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We present a combined computational and analytical study of supramolecular magnetic filaments, i.e. permanently linked chains

of ferromagnetic nanocolloids. We put forward two different models for the interparticle connectivity within the chain. In the

first model, the magnetic dipoles of the particles are free to rotate independently from the permanent links. The second model

penalises the misalignment of the dipoles by coupling their orientations to the chain backbone. We show that the effect of the

long-range magnetic dipolar interactions on the zero field net magnetic moment of the chain becomes less significant in the

second case. However, the overall magnetic response in the model of freely rotating dipoles is much weaker.

1 Introduction

Magnetic fluids—ferrofluids and magnetorheological fluids—

are usually created by adding independent micron or submi-

cron sized magnetic particles to a carrier fluid to form a col-

loidal suspension. These magnetic systems have been studied

theoretically and experimentally for more than forty years.1–3

Among the factors that determine the physical properties of

such systems, the self-assembly of their magnetic colloids into

chains, rings and branched structures by effect of the magnetic

dipolar interactions has turned out to be crucial.4–7

In general, the control of self-assembly has proven to be

a key tool with which to tune the macroscopic properties

of soft matter. Numerous systems based on this approach

have been studied in recent years, such as patchy colloids,8–10

blunt end DNA duplexes,11–14 and magnetorheological sus-

pensions.15,16 Self-assembled structures can be further sta-

bilised and/or modified by adding other bonding mechanisms

to the system. This allows the creation of supramolecu-

lar structures with specific properties, for example, magnetic

gels17–19 and DNA origami structures.20–22

In magnetic soft matter, self-assembly is mainly influenced

by the anisotropic and long-range nature of the magnetic dipo-

lar interaction. In particular, this interaction favors the aggre-

gation of the colloids of a magnetic fluid into linear chains,

with a head-to-tail arrangement of the dipolar moments. The
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formation of these self-assembled dipolar chains can be stim-

ulated and controlled by the application of external mag-

netic fields. Once a self-assembled chain has been formed, it

can be structurally stabilised by adding permanent molecular

crosslinks between the neighbouring particles. The result of

this procedure is a permanent polymer-like chain of magnetic

colloids that keeps its linear structure under a broad range

of environmental conditions.23–27 These systems, known as

a supramolecular magnetic filaments, are the main subject of

our study. An alternative experimental method to create mag-

netic filaments is the in situ crystalline growth of magnetic

beads at specific spots along the monomer sequence of a lin-

ear polymer.28 In general, the advances in experimental tech-

niques that have taken place during the last decade are leading

to a higher control of the structure and properties of magnetic

filaments, making possible the creation of stable permanent

chains with increasing degrees of flexibility and aspect ratios.

To date, most of the research efforts on magnetic filaments

have been devoted to their application as magnetorespon-

sive actuators and propellers in micro- and nano-fluidic sys-

tems.29–33 Nevertheless, these systems seem to be promising

building blocks for various technologies.34 One of the most

interesting and still unexplored potential applications of mag-

netic filaments is their use as a replacement of the indepen-

dent magnetic colloids present in conventional magnetic flu-

ids. The permanent chain structure of the filaments is expected

to have a significant impact on the magnetic, optical and rhe-

ological properties of such fluids, particularly at high tem-

peratures, when the dipolar chain self-assembly is suppressed

by the thermal fluctuations. Furthermore, magnetic filaments

are expected to have a higher resistance to shear stress. Fi-

nally, they are likely to be more responsive to external mag-
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netic fields due to the persistent prealignment of the particles.

Despite the interest that such prospective characteristics have

for technological applications, to the best of our knowledge,

no studies devoted to the fundamental understanding of mag-

netic fluids made out of magnetic filaments have been per-

formed so far. This work represents the first step to address

this topic. In particular, we focus on the characterisation of

the zero field net magnetic moment of a single isolated fila-

ment, paying special attention to the effect of the permanent

links between neighbouring particles. To this extent, we use

two different linking approaches. In the first case, we connect

the centres of neighbouring particles with an isotropic bonding

potential, without restricting particle rotations. In the second

case, the interparticle bonding potential is considered to be

angular-dependent and hinders the rotation of the dipoles with

respect to their head-to-tail orientation. Employing Langevin

dynamics simulations and analytical theory, we describe the

intrachain dipole-dipole correlations and predict the zero field

magnetic response. It turns out that in the case of the freely ro-

tating dipoles, the role of the long-range nature of the dipolar

interactions, enhanced by the spatial alignment of particles, is

much more significant than in the second case. Importantly,

in both cases magnetic filaments exhibit significantly higher

correlations than that of self-assembled ferroparticle chains,

especially at high temperatures.

The article is organised as follows: in Section 2 we dis-

cuss in detail the models of magnetic filaments chosen for this

study. Section 3 describes our theoretical approaches, as well

as the simulation methods. In Section 4 the main results of the

study are discussed, and concluding remarks are presented in

Section 5.

2 Magnetic filaments modelling

Supramolecular nature and polymer-like chain structure of

magnetic filaments suggest the use of coarse-grained bead-

spring models as a convenient approach to capture the fun-

damental physics of these systems.35,36 In this Section we de-

scribe the models of magnetic filaments we used, by first intro-

ducing their common ingredients before discussing separately

the details of the two different particle linking mechanisms.

2.1 Bead-spring modelling approach: common ingredi-

ents

For simplicity, we only consider magnetic filaments formed

by monodisperse magnetic colloids. The latter are modelled

as identical spherical beads with a characteristic diameter σ
and a point magnetic dipole moment ~µ located at their cen-

tre. Therefore, the long-range magnetic interactions between

the beads are described by the conventional dipole-dipole pair

potential:

Udd(~ri j;~µi,~µ j) =
~µi ·~µ j

r3
−

3 [~µi ·~ri j] [~µ j ·~ri j]

r5
, (1)

where r =
∥

∥~ri j

∥

∥, being ~ri j =~ri −~r j the displacement vector

connecting the centres of beads i and j with dipolar moments

~µi and ~µ j respectively. Another relevant interaction between

the spherical beads is the isotropic steric repulsion, which we

model by means of a Weeks-Chandler-Andersen pair potential

(WCA),37

UWCA(r) =

{

ULJ(r)−ULJ(rcut), r < rcut

0, r ≥ rcut
, (2)

where ULJ(r) is the conventional Lennard-Jones potential,

ULJ(r) = 4εs[(σ/r)12 − (σ/r)6], (3)

and rcut = 21/6σ is the shifting parameter that makes the po-

tential purely repulsive. Therefore, as mentioned above, the

dipolar beads have a characteristic volume defined by their di-

ameter, σ , but the steric repulsion between them is actually a

soft core that does not impose a strict bound to the minimum

centre-to-centre distance. In practice, the typical separation

between neighbouring beads will be determined by the bal-

ance between all of the relevant attractive and repulsive forces.

The choice of a soft core potential for the excluded volume

of the magnetic beads is firstly imposed by the simulation

method, but it is also physically grounded; even though the

magnetic materials used to make dipolar colloids are typically

rigid solids at working conditions, in most cases the particles

are stabilised by soft polymer shells.26,27,38

In this work, all the physical parameters of the system are

measured in reduced units: the reduced characteristic diameter

of the colloids is σ = 1, their reduced mass m = 1, and the

prefactor of the reduced steric potential (2) is εs = 1.

2.2 Chain connectivity Model 1: free rotating dipoles

model

A very simple bead-spring modelling approach to represent

the permanent chain connectivity of the magnetic colloids

consists of adding an isotropic confining pair potential be-

tween first-nearest neighbours. In this model, we chose to

bond adjacent beads in the chain by means of a finitely exten-

sible nonlinear elastic potential (FENE), which can be defined

as a function of the centre-to-centre distance, r, as:

UFENE(r) =
−K f

2
ln

[

1−

(

r

r f

)2
]

, (4)

where we take r f = 1.5σ and K f = 30. In our previous

studies,35,39 these parameters kept the effective separation be-

tween the first-nearest neighbours close to the reference value
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(a)

(b)

Fig. 1 Schematic representations of the two different bead-spring

models of magnetic filaments used in this work (right) and their

corresponding physical mechanisms for keeping the chain

connectivity (left). Dipole moments are depicted as arrows, and

connectivity mechanisms as curved or zigzag lines. (a) Model 1:

free rotating dipoles model. (b) Model 2: bond-dipole coupling

model. See the main text for further details.

σ = 1. Figure 1(a) shows a scheme of this modelling ap-

proach together with a sketch of the physical chain connectiv-

ity mechanism that it may represent. Specifically, the model

does not impose any particular restriction on the rotation of

the beads and, as such, on the rotation of their associated point

dipoles. The FENE potential acts like a spring whose ends are

attached to the centres of the linked beads, keeping them in

close contact but putting no penalty on their rotations. There-

fore, the dipoles will adopt a head-to-tail configuration sim-

ply by the cooperative influence of the magnetic field gener-

ated by their neighbours and/or by the application of an exter-

nal field. Experimentally, this mechanism might be obtained

by enclosing the whole chain of colloids into a semiflexible

steric casing, with no actual crosslinks between the particles.

This model is also the first step from a self-assembled chain

to a permanently bound magnetic filament, and it allows us

to study separately the contribution of the magnetic dipole-

dipole interactions to the collective behaviour of permanently

linked particles.

2.3 Chain connectivity Model 2: bond-dipole coupling

model

The most common synthesis techniques of magnetic filaments

are based on the crosslinking of magnetically assembled col-

loids by means of polymers. In such approach, the ends of

the polymer chains are chemically bonded to the surface of

the linked colloids. Therefore, the crosslinking polymers not

only constrain the interparticle distance, but also their relative

orientations. For the case of ferromagnetic colloids, with the

dipole moment fixed within the particle crystallographic axes,

the constraints imposed by the crosslinkers are unavoidably

extended to the relative orientation of the magnetic dipoles.

To date, the knowledge on the effects of the experimental

crosslinkers on the internal degrees of freedom of the chains

and their overall mechanical properties is still basically qual-

itative. For instance, it is known that the experimental flexi-

bility of the links depends on the nature of the used polymers,

their amount and their lengths,27 but no accurate description

exists to our best knowledge. Therefore, we choose a simple

phenomenological approach to define our linking potential. In

a previous work, we introduced the following expression for

a pair potential that links the surfaces of two ferromagnetic

colloids:36

US(~ri j; µ̂i, µ̂ j) =
1

2
KS

(

~ri j − (µ̂i + µ̂ j)
σ

2

)2

, (5)

where µ̂i =~µi/‖~µi‖ and µ̂ j =~µ j/
∥

∥~µ j

∥

∥ are the unitary vectors

parallel to each associated dipole moment. As Figure 1(b) il-

lustrates, this potential represents the constraining effects of

the crosslinkers that bond any pair of neighbouring beads as a

simple harmonic spring whose ends are attached to the ‘sur-

face’ of both soft spheres, i.e., to points at a distance σ/2

from the sphere centres. Assuming that the equilibrium po-

sition for the crosslinkers is a perfect head-to-tail alignment

of both dipoles at a centre-to-centre separation distance σ , the

combination of this bonding potential with the steric repul-

sions, defined by (2), will penalise the stretching of the links

produced either by an increase of the centre-to-centre separa-

tion of the beads, or by rotations that lead to a non head-to-tail

alignment of the dipoles. It should be noted that the added

bond stretching that one may expect for large misalignments

of adjacent dipoles, assuming that the springs can not freely

penetrate the core of the beads, is not taken into account in

this model. However, such large misalignments are expected

to be exclusively associated with highly entropic conditions

and, therefore, their effects can be disregarded in this study.

According to our previous work,36 the prefactor of the poten-

tial is set to Ks = 30, a value that again is expected to provide

bond lengths close to the reference bead soft core diameter,

σ = 1. In difference with such previous study, devoted to the

qualitative determination of the the structural phase diagram

of a single magnetic filament under poor solvent conditions,

here we assume good solvent conditions and, therefore, we

do not introduce any isotropic attractive potential between the

colloids.
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3 Simulation and Analytical methods

3.1 Computer simulation methods

Extensive computer simulations for both filament models were

performed by means of the Langevin dynamics method (LD),

which treats implicitly the effects of the thermal fluctuations

of the carrier fluid on the dipolar beads.40 This was com-

bined with the replica exchange molecular dynamics method

(REMD), a technique designed to ease the proper equilibration

of systems with a complex free energy landscape by prevent-

ing the simulation from becoming trapped into local energy

minima.41,42

In LD simulations each particle i follows the translational

and rotational Langevin equations of motion:

mi

d~vi

dt
= ~Fi −ΓT~vi +~ξi,T ,

~Ii ·
d~ωi

dt
=~τi −ΓR~ωi +~ξi,R, (6)

where ~Fi, and ~τi are respectively the total force and torque

acting on the particle. mi is its mass, ~Ii its inertia tensor,

and ΓT and ΓR the translational and rotational friction con-

stants. Finally, ~ξi,T and ~ξi,R are a Gaussian random force

and torque, respectively, each of zero mean and satisfying the

usual fluctuation-dissipation relations. Since here we are only

interested in the equilibrium properties of the system, the val-

ues of the dynamical parameters—i.e., the values of the mass,

the inertia tensor, and the friction constants—are physically ir-

relevant. Thus, we have taken ΓT = 1 and ΓR = 3/4 as values

known to produce a conveniently fast relaxation to equilibrium

in these types of simulations.43,44 Finally, in order to ensure

isotropic rotations, we take the inertia tensor to be the identity

matrix.

The combination of the LD and REMD methods was per-

formed in the following way. First, a set of M reduced

temperatures spanning a range of interest, {TM} = {T1 <
T2 < · · · < TM}, was chosen from some preliminary test runs

by imposing a replica exchange acceptance ratio not lower

than 30%. For each temperature, an independent canoni-

cal LD simulation, or replica, was started by placing a fil-

ament, created as a self-avoiding random walk of N beads

with squared dipolar moment µ2, in a simulation box with

open boundaries. The initial pre-equilibration run for each

replica was then performed, consisting in 5 · 105 integration

steps at T = 2 and µ2 = 0, using a timestep of 1 · 10−6.

Then the temperature was set to the value given to the cor-

responding replica, the timestep was increased to 1 · 10−3

and the dipole moments set to the desired value. From this

point, a number of equilibration-measures cycles of 1 · 107

integration steps each was carried out. Measures of the sys-

tem parameters were obtained during the second part of ev-

ery cycle at intervals of 1 · 106 integration steps. After the

completion of every cycle, an attempt to exchange the sys-

tem configurations of different replicas with adjacent temper-

atures in the set was performed according to the probability

Pa↔b = min(1, exp[−(1/Tb −1/Ta)(Ua −Ub)/k]), where Ui

is the total potential energy of the replica with temperature Ti.

In general, no less than 1500 cycles were performed for every

model and selected values of chain length and dipole moment,

and at least the first 300 cycles were discarded for the final

calculation of equilibrium averages. All of the simulations

were made with the package ESPResSo 3.2.0.45,46 The mea-

sured parameters were the average centre-to-centre distance

and dipole-dipole correlation coefficient between first-nearest

neighbour particles, and the mean squared net magnetic mo-

ment of the chain. The average centre-to-centre distance be-

tween first-nearest neighbours, or bond length, is defined as

〈b〉= 〈‖~ri −~ri+1‖〉 , (7)

where the average 〈·〉 was carried out over every pair of neigh-

bouring particles (i = 1, . . . ,N − 1), and over every measured

chain configuration. The same averaging was made for the

dipole-dipole correlation coefficient, which is obtained from

the scalar product of the unitary dipole moments of every pair

of neighbouring dipoles,

〈Cdd〉= 〈µ̂i · µ̂i+1〉 . (8)

Finally, the average squared net magnetic moment is calcu-

lated as the squared vector sum of the dipolar moments along

the whole chain, averaged over every measured chain config-

uration,

〈

M2
〉

=

〈(

N

∑
i=1

~µi

)2〉

. (9)

These observables will help to analyse in detail the intrachain

correlations.

3.2 Analytical approach

The self-assembly of magneitc dipolar particles has been ex-

tensively studied by means of various analytical models.47–58

Commonly these models are based on the density functional

theory. In this approach, the self-assembly of the magnetic

colloids into dipolar aggregates is characterised by the min-

imisation of the free energy of the system, which is defined

as a functional of the cluster distribution density. Follow-

ing Wertheim’s theory59 or the theory of heterophase fluc-

tuations of Frenkel,60 the free energy density functional is

usually split into two terms. The first term represents the en-

tropy of an ideal gas of formed clusters, whereas the second

term (and where the main challenge is located) is responsi-

ble for the free energy of a single cluster. Ideally, the par-

tition function of a cluster comprises all interparticle inter-
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actions between the member particles. When these interac-

tions are patchy-like one can treat them accurately.61 How-

ever, if one of those interactions is the long-range dipole-

dipole one, significant simplifications and restrictive assump-

tions are required to make the problem tractable. Rather sig-

nificant progress has been achieved in these calculations in

recent years, albeit, the restriction to the first nearest neigh-

bours interactions (FNN) within the cluster still remains al-

most unavoidable. Another simplification frequently used in

analytical approaches for magnetic fluids is the consideration

of the magnetic colloids as ideal dipolar hard spheres (DHS).

Here, we only used the FNN approximation in our calculation

of the filament partition function, which is particularly com-

plicated due to the presence of the spring bonding potentials

introduced above.

Here, we use the previously developed formalism to esti-

mate the magnetic response of a self-assembled ferroparticle

chain.53,56 We generalise it to calculate the mean squared net

magnetic moment of a filament, which is the main contribution

to its zero field magnetic susceptibility. Assuming the FNN

approximation and zero external field conditions, the follow-

ing general expression can be obtained for the average squared

net magnetic moment of a dipolar chain of N spheric magnetic

colloids, measured in units of µ2:56

〈

M2
〉

= N +
2Cdd

(1−Cdd)
2

[

N −1+CN
dd −NCdd

]

, (10)

where Cdd is the correlation coefficient of two neighbouring

dipoles in the chain. In order to obtain this coefficient, one

needs to calculate the weighted statistical average of the neigh-

bouring dipoles’ scalar product taking into account all inter-

particle interactions.

Fig. 2 Coordinate system used in our analytical calculations.

In general terms, the Hamiltonian of the system can be

presented as a sum of bonding and dipolar contributions,

Ub+Udd , where Ub stands for Ub =UWCA+UFENE in Model 1

and Ub =UWCA +US in Model 2. In the former model the an-

gular dependence of the Hamiltonian stays only in the dipolar

part, whereas in the latter there is also an angular dependence

in Ub. Figure 2 shows the coordinate system and the angle

definitions used in our calculations. In both models, the de-

pendence of the Hamiltonian on the angles ϕ , ξ and ζ can be

integrated out analytically. As a result, rather compact expres-

sions for the average bond length, dipolar correlation coeffi-

cient and mean squared net magnetic moment can be obtained

from the partition function of two neighbouring dipoles. The

expression for the bond length has the form

〈

b(i)(T )
〉

=

∫ rmax

rmin

dr

∫ π

0
dθ r q(i)(r,θ ,T )

∫ rmax

rmin

dr

∫ π

0
dθ q(i)(r,θ ,T )

, (11)

where index i ∈ {1,2} denotes the number of the model, rmin

and rmax are the boundaries of the interval of bond lengths

allowed by the respective bonding potential well, and the ex-

pression in the denominator is the aforementioned partition

function of two neighbouring dipoles, with q(i) being the inte-

grand obtained after integrating out φ -, ξ - and ζ -dependence.

Analogously, the general expression for the correlation coeffi-

cient has the form

〈

C
(i)
dd(T )

〉

=

∫ rmax

rmin

dr

∫ π

0
dθ p(i)(r,θ ,T )

∫ rmax

rmin

dr

∫ π

0
dθ q(i)(r,θ ,T )

. (12)

For Model 1, q(1) is defined as

q(1) = r2 exp

(

−
UWCA(r)+UFENE(r)

T

)

sinθ ×

×
sinhx(θ)

x(θ)
, x(θ) =

λ

r3

√

3cos2 θ +1, (13)

where λ ≡ µ2/T σ3 is the usual dipolar coupling parameter

for spherical colloids. For the same model, p(1) is defined as

p(1) = r2 exp

(

−
UWCA(r)+UFENE(r)

T

)

sinθ ×

×
λ

r3x(θ)3

(

3cos2 θ −1
)

×

× [x(θ)coshx(θ)− sinhx(θ)] . (14)

According to our choices for Equations (2) and (4), the inte-

gration limits are in this case rmin . rcut = 21/6 and rmax =
r f = 1.5.
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One can write analogous expressions for Model 2,

q(2)(r,θ ,T ) = r2 exp

(

−
UWCA(r)

T

)

sinhA

A
×

× exp

(

−
K

2T

[

r2 +
1

2
− r cosθ

])

,

A = A(r,θ ,T ) =

[

1

4

K2
S

T 2

(

r2 +
1

4
− r cosθ

)

+

+x(θ)2 +
KSλ

Tr2

(

2cosθ −
3cos2 θ −1

2r

)]1/2

, (15)

and

p(2)(r,θ ,T ) = r2 exp

(

−
UWCA(r)

T

)

B

A3
×

× exp

(

−
K

2T

[

r2 +
1

2
− r cosθ

])

[AcoshA− sinhA] ,

B = B(r,θ ,T ) =
KS

2T

(

r cosθ −
1

2

)

+

+
λ

r3

(

3cos2 θ −1
)

. (16)

Finally, for this model the integration limits are rmin . rcut =
21/6 and rmax = ∞.

We should keep in mind the limitations inherent to this ap-

proach. In particular, the FNN approximation will make the

theory more inaccurate as the value of the squared modulus

of the dipole moment of the colloids, µ2, grows in relation

to their centre-to-centre separation distance and the thermal

fluctuations, which grow with the reduced temperature, T . In

terms of the dipolar coupling parameter, we expect our an-

alytical theory to be accurate only for low and intermediate

values of λ , since the effects of the second and further near-

est neighbours on the orientational correlations of the dipoles

will grow with such a parameter. In addition, we expect that

filaments will form closed rings at high values of λ ,36,39 anal-

ogously to the behaviour observed for self-assembled dipolar

chains,7,62–71 completely invalidating expression (10). On the

other hand, at very high temperatures any correlation between

the dipoles in both models will tend to fade out, making the

behaviour of the net magnetic moment of the chains trivial.

For Model 1, where there is no mechanism to drive orienta-

tional correlations other than the dipolar interaction, both high

temperatures and/or low dipolar moments may hinder such

correlations. Therefore, we restricted ourselves to the range

λ ∈ [0.4,2.0] approximately, by sampling reduced tempera-

tures with values up to T ≤ 2.5, whilst keeping µ2 = 1.0 for

simplicity. The explored chain lengths have been also limited

to the range N ∈ [2,50].

4 Results and discussion

4.1 Model 1

The result of the numerical integration of Equations (11) and

(14), together with some selected simulation results for this

model, is shown in the main plot of Figure 3. For a chain

of just two particles, the agreement between the analytical re-

sults and the simulation data is excellent for the whole range

of sampled temperatures. For longer chains, however, there

are slight but systematic deviations that point to the existence

of two different regimes. At low temperatures, T < 0.65, the

average bond length tends to slightly decrease with the chain

length. This may be explained by the additional attractive

dipolar force coming from second and further nearest neigh-

bours in the chain at low temperatures, which is not taken into

account by the analytical model. As T decreases, the dipoles

tend to be more well aligned with the chain backbone, adopt-

ing locally straight head-to-tail arrangements, whereas at high

temperatures the orientations of the dipoles tend to be dis-

ordered.39 This explanation is supported by the inset plot of

Figure 3 that shows the dipole-dipole correlation function, de-

fined as gdd(k) = 〈~µi ·~µi+k〉i=1,...,N; run, for N = 50 and some

selected temperatures. It can be observed that at T = 0.4
the correlation between the dipoles is still significant for the

second, third and even fourth nearest neighbours. Remark-

ably, T ∼ 0.65 corresponds approximately to the temperature

at which correlations for positions beyond first nearest neigh-

bours become insignificant. Therefore, as a rough criterium,

we consider T < 0.65 (or, more generally, λ > 1.5) the region

where the FNN approximation becomes inaccurate for this

model. This value is much lower than that for self-assembling

magnetic particles.44 Finally, at T > 0.65 the deviations be-

tween the analytical model and the simulation results for the

average bond length are reversed: here this parameter grows

slightly more with the chain length. In this case, the weak di-

rect dependence of 〈b〉 on N cannot be related to the dipolar

interactions, since at high temperatures they become basically

irrelevant. Instead, this effect should be attributed to the chain

entropy, which is not taken into account in the theoretical ap-

proach.

Figure 4 shows the result of the integration of Equations

(11), (15) and (16), and how it compares to the simulations

performed for the same chain lengths selected above. The

plot also includes the correlation coefficient of self-assembled

dipolar chains in the DHS approximation. This parameter is

calculated from the closed expression obtained in the limit of

strong dipolar coupling regimes,56

C
(DHS)
dd = coth

(

µ2

2T 〈b〉3

)

−
2T 〈b〉3

µ2
, (17)

where µ2/T 〈b〉3 ≫ 1 and 〈b〉 takes the values of average bond

6 | 1–10

Page 6 of 11Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0.5 1.0 1.5 2.0 2.5

T

0.96

0.97

0.98

�

b�

Sim. N=50

Sim. N=10

Sim. N=2

Analyt.Model 1

0 2 4 6 8 10 12

k

0.0

0.2

0.4

0.6

0.8

1.0

g
d
d
(k
)

T=0.40

T=0.65

T=1.40

Fig. 3 Main figure: average bond length, 〈b〉, as a function of the

reduced temperature obtained for Model 1 and µ2 = 1.0. Solid line

corresponds to analytical calculations and symbols to simulation

data for three different chain lengths: N=2, 10, 50. Error bars for

simulation data are of the order of symbol size. Inset figure: dipole

orientation pair correlation function obtained from simulation data

for µ2 = 1.0, N = 50 and three selected reduced temperatures.

length given by Equations (11) and (14). The agreement be-

tween our analytical theory and the simulation results for the

two particles chain is also excellent in this case. In the limit

of low temperatures, i.e., the region where Cdd is close to its

saturation value, our analytical and simulation results for very

short and long chains tend to converge to that of the DHS.

For intermediate chain lengths, as in the case of N = 10, we

can see a kink corresponding to the increased dipole misalign-

ments introduced by the formation of closed rings. For N > 2

and intermediate temperatures, a difference between the ana-

lytical theory and the simulations can also be observed. This

difference underlines the importance of long-range interac-

tions for the correlation in this region. In other words, for this

model the magnetic dipole-dipole interaction plays a decisive

part in the macroscopic response of the filament. Finally, at

high temperatures the dipole correlations tend to vanish and

the correlation coefficient for any chain length can be well de-

scribed by the theory, assuming the FNN approximation.

The squared net magnetic moment per particle for Model

1 filaments, obtained from the analytical theories and simula-

tions, is shown in Figure 5. The results for the DHS model

were obtained by inserting Equation (17) into Equation (10).

The same analytical procedure is applied to Equations (12)

and (10) in order to obtain the results for our analytical model.

The simulation data shows that the magnetic moment of the

chains has a clear maximum at around T ∼ 0.25 (correspond-

ing to λ ∼ 4). At lower temperatures the chains undergo

the closure structural transition associated with the forma-

tion of rings, which drastically reduce the net dipole moment
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Fig. 4 First-nearest neighbours average correlation coefficient for

the orientation of the dipoles as a function of the reduced

temperature obtained for µ2 = 1.0. Solid line corresponds to the

analytical theory for Model 1, and dashed line to dipolar chains in

the DHS approximation. Symbols represent simulation data for

Model 1 and different chain lengths. Error bars are of the order of

symbol size.

and make it tend to zero as the temperature decreases.35,39

At higher temperatures, the zero field magnetic susceptibility

strongly depends on the chain length and the long-range dipo-

lar interactions. This can be seen from growing deviations

between the analytical model and simulation data. Finally,

for the high temperature regime, where the dipole-dipole in-

teraction becomes irrelevant, the squared magnetic moment

per particle tends asymptotically to the value corresponding

to a completely random distribution of dipole orientations,

〈M2〉/N → 1. Concluding this Section, we want to under-

line that the decorrelation of the dipoles in the filament with

growing temperature, despite being much weaker than that in

a self-assembled chain, is the consequence of the absence of

constraints on particle rotations rather than those imposed by

magnetic dipole-dipole interactions. This will change drasti-

cally in Model 2.

4.2 Model 2

Figure 6 compares the results of the integration of Equations

(11), (15) and (16) with the corresponding simulation data ob-

tained for several chain lengths. The agreement between the

analytical results and the simulation data for N=2 is once more

excellent. For longer chains a slight difference can also be

spotted, in this case as a consequence of the long-range na-

ture of the dipole-dipole interaction. However, in contrast to

Model 1, the dependence of the bond length on the number of

particles just tends to vanish as the temperature increases and

no reversion of such dependence can be observed within the
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Fig. 5 Average squared net magnetic moment per particle of chains

with lengths N=10, 50, and µ2 = 1.0, plotted as a function of the

reduced temperature. Solid lines correspond to our Model 1

analytical theory, dashed lines to the DHS theory, and symbols to

Model 1 simulation data. Error bars are of the same order of symbol

size.

sampled interval. This is the result of the increased rigidity of

Model 2 chains led by the angular bonding potential, which

drives to a reduction of the chain bending entropy.

Figure 7 shows the correlation coefficients calculated from

Equations (12), (15) and (16) together with the simulation data

obtained for different chain lengths according to (8). In or-

der to show how much the elastic bonding potential that links

the particles in this model increases their orientational corre-

lations independently from the strength of the dipolar interac-

tions, we also plot the results for µ2 = 0. This corresponds to

the absence of interparticle dipole-dipole interactions and is

of particular interest in the case of magnetisable particles. As

expected, the analytical results agree very well with the simu-

lation data for the two particles chain and for both µ2 = 0 and

µ2 = 1. For longer chains, a slight underestimation of the cor-

relation can be observed. However, in contrast to the results of

Model 1, here the assumption of FNN is shown to work much

better. The reason for this satisfactory result is that here the

dipolar correlations, in larger part, are stimulated by the ori-

entational bonding. This bonding in its turn is a local property

of each neighbours pair and has no explicit long-range charac-

ter. Thus, the theoretical formalism presented in this work can

be safely used to predict the zero field magnetic susceptibility

of Model 2 filaments. Figure 8 confirms this point. In this

Figure, one can see that the local rigidity of chains inhibits the

closure structural transition, so that the drop of the net squared

magnetic moment is observed at much lower temperatures, es-

pecially for short chains. The difference in magnetic response

between theory and simulations is rather small, and can be still

attributed to the increase of the chain degrees of freedom with
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Fig. 6 Average bond length for Model 2 as a function of the reduced

temperature, for µ2 = 1.0. Solid line corresponds to the Model 2

analytical theory and symbols to the simulation data obtained for

three different chain lengths. Error bars are of the same order of

symbol size.

growing N. Another important conclusion to be drawn from

this plot is how the DHS approximation provides not only a

quantitatively, but also a qualitatively inaccurate picture of the

magnetic response in this case.

5 Concluding remarks

In this work we presented the study of the zero field corre-

lations of colloids within differently linked supramolecular

magnetic filaments. We employed Langevin dynamics sim-

ulations and analytical theories to characterise the initial sus-

ceptibility in the framework of two distinct models. In the first

model, magnetic beads were connected by a FENE potential

constraining the interparticle separation but not the particle ro-

tations. It turns out that for such filaments the interparticle

correlations are highly sensitive to the long-range character

of the magnetic dipole-dipole interaction. This dependence

manifests itself more strongly than in self-assembled dipolar

chains. This conclusion follows from the fact that the analyti-

cal approach, which for self-assembled particles demonstrates

a very good agreement with the simulation data for the initial

susceptibility, in this case fails for any filament longer than

two particles. In the second model, the bonding potential not

only constrains the interparticle separation, but also penalises

the rotation of the dipoles out of a locally straight head-to-

tail orientation. In this case, the behaviour of the filaments

is mainly determined by the orientational bonds. Being short

ranged, these bonding interactions act locally, which results

in two characteristic properties of Model 2 filaments. Firstly,

the interparticle correlations are barely dependent on the chain

length, which makes the theoretical approach fully applicable.
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Fig. 7 First-nearest neighbours average correlation coefficient for

the orientations of the dipoles in Model 2 chains as a function of the

reduced temperature. Solid lines correspond to the analytical Model

2 theory for two values of the dipolar moment. Symbols represent

the simulation results for three different chain lengths. Error bars are

of the order of symbol size.

Secondly, the high temperature interparticle dipolar correla-

tions are still pronounced, leading to a much higher zero field

magnetic susceptibility. In this way, the linking mechanism

of the particles in chains can be used as a control parameter

to tune the magnetic response of the supramolecular magnetic

filaments.

It is worth noting here that Model 2 is phenomenologically

closer to the most common available experimental techniques

for the synthesis of magnetic filaments. This suggests that the

simple theoretical model developed here could be fitted to de-

scribe the thermodynamic properties of a system of magnetic

filaments. As for the analytical description in Model 1, fur-

ther improvement can be done either by introducing the con-

tribution of the next nearest neighbours interactions, or alter-

natively by using the mean field approach. Both of these ex-

tensions deserve a separate study. Another possible extension

of this work is to scrutinise the influence of the elastic con-

stants in Model 2, which is the subject of a work in progress.

Finally, a detailed study on the structural closure of magnetic

filaments and its analysis on the basis of the theory developed

for the self-assembled rings found in dispersions of free mag-

netic colloids7 will be completed soon.
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Mat, 2008, 20, 204107.

26 Z. Zhou, G. Liu and D. Han, ACS Nano, 2009, 3, 165–172.

27 J. Byrom, P. Han, M. Savory and S. L. Biswal, Langmuir, 2014, 30, 9045–

9052.

28 D. Sarkar and M. Mandal, The Journal of Physical Chemistry C, 2012,

116, 3227–3234.
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63 A. Ghazali and J.-C. Lévy, Phys Rev B, 2003, 67, 064409.

64 S. L. Tripp, R. E. Dunin-Borkowski and A. Wei, Angew Chem Int Edit,

2003, 42, 5591–5593.

65 A. Hucht, S. Buschmann and P. Entel, Europhys Lett, 2007, 77, 57003.

66 H. Wang, Q.-W. Chen, Y.-B. Sun, M.-S. Wang, L.-X. Sun and W.-S. Yan,

Langmuir, 2010, 26, 5957–5962.
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We show theoretically how the crosslinking mechanism of the colloids can dras-

tically change the magnetic response of supramolecular magnetic filaments.
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