

∫ 0

−∞

P0(x)dx, (2)

because particles to the right of the barrier go to the well at

x = δ0. The fraction of particles to the right of the barrier

(x > 0) is:

φ =
∫

∞

0
P0(x)dx. (3)

Equivalently, if the initial distribution in the on state is

P0(x), it evolves upon switching the potential off, under free

diffusion, to become:

P(x, t) =
∫

∞

−∞

G(x− x′, t)P0(x
′)dx′ (4)

where

G(x, t) =
1√

4πDt
e−

x2

4Dt , (5)

is the Green’s function for diffusion in one dimension and D

is the diffusivity.

Now, consider a pulsing process in which the potential en-

ergy landscape is pulsed between on and off with period T

and duty cycle η = 1, i.e., tOff = T/2. We assume that the

period T is small compared to the Kramers mean first passage

time corresponding to the unidimensional potential, and the

flux across the barrier between the wells is negligible during

the on part of the pulsing process.

If the landscape is toggled on at time t = (n−1)T , accord-

ing to equation 2, the distribution of particles for t > (n−1)T
is given by,

P(x, t) = φ(n)δ (x−δ0)+(1−φ(n))δ (x+δ0). (6)

Here, φ(n) is the population of particles to the right of the

origin (x > 0), at the end of the previous on-off pulse. Subse-

quently, using equation 4, the distribution after the landscape

is toggled off at time t = (n−1/2)T is given by,

P(x, t) = φ(n)G

(

x−δ0, t −
(

n− 1

2

)

T

)

+(1−φ(n))G

(

x+δ0, t −
(

n− 1

2

)

T

)

, (7)

for times t > (n− 1/2)T . At the end of the nth pulse (at t =
nT ), the potential is toggled on again and the distribution of

particles becomes:

P(x, t) = φ(n+1)δ (x−δ0)+(1−φ(n+1))δ (x+δ0). (8)

Therefore, using equations 3, 7, and 8:

φ(n+1) =
∫

∞

0

[

φ(n)G(x−δ0,T/2)

+(1−φ(n))G(x+δ0,T/2)

]

dx

=
1

2
+ erf





√

δ 2
0

2DT





(

φ(n)− 1

2

)

. (9)

The above equation defines a recurrence relation for the

fraction of particles to the right of the barrier (x > 0) during

the on duration of the potential. The solution of this recurrence

relation is,

φ(n) =
1

2
+

[

erf

(

1√
2τ

)]n(

φ(0)− 1

2

)

(10)

where the quantity τ = DT/δ 2
0 is the period of the on-off pro-

cess made dimensionless on the time required for particles to

diffuse freely through the range of the potential. Since τ is

strictly positive, the nth power of the error function approaches
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Fig. 5 The time required to achieve 95% conversion from an initial

state with all the particles in the well at x = δ0 as a function of pulse

period. The dashed line indicates the minimum at τ ≈ 0.88.

zero monotonically in n. Therefore, in this simple model, the

steady state distribution (n → ∞), yields half the particles to

the right of the barrier.

The number of cycles n can be replaced by n = t/τ into

equation 9, with t the elapsed time made dimensionless on

the particle diffusion time. In terms of time t, the fraction of

particles to the right of the barrier is:

φ(t) =
1

2
+

[

erf

(

1√
2τ

)]t/τ (

φ(0)− 1

2

)

. (11)

Noting that φ = 1/2 at steady state, an optimality criterion

for the pulsing process can be posed as: is there a value of τ
for which φ(t) takes the least amount of time to attain steady

state? Minimizing (φ(t)−1/2)2 with respect to τ yields τopt ≈
0.88, at which approach to the steady state is the fastest.

Equation 11 when rearranged gives the time t taken to attain

a fixed population φ(t) in the potential well at x = δ0:

t = τ log

(

φ(t)−1/2

φ(0)−1/2

)[

log

(

erf

(

1√
2τ

))]−1

. (12)

Beginning with φ(0) = 1 and setting φ(t) = 0.525 (i.e., 95%

of steady state), we show the time required to achieve 95%

conversion of particles as a function of the dimensionless pe-

riod in Fig. 5, which also depicts the optimal period.

Thus, the simple unidimensional model mathematically es-

tablishes the existence of an optimal period of pulsing to at-

tain the steady state, τopt ∼ O(1), i.e., T ∼ δ 2
0 /D. Given a unit

duty cycle (η = 1), the model predicts that tOff ∼ (range)2/D,

similar to the Brownian dynamics simulations (Section 3.1).

Further, because we have assumed that the process of collect-

ing the particles into the wells during the on portion of the

cycle is instantaneous, the effect of changing the duty-cycle of

the pulsing process is straightforward to incorporate into the

model. If the off fraction of the cycle is 1/(η + 1), then re-

placing τ with τ/2(η + 1) in the above expressions recovers

the correct dynamics for arbitrary duty cycle.

3.3 Effect of the duty cycle

It is clear from the arguments based on scaling as well as ki-

netic theory that the optimal off duration is dictated by the

diffusion timescale based on range of the potential. However,

the discussion thus far has assumed the presence of an a pri-

ori nucleated particle cluster. If the suspension is sufficiently

dilute, the probability of forming a critical crystalline nucleus

decreases. The duty cycle of the pulsing process is the tunable

parameter that governs the formation of such nuclei.

The mean inter-particle separation ℓ̄, between freely sus-

pended Brownian particles, scales in two dimensions as ℓ̄ ∼
φ−1/2. On average, the particles need to diffuse across this

separation to interact via the short-range attractive potential.

Therefore, in order to aggregate spontaneously, the on-state of

the interaction potential for a dilute suspension needs to be of

the same order as the diffusion time based on the mean inter-

particle sepatation, i.e., tOn ∼ ℓ̄2/D ∼ φ−1a2/D. It follows

that the duty cycle (η) scales as,

η = tOn/tOff ∼ φ−1,

since the optimal off duration (tOff) is independent of the con-

centration (from Sections 3.1 and 3.2).

Fig. 6 shows that upon decreasing concentration of the sus-

pension and keeping the off duration constant at its optimal

value (D/δ 2
0 ), higher duty cycles are required to achieve self-

assembly. Note that the scaling argument anticipates that nu-

cleation is spontaneous. In other words, the formation of a

critical nucleus is expected to be an almost certain event (i.e.,

the critical nucleus size is 1 particle). Thus, the behavior de-

picted in Fig. 6 is a dynamic equivalent of a thermodynamic

phase diagram, wherein the φ−1 scaling plays the role of a

spinodal boundary. However, it should be noted that the co-

existence is a dynamical steady state, instead of a thermody-

namic equilibrium, because the interaction potential varies pe-

riodically in time.

Scaling with φ−1 is a property of the dimensionality of the

system. As discussed above, the scaling arises due to the

square-root dependence of mean inter-particle separation on

the concentration in two dimensions. In three dimensions, the

mean inter-particle separation scales as the cube root of the

concentration (ℓ̄ ∼ φ−1/3). Thus, we expect that the duty cy-

cle required for nucleation and growth scales as inverse 2/3rd

power of the concentration (η ∼ φ−2/3).
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Fig. 6 Effective phase diagram for a pulsed inter-particle pair potential with a range of 0.1a and consequently, the duration of off-state

tOff = 0.01. Each point on the diagram represents the status of a simulated suspension after 300000 on-off cycles. Filled squares (�) indicate

formation of crystals via spontaneous nucleation (nucleation starts almost immediately after a pulsed potential is applied), crosses (X) indicate

that the suspension never exhibited nucleation, and open squares (�) depict the border-line cases in which nucleation was not instantaneous

upon application of the pulsed potential.

4 Conclusions

We have demonstrated a procedure for dynamic self-assembly

of colloidal crystals via ‘tunable annealing’ of kinetically ar-

rested colloidal glasses, formed under the influence of a short-

range attractive interaction between colloidal particles. The

procedure entails periodic pulsing of the interaction between

on- and off-states. We have shown that there are two inde-

pendent tunable parameters involved, namely, the off duration

and the duty cycle of the pulsing process. The duty cycle

is the ratio of the duration of the on-state to that of the off-

state. Both tunable parameters exhibit optimum values to at-

tain crystalline state.

For a fixed duty cycle of 1, we have shown that the optimal

off duration is given by the time required for a single colloidal

particle to diffuse through the range of the short-range attrac-

tion (tOff ∼ range2 ×6πµa/kBT ). Concentrated systems with

mean inter-particle separation smaller than the range of poten-

tial are used to demonstrate the above scaling. Considering a

typical colloidal suspension at 300 K, comprised by particles

of 2 µm diameter, if the range of short-ranged inter-particle at-

traction is approximately 100 nm, the aforementioned optimal

off duration is approximately 0.05s. With a unit duty cycle,

this translates to a pulsing frequency of 10 Hz. When the du-

ration of the off-state is fixed to its optimal value, the duty

cycle required for nucleation and growth scales inversely with

the concentration of the suspension, thus giving rise to a dy-

namical ‘phase boundary’. The systems used to demonstrate

this scaling behavior exhibit the limiting scenario in which the

mean inter-particle separation is much larger than the range of

the inter-particle interaction.

The implications of employing a time-periodic potential for

colloidal self-assembly are plain: it is a generic physical pro-

cess independent of the nature of the applied potential, which

provides tunable parameters to control and widen the enve-

lope for self-assembly by circumventing the barriers to grow-

ing large, low defect crystalline domains. Practical feasibil-

ity of this strategy has been demostrated experimentally us-

ing suspensions of paramagnetic colloids in a pulsed mag-

netic field,17 and we have demostrated here that the inferences

from the present work translate well, at least qualitatively, to

those experimental observations. A similar exercise can be

undertaken for the case of dielectric colloids in pulsed elec-

tric fields. The general applicability of this phenomenon to

chemical and biological systems will be explored by investi-

gating systems such as colloids with temperature responsive

stickers (e.g., DNA25–27) in periodically pulsed temperatures,

such that the stickers can be molten or frozen periodically to

toggle inter-particle interactions.
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Appendix A: Simplification of velocity-Verlet

scheme for overdamped colloidal dynamics

xi (t +∆t) = xi (t)+
1

mi

pi (t)∆t

+
1

2mi

(

Fi (t)−
γi

mi

pi (t −∆t/2)

)

∆t2

pi (t +∆t/2) = pi (t)+
1

2

(

Fi (t)−
γi

mi

pi (t −∆t/2)

)

∆t

pi (t +∆t) = pi (t +∆t/2)

+
1

2

(

Fi (t +∆t)− γi

mi

pi (t +∆t/2)

)

∆t

Here, (xi,pi) are position and momentum of particle i in the

simulation, mi is its mass, γi is the corresponding drag coeffi-

cient, and Fi is the force acting on the particle. As mentioned

in Section 2, a specific choice of particle mass (mi = γi∆t)

simplifies above equations to the exact forward-in-time Euler

integration scheme for overdamped dynamics of colloids:

xi (t +∆t) = xi +
1

γi

Fi (t)∆t.

The above forward-in-time integration represents the exact

overdamped dynamics of a particle, with negligible inertia.

Therefore, overdamped dynamics of colloidal particles can be

simulated in HOOMD by setting particle mass proportional to

the time-step. With this choice of mass, our simulation method

recovers the correct overdamped dynamics of colloids.

Appendix B: Effective energy landscape in

asymptotically fast pulsing

Colloidal dynamics in a general potential energy landscape is

governed by the Smoluchowski equation:

∂P

∂ t
= D

∂

∂x

[

∂P

∂x
+P

∂βU

∂x

]

,

where, P is the N-particle probability density, D is the diffu-

sivity, and βU = U/kBT is the interaction potential normal-

ized on thermal noise kBT . The formal solution to the above

Smoluchowski equation can be written as,

P(x, t) = etLP(x,0).

Here, L is the linear differential operator given by,

L ≡ D
∂

∂x

[

∂ (. . .)

∂x
+(. . .)

∂βU

∂x

]

.

In the case of a time-periodic process, such as pulsing a

potential, we can relate the probability distribution at the end

of a cycle to that at the end of the previous cycle using the

above formal representation. Consider a pulsing process with

duty cycle η and pulsing period T , such that the off and on

durations of a pulsing cycle can be represented by operators

LOff and LOn, respectively, given as:

LOff ≡ D
∂

∂x

[

∂ (. . .)

∂x

]

, and,

LOn ≡ D
∂

∂x

[

∂ (. . .)

∂x
+(. . .)

∂βU

∂x

]

The distribution at the end of nth cycle in terms of that at the

end of the (n−1)th cycle is given by,

P(x,nT ) = e
ηT

η+1 LOne
T

η+1 LOffP(x,(n−1)T ).

In dimensionless form, the period T changes to τ =DT/δ 2
0 ,

where δ0 is the characteristic length associated with the poten-

tial U . In the high frequency limit, τ << 1, only the leading

order terms in the exponential operator suffice to describe the

dynamics of pulsing. Therefore,

P(x,nτ) = e
ητ

η+1 LOn e
τ

η+1 LOff P(x,(n−1)τ)

≈
[(

1+
ητLOn

η +1

)(

1+
τLOff

η +1

)]

P(x,(n−1)τ)

Rearranging the above equation,

1

τ

(

P(x,nτ)−P(x,(n−1)τ)

)

≈
[

η

η +1
LOn +

1

η +1
LOff

]

P(x,(n−1)τ)

(13)

However, notice that Lη = [η/(1 + η)]LOn + [1/(1 +
η)]LOff can be rewritten (in dimensionless form) as:

Lη ≡ ∂

∂x

[

∂ (. . .)

∂x
+(. . .)

η

η +1

∂βU

∂x

]

Taking limit τ → 0 in equation 13 and using the above def-

inition of Lη , we recover Smoluchowski equation,

∂P

∂τ
= Lη P.

This shows that in the high frequency limit, the pulsing pro-
cess is equivalent to applying a steady potential rescaled by
the duty fraction: η/(1+η).
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Periodic pulsing of inter-particle potential 
facilitates colloidal self-assembly by effectively 

'tunneling' through barriers.
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