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Abstract 

This article studies how surface tension affects the adhesive contact mechanics of a long rigid 

cylinder on an infinite half space comprising of an incompressible elastic material.   We present 

an exact solution based on small strain theory. The relation between indentation force and 

contact width is found to depend on a single dimensionless parameter  

( ) ( )2/3 1/3
/ 24 adWR

σ
ω

µ π
=  , where R is the cylinder radius, Wad the interfacial work of adhesion, 

σ  and µ  are the surface tension and shear modulus of the half space respectively.  The 

solution for small ω reduces to the classical Johnson-Kendall-Roberts (JKR) theory whereas for 

large ω,  the solution reduces to the small slope version of the Young-Dupre equation.  The pull-

off phenomenon is carefully examined and it is found that the contact width at pull-off is 

reduced to zero when surface tension is larger than a critical value.  
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1 Introduction 

A number of recent studies have demonstrated that surface tension can act as a significant 

and even dominant agent in the mechanics of compliant materials such as elastomers and gels.  

Examples include instabilities
1–3

 and deformation driven by surface tension
4,5

, violation of 

Young’s equation for wetting
6–12

, attenuation of driving forces for crack or void growth
13–16

, and 

breakdown of conventional adhesive contact mechanics
17–21

. 

The last example cited above, i.e., the adhesive contact between non-conforming surfaces, is 

an important basic problem in adhesion science. For example, consider the contact of a rigid 

sphere with the flat surface of an elastic substrate. For small deformation, where the contact 

radius is small in comparison with the radius of the sphere, the solution is given by Hertz
22

.  

Hertz theory assumes adhesion-less contact; as a result, the traction on the contact region is 

compressive everywhere and vanishes at the contact line. In 1971, Johnson, Kendall and 

Roberts (JKR)
23

 extended Hertz theory to allow for adhesion. The JKR theory has been 

extremely successful in describing the adhesive contact of elastic spheres
24

. However, recent 

observations of contact deformations on soft substrates, such as plasticized polystyrene
25

, 

hydrogels
26

 and silicone gels
17

, caused by adhesion of hard microparticles or nanoparticles 

deviate considerably from JKR theory. For example, Style et al.
17 

have reported that the 

exponent of power-law relationship between the contact radius a (indentation depth δ) and 

sphere radius R changes from 2/3
a R∝  ( Rδ ∝  ) to ,a Rδ ∝  as the sphere reduces in size or the 

substrate becomes softer. The transition in scaling observed in these experiments has been 

interpreted as a corresponding underlying transition from the JKR limit where deformation is 

resisted primarily by bulk elasticity, to the “liquid” limit where deformation is resisted primarily 

by surface tension. This transition in scaling is consistent with the molecular dynamics 

simulations by Cao et al.
27

.  Using a large deformation Finite Element Model which incorporates 

both surface tension and non-linear elasticity, Xu et al. 
18

 have demonstrated the transition 

from the elasticity dominated regime where 2/3
a R∝ to the surface tension dominated regime 

where a R∝  depend on a single elasto-capillary number 4/ Rα σ µ≡≡≡≡  - small α  favors JKR 

theory whereas large α  favors surface tension. Their numerical results are found to be in good 
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agreement with the experiments reported by Style et al
17

. Xu et al.’s results are for rigid 

spheres that are subjected to zero load. The case of finite load has been recently considered by 

Hui et al.
19

, who provided analytical expressions for the relations between indentation depth 

(contact radius) and applied load. They also examined the effect of surface tension on the pull-

off load as a special case of their theory. It should be noted that similar transitions are 

predicted for soft particles on a rigid surface, as demonstrated by the theoretical works of 

Carrillo and Dobrynin
20

 and Salez et al
28

. The dimensionless parameter 

( ) ( )2/3 1/3
/ 24 adWR

σ
ω

µ π
=  which controls the transition between JKR and wetting limit was first 

suggested by Carrillo et al.
29

 when they studied the adhesion of a soft nanoparticles to a rigid 

substrate.    

Another geometry that is of practical interest is a circular rod or circular cylinder. This 

geometry arises whenever cylindrical or “hair-like” deformable objects adhere to each other or 

to a substrate. As explained in more detail below, the behavior of this two-dimensional 

problem differs qualitatively from the better studied three-dimensional (axisymmetric) problem 

of contact between a sphere and a flat substrate. A Molecular Dynamic simulation combined 

with theory was performed by Cao et al.
30

 to study the effect of surface energy on contact of 

spherical and cylindrical nano-particles with a soft solid without indentation force. The adhesive 

contact mechanics of an infinitely long rigid cylinder with an elastic half space in the absence of 

surface tension can be found in the works of Barquins
31

 and Chaudhury et al.
32

, while the two-

dimensional Hertzian contact problem with surface tension has been studied by Long et al.
33

.   

In this paper a different approach is used to include both adhesion and surface tension. 

Our derivation below follows the approach of JKR
23

, that is, the adhesive force is confined to a 

region small compared with typical specimen dimensions, so that the contact edge can be 

viewed as the tip of traction free crack.   In reality, adhesive forces acting outside the contact 

zone will serve to place a limit on the maximum stress that can be reached.  To address this 

issue, Derjaguin, Muller, and Toporov
34

 proposed a theory (DMT theory) that takes these forces 

into account, but assumes that they do not change the shape of the surface determined by the 
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Hertz theory.  This approximation leads to tensile stresses that are finite outside the contact 

line but are zero inside.  A unifying theory of elastic contact of spheres was proposed by 

Maugis
35

, who used a Dugdale-Barenblatt cohesive zone model to represent the surface forces 

outside the contact zone.  This model removes the stress singularity of the JKR theory, and it 

also removes the stress discontinuity of the DMT theory.   For the case of a rigid sphere on an 

incompressible elastic substrate, Maugis’s result
35

 showed that the transition from JKR to DMT 

theory depends on a single dimensionless parameter  

2

1/3

s
c

ad

R

W
λ σ

µ
 

=  
 

 ,      (1) 

where cσ  is the cohesive stress, µ  the shear modulus of the substrate, sR  the radius of the 

sphere and adW the work of adhesion.  Typically, JKR theory is valid for 1λ >  and this is the 

typical situation in experiments using elastomeric spheres ( 610 Paµ ≈ ) with radius around 

1mm
36

.  For very soft substrate where surface tension effect are important, 510 Paµ < . Since 

( )2 1/3
/sRλ µ∝  the reduction of modulus will extend the region of validity of the JKR model to 

micron size spheres.   Indeed, Style et al’s experiments
17

 showed that JKR theory works well for 

glass spheres with radii ranging from 3 to 30 microns on a silicon substrate with 170kPaµ = .   In 

light of this, it is reasonable to adopt the JKR approach to study surface tension effect in the 

contact mechanics of soft materials.  Finally, we note that the unified approach of Maugis
35

 was 

also used by Baney et al.
37

 and Leng et al.
38

 to study two dimensional contact problems 

involving cylindrical geometry.    

2. Statement of Problem and Summary of Approach 
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Fig. 1 A long rigid cylinder of radius R and length L >> R indents an isotropic and 

incompressible elastic half-space under the influence of a vertical line force P.  Indentation is 

resisted by the elasticity of the substrate as well as the surface tension σ of the elastic 

substrate. 

Fig. 1 shows a rigid cylinder of radius R, with length L >> R in the out-of-plane direction, 

brought into contact with the flat surface of a substrate by a vertical line force P (units = 

force/unit length, so total force acting on the cylinder is PL).   Let (x,y,z) denote the position of a 

material point in the elastic half-space. Before deformation, the bottom of the cylinder touches 

the substrate surface at the origin, x = y = z = 0. The substrate occupies the half space y > 0 and 

is assumed to be linearly elastic, isotropic and incompressible, with shear modulus µ and 

Poisson’s ratio v = 0.5. The contact zone is a long rectangular strip of width 2a and length L.  We 

also assume that the surface stress tensor is isotropic, so it can be represented by the scalar 

surface tension σ. Just as in JKR theory, our analysis is based on small strain theory.  

 In contrast to the JKR theory, which assumes frictionless contact, we assume a no-slip 

contact condition. That is, a material point on the substrate surface is held fixed once it comes 

into contact with the rigid cylinder. Without the no-slip condition, one would have to introduce 

a new parameter into the model – the interfacial tension in the contact region. In general, the 
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no-slip contact condition will cause non-zero shear traction in the contact region. However, a 

classical result in linear elasticity states that the no-slip boundary condition is consistent with a 

vanishing shear traction provided that the cylinder is rigid and the substrate is incompressible 

and infinite in extent
22

. Fortunately, the bulk modulus of most elastomers and hydrogels is 

much higher than their shear moduli, so incompressibility is an excellent approximation.   

 As in JKR theory, our basic approach is based on energy balance, that is, the relation 

between the contact radius and the applied load is obtained by setting the energy release rate 

G of the external crack (the air gap between the cylinder and the surface of the substrate 

outside the contact line) equal to the interfacial work of adhesion
ad

W . The key difference is the 

inclusion of surface tension in the calculation of the energy release rate. The procedure is as 

follows. First, we obtain the “Hertz-like” solution of a contact problem with surface tension. By 

this we mean the relationship between the line force (((( ))))HP a , indentation displacement (((( ))))H aδ , 

and contact width 2a  in the absence of adhesive forces. From this solution, we compute the 

instantaneous contact compliance, defined by 

( ) H H
H H

dδ dP
C a = dδ / dP = /

da da
.       (2) 

As shown by Vajpayee et al.
39

, knowing the instantaneous contact compliance and the Hertz-

like load 
H

P suffices to determine the energy release rate. Specifically, the energy release rate is 

given by
1
:  

( )H H
G P P= Λ −

21

4
,    

H

dC

da
Λ = − .                                                  (3) 

Finally, the relation between contact width 2a and the applied line load P is obtained using the 

energy balance condition
ad

G W====  .  Using (3), this relation is   

                                                           

1
 In Vajpayee et al. 

39
, ( )H

dC
G P P

dA
= − −

21

2
, where A is the contact area.   In our case, the area of contact 

is 2a since the length of the cylinder is infinite.  Note P and PH has units of force per unit length.   
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 H ad HP P W= − Λ2 / .      (4) 

It is important to note that in general, dC da/ and 
H

P  are functions of the shear modulus, 

surface tension, cylinder radius, and the contact width. Once these two functions are 

determined (see below), equation (4) generalizes the JKR theory to include surface tension.    

 Equations (3-4) apply equally well to the three-dimensional indentation problem for 

which they were first derived
39

 and for the two-dimensional cylindrical problem analyzed here, 

which is obtained by assuming that the cylinder is infinitely long. There is, however, a 

peculiarity of two-dimensional contact problems.  As noted by Johnson
22

, the displacement of a 

point in an elastic half-space loaded by a line force (resulting in a two dimensional stress field) 

cannot be expressed relative to a datum at infinity, since the displacements decrease with 

distance r from the contact zone as ln r. Here we follow Johnson
22

 by defining the 

displacements relative to an arbitrary point x = c >> a (see Fig. 1) on the surface of the 

substrate. Thus, the indenter displacement 
H

δ  in (2) can take any value depending on the 

choice of this point. Nevertheless, as shown below, dC/da in equations (3-4) does not depend 

on the choice of c, as long as c >> a.   

2.1 The elasticity dominated limit.    

For an infinitely long cylinder ( ∞→L ), in the limit where surface tension can be 

neglected and resistance to deformation is dominated by elasticity, the relation between 

contact width and load in the presence of adhesion has been derived earlier by Barquins 
31

 and 

Chaudhury et al.
32

 using a different approach. Here, for uniformity of development, it is 

instructive to derive this relation using equation (4).  

In the absence of surface tension and adhesion, the relationship between force and 

contact width is 
22

  

 
πµ

=
2

H

a
P

R
.       (5) 
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Because of the two-dimensional nature of the problem, and the attendant dependence of 

displacements on choice of datum referred to above, determining the instantaneous contact 

compliance require special consideration. The normal surface displacement v for x  > a can be 

obtained using a result given in Johnson
22

:     

 

2 2
2 2 2 21

2 2 2

x a x
v( x a) x a ln x x a b

R

    
> = − − + − − +> = − − + − − +> = − − + − − +> = − − + − − +    

    
,                                        (6) 

where b is an arbitrary constant. We pick a point at x = c >> a as datum, i.e., we define the 

normal displacement at c to be zero, and this determines b.  Continuity of v across the contact 

line implies that 

(((( ))))
2 2 22 22 2

2 21 2

2 2 2 2 2 4H

a c a c c a c a c a
v x a c a ln ln

R R a R a R
δ

    + −+ −+ −+ −         = = + = − − − − ≈ += = + = − − − − ≈ += = + = − − − − ≈ += = + = − − − − ≈ +    
            

  c >> a.      (7) 

The compliance, evaluated using (2), (5) and (7) is found to be: 

 [[[[ ]]]]1 1
2

2 2πµ πµ
ΛHC ln c / a dC / da (a)

a
= ⇒ = − == ⇒ = − == ⇒ = − == ⇒ = − = .    (8) 

Substituting (5) and (8) into (4) recovers the JKR theory for a rigid cylinder in adhesive contact 

with an incompressible elastic half space 
31

 , i.e., 

 
πµ

πµ= −
2

2 2 ad

a
P aW

R
.     (9a) 

Note at zero load, the half contact width 0a  caused by adhesive forces is: 

 

1

0

3
2

/

2 ad
R W

a
πµ

 
=  

 
.      (9b) 

The pull-off load is found to be
22

, 

 πµ
πµ

 
= −  

 

2/3

1/3
3

2

ad
off

W
P R .     (9c)  
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The contact half width at pull-off is: 

 
πµ

 
=  

 

1/3

2/3

2

ad
off

W
a R .      (9d) 

Recall that the pull-off load of a sphere is directly proportional to its radius and is independent 

of elastic modulus
23

. Equation (9c) shows that the scaling for pull-off is different for the case of 

cylinders.    

2.2 The surface tension dominated limit. 

Before tackling the general problem of the transition from the elasticity dominated limit to 

surface tension dominated limit, we examine the latter limiting case.  The free body diagram in Fig. 2 

shows that force balance requires 

( )2 sin pP σ θ θ= − ,      (10) 

where θ −= a R
1

sin ( / )  and 
pθ is the “peel” angle defined in Fig. 2.   

 

Fig. 2  Force balance and geometry in the surface tension limit.   

The energy release rate G can be computed using Kendall’s peel theory 
40

:  

( )1 cos
p

G σ θ= −  ,      (11) 

Note, by setting γ γ γ= + −
ad SA CA CS

W  and use the fact that surface tension and surface energy has the 

same value for liquid (In general, this is not assumed in our calculation), the energy release-rate balance 

equation 
ad

G W=  is equivalent to Young-Dupre equation  
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( )cosγ σ π θ γ+ − =
CS p CA

 ,                                                             (12) 

whereγ ’s are the surface energies, the subscripts C,S,A  stand for rigid cylinder, compliant substrate 

and air, respectively. Setting =
ad

G W in (10) allows us to solve for 
pθ .  Substituting 

pθ  into (9) gives: 

 

22

ad ad

2

W WP a a
1 1 1 1

2σ R σ R σ

   = − − − − −   
   

  .   (13) 

Equation (13) is valid for large deformation. In the small deformation limit, the angles must be small, 

and (13) reduces to a linear relation between load and contact width, i.e.,  

 
2

2 2 ad

a
P W

R

σ
σ= −  .    (14a) 

The first term in (14a) can be identified as the Hertz-like load i.e., ( 0)
ad

W = , 

 2 /=
H

P a Rσ .      (14b) 

which can also be found directly found using force balance (e.g. setting 0
P

θ = in Fig. 2). Comparing 

(14a) and (4),  

 / 1/ 2dC da σ= −  .     (14c) 

The half contact width at zero load 0a  is easily found by setting P = 0 in (14a), 

 0 2
2

ad
W

a R
σ

=       (15) 

Note that 0a is directly proportional to the cylinder radius, whereas in the elasticity dominated limit, this 

width scales with radius to the 2/3 power.   The pull-off load in this limit is independent of the radius of 

cylinder, i.e.,  

 2 2off adP Wσ= − ,     (16) 

in contrast with the elasticity dominated limit, where the pull-off force scales with 
1/3R . In particular, in 

the surface tension dominated limit, the cylinder pulls off at 0a =  whereas in the elasticity dominated 

limit the cylinder jumps out of contact at a finite width 
pull offa −  given by (9d). 

3  Transition between the elasticity and surface-tension-dominated limits: 

3.1 Formulation of the Hertz problem with surface tension  
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 The transition between the elasticity and surface tension dominated limits is completely 

specified by the Hertz-load 
H

P  and the derivative of the contact compliance Λ
H

. To determine 

these quantities, we solve the indentation Hertz problem with surface tension (but without 

adhesion). The geometry is shown in Fig. 1. Due to surface tension, the normal stress can be 

discontinuous across the surface. We denote by 

 yy yy
y

x
±

±

→
≡

0
lim ( )τ τ      (17a) 

where (((( ))))yy xτ++++
 and (((( ))))yy xτ−−−−

 are the stress normal to the surface as it is approached from inside 

and outside of the solid. Outside the contact zone [ ], , 0x a a y∈ − = , the normal surface traction 

approached from outside of the solid is zero, which is represented by 

[ ]yy yy
y

x x a a
−

−

→
≡ = ∉ −

0
lim ( ) 0,   ,τ τ ,       (17b) 

The difference between the normal stress just inside and just outside the solid is given by the 

Laplace equation, which enforces force balance,  

yy yy v
− + ′′− =τ τ σ     x < ∞      (17c) 

where v is the normal component of surface displacement and we have assumed that curvature 

of the surface can be approximated by its second derivative with respect to ‘x’. That is, 

deformation of the surface outside the contact zone gives rise to a Laplace pressure. Therefore, even 

though the surface outside the contact zone is traction free, the normal component of the stress in the 

solid, yy

+τ , as one approaches the surface y = 0 from y > 0 is not zero. 

In addition, the incompressibility and traction-free assumption implies that  

 xy x y< ∞ = =( , 0) 0τ       (17d) 

The starting point of our analysis begins with a well-known result in elasticity (see Johnson
22

), 

that the gradient of vertical surface displacement v of an incompressible elastic half space is 

related to the normal traction yy

+τ  on the surface y = 0 by  
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yy
t dtdv

PV
dx x t

+∞

−∞

= ∫
−

( )1

2

τ

πµ
  ,      (18) 

where µ is the shear modulus of the substrate, PV stands for principal value integral and a prime 

denotes derivative with respect to x. As already mentioned, because of surface tension, even though the 

surface outside the contact zone is traction free, the normal component of the stress yy

+τ  as one 

approaches the surface y = 0 from y > 0 is not zero.   

Using the Hilbert transform, we invert (18) obtaining: 

  
yy

dv t dt
x PV dt

x t

∞
+

−∞

= − ∫
−

1 1 ( ) /
( )

2
τ

µ π
      (19) 

To simplify the analysis, we introduce the following normalization: 

     
2

/v va R=  , 
yy

t R
s

a

+

=
( )

4

τ

µ
    (20) 

Using these normalized variables, (19) becomes: 

 ( ) ( )v t dt
s x PV

x t

∞

−∞

′
= − ∫

−
1

2π
 ,      (21) 

where a prime denotes derivative with respect to x .   While the displacement outside the 

contact zone is unknown, the displacement inside the contact zone is given by the contact 

condition.  In normalized form, this condition is: 

 1
dv

v '( ) x
x

x
d

< = = −< = = −< = = −< = = −        (22) 

Due to symmetry, yyσ +
 and v′ are even and odd function of x respectively.  Using (22) and 

integrating by parts, after some calculations, (21) reduces to 

2 2 2

1

1 1
( ) ( )ln 2 ln ln 1

2 1

x
s x v t t x dt x x

xπ

∞  − ′′= − − + + − −  +  
∫   (23) 

x x / a ,t t / a= == == == =
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It should be noted that, in carrying out integration by parts, we enforced the continuity of v′  

across the contact line – ensuring bounded stress. The traction free boundary condition outside 

the contact zone requires yy x a
− > =( ) 0τ , so it follows from (17c) that yy

+τ  alone must balance the 

Laplace pressure induced by the surface curvature, v′′ : 

 '' ''yy v s vβτ σ+ ⇒ = −− =  ,  1x >     (24a) 

where 

4 a
β

σ
µ

≡ ,       (24b) 

is the ratio of the elasto-capillary length σ µ/  and the contact width.  Substituting (24a) in (23) gives 

the integral equation for the unknown vertical displacement outside the contact zone: 

2 2 2

1

1
2 ( ) ( )ln 2 ln ln 1 ,    1

1

x
v x v x t x dt x x x

x
βπ

∞  − 
′′ ′′= − + + − − > + 

∫  (25) 

Equation (25) implies that v′′  depends on the single dimensionless parameter β  introduced in (24b).      

Once v” is found outside the contact zone, we use (23) and (20) to determine the normal stress yy

+τ  

inside the contact zone. Finally, it can be shown that, in the elasticity dominated limit where 0β = , the 

exact solution of (25) is identical to the classical Hertz solution given by (6).   

 It should be noted that our formulation is exact within the assumption of small strain and 

linear elasticity.    Because the Green’s function of the line load problem does not have a close form 

solution, we do not use this approach.  Instead, in our formulation the surface tension appears as a 

boundary condition, as given by (17c).   This equation is coupled to (19), which relates the deformation 

of the free surface to the normal stress distribution.  Note that (19) uses the conventional Green’s 

function of the 2D elasticity problem.   In our method, we could recover the Green’s function of the 

surface tension problem by solving the integral equation (23) numerically.   It can be shown that this 

Green’s function decays logarithmically at distances far from the line of application of the line force and 

this will lead to a divergence of the displacement field at infinity, as stated in the last paragraph before 

section 2.1. 
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3.2 Determination of 
H

P  and 
H

dC daΛ = − /  

 The extended JKR theory, (4), can be written in the normalized form: 

   H
H

a
a

P
P Λ= −

2
4ˆ /

3
ˆ

3

ˆ
     (26) 

where  

H H H H

ad ad

P R a
P P P

a
a

R

a
W W

R

Λ = Λ= ≡ =
   
   
   

22/3 1/3

1/3 2/3

ˆ ,  ,  ,  

3
2

2

2

ˆ πµ

πµ
πµ µ

πµ

π

,             (27) 

are the normalized indentation force, Hertz load with surface tension, half contact width and 

derivative of compliance respectively.  Note that indentation load P and half contact width a  

are normalized by the magnitude of pull-off load and pull-off radius in elasticity dominated 

limit. In the absence of adhesion, 
H

P  must be balanced entirely by yy

−τ .   Using (17c) and (22), this 

condition is 

1

1

2 4
( ) ( ) 2 ( , ) .

a a

H yy yy H
a a

a
P x dx x dx P s x dx

R
β β

π
σ

τ τ− +

− − −

 = − = − + ⇒ = −∫ ∫ ∫  
 

  (28) 

The last equality in (28) shows that
H

P is a function of β only.   Since ( )0 1HP β = = , this normalization 

measures the deviation of the Hertz-like load from the elastic limit. It is evaluated by solving (25) forv ′′′′′′′′ , 

then use (23) to evaluate ( , )s x β for < 1x . The numerical method we used to solve the integral 

equation (25) is given in the supplementary material; here we state the relevant results. As shown in Fig. 

3, 
H

P can be well approximated by the expression: 

2

2

8 1.819 0.1146
1

1.164 0.03607
HP

β β β
β βπ

 + + = +    + +  
    (29) 

It should be noted that (29) gives the correct asymptotic behaviors for small and large β , which 

correspond to the elasticity and surface tension dominated limits, respectively.    
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Fig. 3 Normalized Hertz-like load 
H

P versus normalized surface tension β .   In this plot, the numerical 

solution is indistinguishable from (29). This result matches well with the results of Long et al.
33

, and here 

a fitted formula is provided. 

 To expedite the analysis, it is convenient to define a normalized indentation depth
Hδ  as 

2
H HR / aδ δ≡≡≡≡  .      (30) 

Same as in the elasticity limit, we fixed a point c at a distance much greater than the contact width, and 

define the displacement there to be zero; as a result,  

 

( ) ( )x =0 x =c x =0 x =1 x =1 x =c

c c x c x

1 1

H

1 1 1

δ = v v v v v v

v'(x)dx 1 v''(t, )dt dx

= +

1 1 1
= = c v''(t, )+ = d x

2
d

2 2
tβ β

− − −

− − −
 
 
 

−∫ ∫∫ ∫ ∫
  

 (31) 

where c c / a==== . Equation (31) allows us to determine Hδ  using the solution of the integral equation 

(25).   However, unlike
H

P , which depends only on β , Hδ  is a function of both c and β ; thus the 

normalized instantaneous contact compliance in general depends on c  and β , even though 
HΛ  is 

independent of c .   In the supplementary material, we show that 
HΛ can be fitted by  
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 ( )
2

3 2

9.102 1

4 20.8 12.7 12 5H

+
+

+
Λ =

+ +
πβ β

β
β β β

.       (32) 

It should be noted that (32) gives the correct asymptotic behavior for small and large β . 

3.3 Extended JKR theory with surface tension  

 Equations (26), (29) and (32) completely specify the relation between applied load (indentation 

force) and the contact width. We call this relation the extended JKR theory; it is the main result of this 

work.   Although 
HΛ and 

H
P  are functions only of β , the contact width is normally an unknown, so it is 

convenient to define a different dimensionless quantityω ,  

   
( ) ( )2/3 1/3

2
ˆ

4 /ad

a
R W

σ
βω

µ π
= = .     (33) 

Since 
HP  and

HΛ in (26) depend only on a= ˆ/β ω , (26) states that the extended JKR theory ( ˆ ˆP a−  

relation) is controlled by a single dimensionless parameterω which is consistent with the work of Cao et 

al.
30

. Fig. 4 plots the normalized contact radius â  versus the normalized load P̂  for different ω  using 

(26), (29) and (32). The limiting case of 0ω =  (JKR, elastic limit) is plotted in the same figure as a 

reference.    

Pull-off load and radius 

 For the elastic limit, it is well known that in a load controlled test, the cylinder suddenly jumps 

off the substrate at a finite contact width given by (9d) with pull-off load given by (9c). Fig. 4 shows that, 

the contact width at pull-off decreases with increasing ω; and eventually vanishes at a critical value at 

1.6ω ≈ . From Fig. 4, it is shown that 

ˆ 0

ˆ
0

ˆ
a

dP

ad
=

= at this critical value. From (26) and use the fact that 

2

/

ˆ ˆ ˆ

)ˆ( a

a a

d d

d d a

β ω ω
= = − , 

 H

H Ha

d

d

dP

a a d
=

 Λ
− + Λ Λ 

=
ˆ 0

ˆ 2 1
1

ˆ ˆ

8

3 3

ω β
π β

 (34a)  

Since ˆ/ aβ ω= , β → ∞  when ˆ 0a → . Using (32), we found   
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2

2.30774 1
1 ( )H

H

d

d

β
ο

β β β
Λ

= − + +
Λ

 .     (34b) 

Substituting this relationship into (34a) gives 

0

ˆ
1.7

3
36

8 1ω
π ω

=

−=
a

ad

Pd
     (35) 

Setting (35) equal to zero gives the critical value ofω , 1.6
c

ω ≈ . 

 

Fig. 4   Normalized contact radius versus normalized indentation force for different values of ω .   

Thus, our theory predicts that for ω ω>
c

, the cylinder pulls off at zero contact width from the 

substrate.    

 Fig. 5 highlights the surface tension effect on pull-off load and pull-off width and the way we 

normalize the load and radius reflect the deviation of pull-off behavior from the elasticity dominated 

limit (classical JKR solution). It should be noted that under this normalization, both pull-off load and pull-

off width depend only on a single dimensionless parameter ω  defined by (33). 
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(a)                                                                                              (b) 

 Fig. 5 (a)  Normalized pull-off load versus ω  (b) Normalized contact half width versus ω .  

Summary and Discussion 

 In this paper we analyzed the adhesive contact mechanics of a rigid cylinder indenting an elastic 

half-space, extending previous analyses to account for the influence of surface tension. Specifically, we 

show that the classical JKR theory without surface tension can be extended to include surface tension by 

modifying the Hertz load and the compliance.   By introducing the normalization in (27), we manage to 

collapse the classical JKR solution (9a) and the liquid-like limit solution (14a) into a single relation (26) 

which is completely specified by a single dimensionless parameter ω .    Physically, ω is essentially the 

ratio of the elasto-capillary length /σ µ  to a characteristic length (((( ))))1 32 3 //

adR W / µ  where adhesion acts 

(the pull-off width).   

 There is a significant difference between the pull-off mechanics of a rigid sphere and a rigid long 

cylinder in contact with a soft elastic substrate. For a sphere with radius Rs, Hui et al.
19

 has recently 

shown that the pull-off load is found to vary between -3πRsWad/2 and −πRsWad for the elasticity 

dominated and surface tension dominated limit respectively. Note that the pull-off force in both limit is 

directly proportional to the radius of the sphere and the work of adhesion. In particular, pull-off always 

occur at a finite contact radius. This is not the case for a rigid cylinder, where the pull-off force is directly 

proportional to the square root of the product of the surface tension and the work of adhesion, and is 

independent of the cylinder radius in the liquid limit. In addition, the contact radius at pull-off vanishes 

above a critical value of ω, 1.6
c

ω ≈ , implying that surface tension could strongly affect pull-off 

behavior for long cylinder objects.    The deformed shape in the surface-tension-dominated limit also 
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depends on whether the contactor is a sphere or a long cylinder.   For example, Carrillo et al
20

 found that 

it is necessary to assume the particle deforms into a spherical cap plus a cylindrical neck in order for 

their model to agree with their molecular dynamics simulation in the surface tension dominated limit.   

The deformed shape of our substrate do not looked like a neck, despite the fact that our analysis does 

contain the “necking” limit, by which we mean the limit in which surface tension dominates.   An 

important difference is that our analysis is in two-dimensions whereas that of Carrillo et al
20

 is for a 

deformable axisymmetric spherical particle.  Therefore, in the absence of gravity, the shape of the 

surface near the cylinder must be planar (which does not “look” like a neck) in the surface-tension-

dominated limit.  Finally, we are not aware of any experiments on contact mechanics of cylinders on 

substrates where surface tension effects are important. It will be very interesting to see whether our 

prediction is consistent with future experimental observations. 

 There are obvious limitations in our model, we use small strain theory where the contact radius 

is assumed to be small in comparison with the radius of the cylinder. This condition is not expected to 

hold in experiments involving very soft substrates. For a rigid sphere in contact with soft substrates, it 

has been found that the small strain theory is amazingly good for contact radius as large as 75% of the 

sphere radius (in liquid limit 
ad

W σ<<  is assumed)
19

. Of course, the same conclusion may not apply for 

the cylindrical geometry. In a future work, we will use large deformation theory to quantity the 

limitations of the small strain theory. Also, our calculation is strictly valid for no-slip contact. For 

substrates such as hydrogels, the frictionless boundary condition could be more appropriate. Recall that 

the classical JKR theory is strictly valid for frictionless and no slip contact, as long as the substrate is 

incompressible. However, as pointed out in section 2, without the no-slip condition, one would have to 

introduce new physics into the model since the tension of the substrate surface will change once it is in 

contact with the rigid surface. The problem is that the interfacial tension between a rigid surface and the 

surface of a compliant solid is not well defined, as a rigid surface can support any tension. From the 

mechanics point of view, there is no consistent way to assign the tension acting on the substrate surface 

after contact. One way to deal with this difficulty is to assign the same tension to the substrate surface 

after contact, which is essentially the approach of Long et a.l
33

. In this case the results in this paper apply 

without modification. However, the effect of this approximation could result in a work of adhesion that 

is different from that given by the Young-Dupre equation. Whether this ad-hoc assumption is justified 

will depend on future experimental data.   
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Abstract 

This article studies how surface tension affects the adhesive contact mechanics of a long rigid 

cylinder on an infinite half space comprising of an incompressible elastic material.   We present 

an exact solution based on small strain theory. The relation between indentation force and 

contact width is found to depend on a single dimensionless parameter  

( ) ( )
2/3 1/3

/ 24
ad

WR

σ
ω

µ π
=  , where R is the cylinder radius, Wad the interfacial work of adhesion, 

σ  and µ  are the surface tension and shear modulus of the half space respectively.  The 

solution for small ω reduces to the classical Johnson-Kendall-Roberts (JKR) theory whereas for 

large ω,  the solution reduces to the small slope version of the Young-Dupre equation.  The pull-

off phenomenon is carefully examined and it is found that the contact width at pull-off is 

reduced to zero when surface tension is larger than a critical value.  
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