
Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSCPublishing

ARTICLE

Phosphine and Carbene Azido-Cations: $[(L)N_3]^+$ and $[(L)_2N_3]^+$

Cite this: DOI: 10.1039/x0xx00000x

Daniel Winkelhaus a† , Michael H. Holthausen a† , Roman Dobrovetsky, b and Douglas W. Stephan *a

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

The cationic N_3 -species $[(p-HC_6F_4)_3PN_3]^+$ (1) featuring a perfluoro-arene phosphonium group serves as a N_3^+ -source in stoichiometric reactions with several Lewis bases (L) allowing for the stepwise formation of $[(L)N_3]^+$ and $[(L)_2N_3]^+$ cations (L = phosphine, carbene) with liberation of $(p-HC_6F_4)_3P$. X-ray diffraction analysis and computational studies provide insight into the bonding in these remarkably stable azido-cations.

Introduction

A major component of the recent renaissance in p-block chemistry has been the use of neutral, two electron donors like carbenes or phosphines for the stabilization of homoatomic, low valent main group element fragments.² Most recently Cummins have used an anthracene stabilized P2 for the synthesis of an aromatic $[P_2N_3]^3$. Species of the form $(L)_2E_2$ (E = B, 4 C, 5 Si, 6 Ge, 7 Sn, 8 N, 9 P, 10 As, 11 Sb¹²; L = carbene, phosphine) have been prepared affording ligand stabilization of unique diatomic main group fragments. In addition, the groups of Robinson, Bertrand and Roesky have exploited these donors for isolation of dications and radical cations of type $[(carbene)_2E_2]^{n+}$ (E = C, 5 P, 13 As 14 ; n = 1, 2) while Burford, Weigand, Jones and Grützmacher prepared $[(carbene)_2P_3]^{+15}$ or bicyclic $[(L)_2P_4]^{2+}$ species (L = carbene, AsPh₃, PPh₃). The latter compound is of special interest since L can be exchanged for more basic donors. A similar donor exchange was reported for [(Ph₃P)PPh₂]⁺ affording (carbene)PPh₂]⁺. The nature of these and related systems, especially the L-E and E-E bonding, has sparked vigorous debate.¹⁸

Our recent studies of highly electrophilic phosphonium cations (EPCs) have demonstrated that species such as the fluorophosphonium cation $[(C_6F_5)_3PF]^{+19}$ exhibit remarkable Lewis acidity and thus act as effective catalysts in a range of Lewis acid mediated transformations.²⁰ At the same time, we were motivated to probe the utility of these EPCs as synthons for cationic azides. Herein we describe the synthesis of $[(p-HC_6F_4)_3PN_3]^+$ (1) and its use as a synthon to species of the form $[(L)N_3]^+$ and $[(L)_2N_3]^+$ (L = phosphine, carbene).

Results and discussion

Compound [$(p\text{-HC}_6F_4)_3\text{PN}_3$][B(C₆F₅)₄] (1) was readily prepared in quantitative yield by the reaction of [$(p\text{-HC}_6F_4)_3\text{PF}$][B(C₆F₅)₄] with Me₃SiN₃ in CH₂Cl₂ (Scheme 1). †† The ³¹P{¹H} NMR spectrum of 1 in CD₂Cl₂ gives rise to a broad singlet resonance (δ (³¹P) = 17.5 ppm, $\Delta v_{1/2}$ = 30 Hz, CD₂Cl₂).

The presence of the *para* hydrogen substituents in **1** is crucial as the fully fluorinated derivative $[(C_6F_5)_3PF]^+$ is prone for nucleophilic attack at this position.²¹ The formulation of compound **1** was subsequently confirmed by an X-ray crystallographic study (Figure 1).

The molecular structure of 1 shows a distorted tetrahedral environment about the phosphorus atom with angles at P ranging from $102.3(1) - 112.6(1)^{\circ}$. The P(1)-N(1) bond length of 1.651(2) Å is shorter than those observed in azidosubstituted phosphenium cations (1.67 Å)²² and azidophosphines (1.73 Å),²³ consistent with the electron deficient nature of the phosphonium center and the strongly polarized nature of the P-N bond. The azido moiety shows an N(1)-N(2)-N(3) angle that slightly deviates from the ideal 180° $(172.4(2)^{\circ})$ while the N(1)-N(2) (1.260(2) Å) and N(2)-N(3) bond length (1.114(2) Å) are in the expected range for azide substituents. Compound 1 is a rare example of a crystallographically characterized salt of a cationic azido-phosphonium species²⁴ while several neutral, azido-substituted P(III) and P(V) derivatives have been reported to date.²⁵ Other examples of monocationic nitrogen species, reported in the literature, include diazonium ions²⁶, the homoleptic $[N_5]^+$ of Christe²⁷, $[N_2F]^{+28}$, Hünig's stable triazenium ions, $[R_2N_3R_2]^{+29}$ and aminodiazonium ions of the form $[(R_2N)N_2]^{+30}$ (R = H,silyl, alkyl, aryl).

To gain further insights into the nature of 1, the geometry of the cation was optimized at the wB97XD/def2-TZV level of theory (see SI). The p-type HOMO of 1 is located at the P-bonded N atom while the LUMO is part of two sets of degenerated π^* -type orbitals involving the p-HC₆F₄-groups (LUMO to LUMO+9). The first accessible acceptor orbital is a π^* -type orbital located at the terminal N₂ moiety (LUMO+10). This stands in contrast to other EPCs where the accessible acceptor orbital involves the P-F σ^* orbital at the P center. The corresponding P-N σ^* orbital in 1 is much higher in energy (LUMO+11). NBO analysis reveals that the P-N single bond in 1 is occupied by 1.92 electrons, while the P-bound N atom features two lone pairs of p and sp^{0.69} type. Donation of electron density from these lone pairs into σ^* orbitals of the adjacent P-C bonds occurs

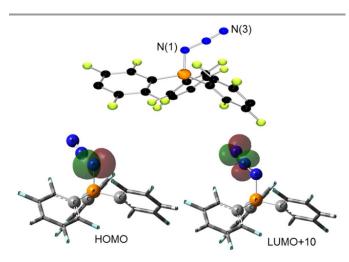
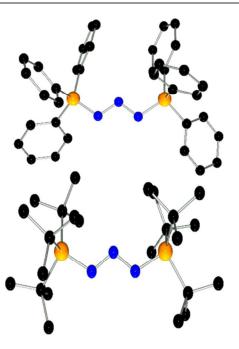


Figure 1. POV-ray depiction of the cation in 1 (top). Hydrogen atoms are omitted for clarity. Selected bond distances and angles: P(1)-N(1) 1.651(2), P(1)-C(13) 1.783(2), P(1)-C(1) 1.789(2), P(1)-C(7) 1.789(2), N(1)-N(2) 1.260(2), N(2)-N(3) 1.114(2), N(1)-P(1)-C(13) 111.6(2), N(1)-P(1)-C(1) 102.3(2), C(13)-P(1)-C(1) $112.6(2), \quad N(1)-P(1)-C(7) \quad 109.8(2), \quad C(13)-P(1)-C(7) \quad 110.5(2), \quad C(1)-P(1)-C(7)$ 109.7(2), N(2)-N(1)-P(1) 120.89(13), N(3)-N(2)-N(1) 172.4(2). Graphical presentation of the HOMO and LUMO+10 of 1 (calculated at the wB97XD/def2-TZV level of theory (surface iso-value = 0.05).

Scheme 1. Preparation of 1-6.

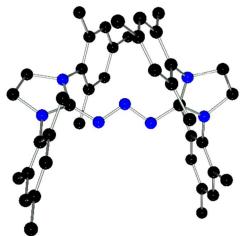
(LP(p)_{N1} $\rightarrow \sigma^*_{P-C7}$ 11.2 kcal/mol, LP(p)_{N1} $\rightarrow \sigma^*_{P-C1}$ 7.4 kcal/mol, LP(sp^{0.69})_{N1} $\rightarrow \sigma^*_{P-C13}$ 3.7 kcal/mol). The secondary interactions of these lone pairs may account for the observed shortening of the P-N bond in 1 in comparison to other P-azido species.²²

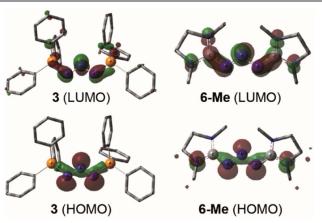

Compound 1 reacts with the Lewis base t-Bu₃P in CH₂Cl₂ solution (Scheme 1).^{††} The ³¹P{¹H} NMR spectrum of the reaction mixture showed a septet resonance at $\delta(^{31}P) = -72.3$ ppm $(^{3}J_{PF} = 36.4 \text{ Hz})^{19b}$ which corresponds to $(p-HC_{6}F_{4})_{3}P$ and a new singlet resonance at low field $(\delta(^{31}P) = -85.9 \text{ ppm})$ which is in the typical chemical shift range for an N-substituted trialkyl-phosphonium derivative.³¹ Collectively, observations indicate the formal transfer of the N₃⁺-moiety in 1 to t-Bu₃P yielding [t-Bu₃PN₃] $[B(C_6F_5)_4]$ (2) which was isolated in 98% yield. The nature of 2 was confirmed by X-ray single crystallography and the metrics were found similar to 1 (see SI). Interestingly, 2 and 1 are very stable and do not show any signs of degradation on heating in C₆D₅Br solution to 100 °C for 24 h. Attempts to independently synthesize 2 from the reaction of $[t-Bu_3PF][B(C_6F_5)_4]^{19}$ with Me₃SiN₃ failed even after prolonged reaction times at 100 °C in C₆D₅Br solution. This reflects the increased steric demand of the [t-Bu₃PF]⁺ cation

The corresponding reaction of 1 with Ph₃P in CH₂Cl₂ was monitored by ³¹P{¹H} NMR spectroscopy revealing the complete consumption of Ph₃P and the liberation of only 0.5 equivalent of (p-HC₆F₄)₃P, leaving approximately 50% of 1 unreacted. Addition of another equivalent of Ph₃P resulted in its complete consumption. Collectively, this indicates the formation of a bis-adduct $[(Ph_3P)_2(N_3)][B(C_6F_5)_4]$ (3, Scheme While the proposed intermediate $[Ph_3PN_3]^+$ independently synthesized by the $[Ph_3PF][B(C_6F_5)_4]^{20c}$ and Me_3SiN_3 (see SI), this species was not observed in the reaction of 1 with Ph₃P. This indicates that reaction of [Ph₃PN₃]⁺ with a second equivalent of Ph₃P is rapid, in agreement with Wiberg who described the [(Ph₃P)₂(N₃)]⁺ cation in 1967.^{24c} Compound 3 was isolated in high yields (97%). The t-Bu-substituted analog 4 was obtained from 1 with two equivalents of t-Bu₃P or by reaction of 2 with one equivalent of t-Bu₃P (Scheme 1). Species 4 was also obtained by reaction of 3 with two equivalents of t-Bu₃P with concurrent release of Ph₃P. All methods furnish 4 in high yields (76 -99%). Compounds 3 and 4 show ³¹P{¹H} NMR resonance at 30.6 and 56.5 ppm that are between the chemical shift ranges of phosphinimine and N-substituted phosphonium derivatives.31 X-ray structure determination confirmed the formulations (Figure 2). The P₂N₃-moiety adopts a W-shaped geometry with all five atoms almost located within one plane (largest deviation: 3: 0.013(2) Å for N2, 4: 0.039(1) Å for N2). The acute N-N-N angles (3: 113.2(4)°, 4: 110.8(1)°) are in the typical range for phosphazides.³² The two P–N–N angles in each compound are **3**: 114.5(3)° / 114.7(3)°; **4**: 118.1(1)° / 118.9(1)° with the larger angles in 4 reflecting the increased steric congestion. Similarly, the P-N bond lengths of 1.648(3) Å and 1.643(3) Å and 1.675(2) Å and 1.673(2) Å seen in 3 and 4 respectively range between that of phosphinimine and N-substituted phosphonium derivatives.³¹ The N-N bonds in 3 and 4 were found to be 1.298(4) Å, 1.309(4) Å and 1.309(2) Å, 1.300(2) Å), [28] are intermediate between single and double bond distances. A similar conformation is observed for several crystallographically characterized organo-phosphazides R₃PN₃R, ³² formed in the initial step of a Staudinger reaction. ³³

It is of interest to note that, similar to 1 and 2, 4 is thermally stable and can be heated to 120 °C in C₆D₅Br solution over several days without decomposition. In contrast, compound 3 is Page 3 of 6 Chemical Science

Journal Name ARTICLE


not temperature stable, decomposing quantitatively with release of N_2 within 3 h at $100^{\circ}C^{24c}$ The $^{31}P\{^{1}H\}$ NMR spectrum shows only one resonance at $\delta(^{31}P) = 21.1 \text{ ppm}$ assignable to $[(Ph_3P)_2N][B(C_6F_5)_4]$ (5) (Scheme 1).³⁴ N_2 elimination is thought to follow isomerization of the W-shaped 3 to a U-shaped isomer. It is noteworthy that compound 3 was isolated as a mixture of both isomers in a 4:1 ratio. The ³¹P{¹H} NMR spectrum of the minor isomer gave two resonances at $\delta(^{31}P) = 28.4$ and 11.0 ppm ($^{4}J_{PP} = 5.5 \text{ Hz}$). At elevated temperatures rapid conversion of the cation 3 to [(Ph₃P)₂N]⁺ 5 was observed. Nonetheless, the ratio of the isomers of 3 is unchanged inferring the rate of N₂-loss is comparable to the rate of isomerization of 3. Computations at the wB97XD/def2-TZV level of theory with addition of conductor-like polarizable continuum solvation model (CPCM)³⁵ showed only a small energy difference between the W and U-shaped isomers of 3 $(\Delta G_{\rm R}^{298} = -2.6 \text{ kcal/mol}).$


Figure 2. POV-ray depiction of the cations in **3** (top) and **4** (bottom). Hydrogen atoms are omitted for clarity. Selected bond distances and angles for **3**: N(1)–P(1) 1.648(3), N(3)–P(2) 1.643(3), N(1)–N(2) 1.298(4), N(2)–N(3) 1.309(4), N(2)–N(1)–P(1) 114.5(3), N(1)–N(2)–N(3) 113.2(4), N(2)–N(3)–P(2) 114.7(3), For **4**: P(1)–N(3) 1.675(2), P(2)–N(1) 1.673(2), N(1)–N(2) 1.309(2), N(3)–N(2) 1.230(2), N(2)–N(1)–P(2) 118.1(2), N(2)–N(3)–P(1) 118.9(2), N(3)–N(2)–N(1) 110.8(2).

Compound 1 also reacts with two equivalents of 1,3-dimesitylimidazolidin-2-ylidene (SIMes) in C_6D_5Br solution with liberation of $(p\text{-HC}_6F_4)_3P$ as evidenced by ${}^{31}P\{^1H\}$ NMR spectrum. The ${}^{13}C\{^1H\}$ NMR spectrum shows a new resonance for the C-2 carbon atom at $\delta({}^{13}C)=162.2$ ppm. 36 Collectively, the NMR data indicate the formation of $[(SIMes)_2N_3][B(C_6F_5)_4]$ (6) which was isolated in 70% yield. Interestingly, 6 was the only product obtained from the reaction using a 1:1 stoichiometry. This contrasts the reactivity observed for $t\text{-Bu}_3P$ and is likely a result of the low solubility of 1 in bromobenzene. Interestingly, compound 6 was also obtained in high yields by reaction of 3 or $[Ph_3PN_3][B(C_6F_5)_4]$ with SIMes in 1:2 stoichiometry (see SI). Compound 6 is thermally stable even under prolonged heating to 120 °C for several days in C_6D_5Br solution. The nature of compound 6 was further confirmed by

single crystal X-ray diffraction (Figure 3). The structure features W-shaped N₃-chain terminated imidazolidiniumyl-groups with a N-N-N angle (110.4(2)°) comparable to that seen for 3 and 4. The planes of the imidazole-rings are skewed with respect to the N₃-plane $(38.3(7)^{\circ} / 41.2(5)^{\circ})$ and the torsion angles involving the C-N bonds (N5-C1-N1-N2: 27.6°, N6-C22-N3-N2: 35.0°) deviate from those expected for a C=N double bond. This indicates that electron delocalization across the imidazole and azide moiety may be hampered by the steric demands of the Mes substituents. The N-N (1.309(2) $\mbox{\normalfont\AA}$ / 1.311(2) $\mbox{\normalfont\AA}$) and C-N (1.359(2) Å / 1.369(2) Å) bond distances involving the W-type fragment of 6 fall in the range between those expected for single and double bonds.³⁷

Figure 3. POV-ray depiction of the cation in **6.** Hydrogen atoms are omitted for clarity. Selected bond distances and angles: C(1)-N(4) 1.332(3), C(1)-N(5) 1.346(2), C(1)-N(1) 1.359(2), C(22)-N(7) 1.335(2), C(22)-N(6) 1.337(2), C(22)-N(3) 1.369(2), N(1)-N(2) 1.309(2), N(2)-N(3) 1.311(2), N(4)-C(1)-N(5) 111.1(2), N(4)-C(1)-N(1) 119.3(2), N(5)-C(1)-N(1) 129.4(2), N(7)-C(22)-N(6) 111.7(2), N(7)-C(22)-N(3) 119.9(2), N(6)-C(22)-N(3) 128.2(2), N(2)-N(1)-C(1) 113.6(2), N(1)-N(2)-N(3)110.4(2), N(2)-N(3)-C(22) 111.9(2).

Figure 4. Graphical presentation of the LUMO (top) and HOMO (bottom) of the cations in **3** and **6-Me** calculated at the wB97XD/def2-TZVPP level of theory (surface iso-value = 0.05).

DFT calculations (wB97XD/def2-TZV, see SI) carried out on **3** and the model compound **6-Me**, (mesityl-substituents replaced by methyl groups) showed similar molecular orbitals for both compounds (Figure 4). The HOMOs exhibit strong n character

comprised primarily of the lone pairs of the N-atoms. The LUMOs are π -type orbitals delocalized across the N₃-linkage and the L donors. This in in contrast to the isolated P₃-allyl frontier orbitals reported for [(carbene)₂P₃]⁺ Interestingly these frontier orbitals are also reminiscent of the HOMO and HOMO-1 of neutral triazenes (NHC)N₃R.³⁸

Conclusions

In summary, the EPC $[(C_6F_4H)_3PF][B(C_6F_5)_4]$ is used to prepare the phosphonium ion salt 1 which serves as a precursor for the formal transfer of [N₃]⁺ to other donors affording stable and isolable mono- and bis-adducts of the form $[(L)N_3]^+$ and $[(L)_2N_3]^+$. The reactivity of these species containing terminal and bridging azide-fragments is the subject of continuing studies. In addition, the exploration of the reactivity of EPCs as synthetic building blocks for other unusual main group cations is ongoing.

Acknowledgements

D.W.S. gratefully acknowledges the financial support of the NSERC of Canada and the award of a Canada Research Chair. M.H.H. thanks the Alexander von Humboldt Foundation for a Feodor Lynen Research Fellowship.

Notes and references

- ^a Department of Chemistry, University of Toronto, 80 St. George St, Toronto Ontario M5S3H6 (Canada).
- ^b Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
- These authors contributed equally.
- †† Extra precaution must be taken when working with azides in CH₂Cl₂ solution as it is potentially dangerous and it can result in a possible formation of dangerous and explosive diazidomethane.
- Electronic Supplementary Information (ESI) available: Details on VT NMR experiments, preparation of 5, quantum chemical calculations and CCDC:1403531-1403535. crystallography: DOI: 10.1039/b000000x/
- 1. a) Y. Z. Wang and G. H. Robinson, Inorg. Chem., 2011, 50, 12326-12337; b) C. D. Martin, M. Soleilhavoup and G. Bertrand, Chem. Sci., 2013, 4, 3020-3030; c) C. A. Dyker and G. Bertrand, Science 2008, 321, 1050-1051; d) Y. Wang and G. H. Robinson, Inorg. Chem., 2014, 53, 11815-11832.
- 2. D. J. D. Wilson, S. A. Couchman and J. L. Dutton, Inorg. Chem., 2012, **51**, 7657-7668.
- A. Velian and C. C. Cummins, Science, 2015, 348, 1001-1004.
- H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki and A. Vargas, Science, 2012, 336, 1420-1422
- a) Y. Li, K. C. Mondal, P. P. Samuel, H. Zhu, C. M. Orben, S. Panneerselvam, B. Dittrich, B. Schwederski, W. Kaim, T. Mondal, D. Koley and H. W. Roesky, Angew. Chem. Int. Ed., 2014, 53, 4168-4172; Angew. Chem., 2014, 126, 4252-4256; b) L. Jin, M. Melaimi, L. Liu and G. Bertrand, Org. Chem. Front., 2014, 1, 351-354.
- Y. Z. Wang, Y. M. Xie, P. R. Wei, R. B. King, H. F. Schaefer, P. V. Schleyer and G. H. Robinson, Science, 2008, 321, 1069-1071.
- A. Sidiropoulos, C. Jones, A. Stasch, S. Klein and G. Frenking, Angew. Chem. Int. Ed., 2009, 48, 9701-9704; Angew. Chem., 2009, 121, 9881-
- C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking and A. Stasch, Chem. Commun., 2012, 48, 9855-9857.
- N. Holzmann, D. Dange, C. Jones and G. Frenking, Angew. Chem. Int. Ed., 2013, 52, 3004-3008; Angew. Chem., 2013, 125, 3078-3082
- 10. a) Y. Z. Wang, Y. M. Xie, P. R. Wei, R. B. King, H. F. Schaefer, P. V. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2008, 130, 14970-14971; b) O. Back, G. Kuchenbeiser, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2009, 48, 5530-5533; Angew. Chem., 2009, 121,

- 5638-5641; c) J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2007, 129, 14180-14181; d) J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, Angew. Chem. Int. Ed., 2007, 46, 7052-7055; Angew. Chem., 2007, 119, 7182-7185.
- 11. M. Y. Abraham, Y. Z. Wang, Y. M. Xie, P. R. Wei, H. F. Schaefer, P. V. Schleyer and G. H. Robinson, Chem.-Eur. J., 2010, 16, 432-435.
- 12. R. Kretschmer, D. A. Ruiz, C. E. Moore, A. L. Rheingold and G. Bertrand, Angew. Chem. Int. Ed., 2014, 53, 8176-8179; Angew. Chem., 2014, 126, 8315-8318.
- O. Back, B. Donnadieu, P. Parameswaran, G. Frenking and G. Bertrand, Nature Chem., 2010, 2, 369-373
- 14. M. Y. Abraham, Y. Wang, Y. Xie, R. J. Gilliard-Jr, P. Wei, B. J. Vaccaro, M. K. Johnson, H. F. Schaefer-III, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2013, 135, 2486-2488
- 15. a) M. H. Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking and J. J. Weigand, Angew. Chem. Int. Ed., 2013, 52, 11078-11082; Angew. Chem., 2013, 125, 11284-11288; b) A. M. Tondreau, Z. Benko, J. R. Harmer and H. Grutzmacher, Chem. Sci., 2014, 5, 1545-1554
- 16. a) M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford and J. J. Weigand, Angew. Chem. Int. Ed., 2012, 51, 2964-2967; Angew. Chem., 2012, 124, 3018-3021; b) A. Sidiropoulos, B. Osborne, A. N. Simonov, D. Dange, A. M. Bond, A. Stasch and C. Jones, Dalton Trans., 2014, 43, 14858-14864.
- 17. N. Burford, T. S. Cameron and P. J. Ragogna, J. Am. Chem. Soc., 2001, 123, 7947-7948.
- a) D. Himmel, I. Krossing and A. Schnepf, Angew. Chem. Int. Ed., 2014, 53, 370-374; Angew. Chem., 2014, 126, 378-382; b) D. Himmel, I. Krossing and A. Schnepf, Angew. Chem. Int. Ed., 2014, 53, 6047-6048; Angew. Chem., 2014, 126, 6159-6160; c) G. Frenking, Angew. Chem. Int. Ed., 2014, 53, 6040-6046; Angew. Chem., 2014, 126, 6152-6158.
- 19. a) C. B. Caputo, L. J. Hounjet, R. Dobrovetsky and D. W. Stephan, Science, 2013, 341, 1374-1377; b) C. B. Caputo, D. Winkelhaus, R. Dobrovetsky, L. J. Hounjet and D. W. Stephan, Dalton Trans., 2015, 44, DOI: 10.1039/C1035DT00217F; c) M. Perez, Z. W. Qu, C. B. Caputo, V. Podgorny, L. J. Hounjet, A. Hansen, R. Dobrovetsky, S. Grimme and D. W. Stephan, Chem. Eur. J., 2015, 21, 6491-6500.
- 20. a) M. Perez, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, Proc. Nat. Acad. Sci., 2014, 111, 10917-10921; b) M. Perez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, J. Am. Chem. Soc., 2013. 135, 18308-18310; c) M. H. Holthausen, R. R. Hiranandani and D. W. Stephan, Chem. Sci., 2015, 6, 2016-2021; d) M. H. Holthausen, M. Mehta and D. W. Stephan, Angew. Chem. Int. Ed., 2014, 53, 6538-6541; Angew. Chem. 2014, 126, 6656-6659.
- 21. L. J. Hounjet, C. B. Caputo and D. W. Stephan, Dalton Trans., 2013, 42,
- 22. C. Hering, A. Schulz and A. Villinger, Angew. Chem. Int. Ed., 2012, 51, 6241-6245; Angew. Chem., 2012, 124, 6345-6349.
- 23. a) J. J. Weigand, K.-O. Feldmann and F. D. Henne, J. Am. Chem. Soc., 2010, 132, 16321-16323; b) D. Michalik, A. Schulz, A. Villinger and N. Weding, Angew. Chem. Int. Ed., 2008, 47, 6465-6468; Angew. Chem., 2008, 120, 6565-6568.
- 24. Only two examples were crystallographically characterized: a) C. Hering, A. Schulz and A. Villinger, Inorg. Chem., 2013, 52, 5214-5225; or derivatives that were not characterized by X-ray see: b) K. Bott, Angew. Chem. Int. Ed., 1965, 4, 695; Angew. Chem., 1965, 77, 683; c) N. Wiberg and K. H. Schmid, Angew. Chem. Int. Ed., 1967, 6, 953-954; Angew. Chem., 1967, 79, 938-939; d) A. Schmidt, Chem. Ber., 1968, 101, 4015-4021; e) A. Schmidt, Chem. Ber., 1970, 103, 3923-3927; f) W. Buder and A. Schmidt, Chem. Ber., 1973, 106, 3812-3816; g) C. Hering, A. Schulz and A. Villinger, Angew. Chem. Int. Ed., 2012, 51, 6241-6245
- 25. a) U. Müller, Chem. Ber., 1977, 110, 788-791; b) H. W. Roesky, M. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., 1986, 41b, 803-807; c) D. Schomburg, U. Wermuth and R. Schmutzler, Chem. Ber., 1987, 120, 1713-1718; d) A. H. Cowley, F. Gabbaï, R. Schluter and D. Atwood, J. Am. Chem. Soc., 1992, 114, 3142-3144; e) U. Englert, P. Paetzold and E. Eversheim, Zeitschrift für Kristallographie - Crystalline Materials, 1993, 208, 307-309; f) J. R. Goerlich, M. Farkens, A. Fischer, P. G. Jones and R. Schmutzler, Z. Anorg. Allg. Chem., 1994, 620, 707-715; g) A. H. Cowley, F. P. Gabbaï, G. Bertrand, C. J. Carrano and M. R. Bond, J. Organomet. Chem., 1995, 493, 95-99; h) M. Larbig, M. Nieger, V. von der Gönna, A. V. Ruban and E. Niecke, Angew. Chem. Int. Ed., 1995, 34, 460-462; Angew. Chem., 1995, 107, 505-507; i) C.

- Aubauer, T. M. Klapötke, H. Noth, A. Schulz, M. Suter and J. Weigand, *Chem. Commun.*, 2000, 2491-2492; j) N. Götz, S. Herler, P. Mayer, A. Schulz, A. Villinger and J. J. Weigand, *Eur. J. Inorg. Chem.*, 2006, **2006**, 2051-2057; k) A. Schulz and A. Villinger, *Eur. J. Inorg. Chem.*, 2008, 4199-4203; l) X. Zeng, M. Gerken, H. Beckers and H. Willner, *Inorg. Chem.*, 2010, **49**, 3002-3010; m) X. Zeng, E. Bernhardt, H. Beckers and H. Willner, *Inorg. Chem.*, 2011, **50**, 11235-11241; n) C. Hering, M. Hertrich, A. Schulz and A. Villinger, *Inorg. Chem.*, 2014, **53**, 3880-3892.
- a) A. Roglans, A. Pla-Quintana and M. Moreno-Mañas, *Chem. Rev.*,
 2006, 106, 4622-4643;
 b) S. Mahouche-Chergui, S. Gam-Derouich, C. Mangeney and M. M. Chehimi, *Chem. Soc. Rev.*, 2011, 40, 4143-4166.
- K. O. Christe, W. W. Wilson, J. A. Sheehy and J. A. Boatz, *Angew. Chem. Int. Ed.*, 1999, 38, 2004-2009.
- 28. D. Moy and A. R. Young, J. Am. Chem. Soc., 1965, 87, 1889-1892.
- 29. H. Hansen, S. Hünig and K.-I. Kishi, Chem. Ber., 1979, 112, 445-461.
- a) A. Mertens, K. Lammertsma, A. Massoud and G. A. Olah, *J. Am. Chem. Soc.*, 1983, 105, 5657-5660; b) K. O. Christe, W. W. Wilson, D. A. Dixon, S. I. Khan, R. Bau, T. Metzenthin and R. Lu, *J. Am. Chem. Soc.*, 1993, 115, 1836-1842; c) A. Schulz and A. Villinger, *Chemistry A European Journal*, 2010, 16, 7276-7281; d) C. W. Huh and J. Aube, *Chem. Sci.*, 2014, 5, 699-706.
- M. H. Holthausen, I. Mallov and D. W. Stephan, *Dalton Trans.*, 2014, 43, 15201-15211.
- a) L. LePichon and D. W. Stephan, *Inorg. Chem.*, 2001, 40, 3827-3829;
 b) G. C. Fortman, B. Captain and C. D. Hoff, *Inorg. Chem.*, 2009, 48, 1808-1810;
 c) P. Molina, C. López-Leonardo, J. Llamas-Botía, C. Foces-Foces and C. Fernández-Castaño, *Tetrahedron*, 1996, 52, 9629-9642;
 d) R. D. Kennedy, *Chem. Commun.*, 2010, 46, 4782-4784;
 e) C. G. Chidester, J. Szmuszkovicz, D. J. Duchamp, L. G. Laurian and J. P. Freeman, *Acta Cryst.*, 1988, C44, 1080-1083;
 f) C. Reddy, V. Reddy, B. M. Fetterly and J. G. Verkade, *Energie & Fuels* 2007, 21, 2466-2472;
 g) M. W. P. Bebbington and D. Bourissou, *Coord. Chem. Rev.*, 2009, 253, 1248-1261.
- 33. H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635.
- 34. S. Cameron and M. Peach, J. Chem. Crystallogr., 1998, 28, 919-924.
- a) V. Barone and M. Cossi, *J. Phys. Chem. A*, 1998, **102**, 1995-2001; b)
 M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comp. Chem.*, 2003, **24**, 669-681; c) J. Andzelm, C. Kölmel and A. Klamt, *J. Chem. Phys.*, 1995, **103**, 9312-9320; d) A. Klamt and G. Schüürmann, *J. Chem. Soc. Perkin Trans.*, 1993, **2**, 799.
- M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi and I. A. Fallis, Organometallics, 2008, 27, 3279-3289.
- 37. A. F. Holleman and E. Wiberg, *Lehrbuch der Anorganischen Chemie*, von Nils Wiberg ed., de Gruyter, Berlin, 2007.
- a) J. E. Leffer and R. D. Temple, J. Am. Chem. Soc., 1967, 89, 5235-5246;
 b) J. G. Gololobov, L. F. Kasukhin and U. S. Petrenko, Phos. Sulf. Silicon Relat. Elem., 1987, 30, 393-396;
 c) H. Bock and M. Schnöller, Angew. Chem. Int. Ed., 1968, 7, 636-637;
 Angew. Chem., 1968, 80, 667-668

TOC Graphic

$$\begin{bmatrix} R & 0 & N \\ R & 0 & N \\ R & 0 & R \\ R & 0 & R \end{bmatrix} \begin{bmatrix} R & 0 & R \\ R & 0 & R \\ R & 0 & R \end{bmatrix} \begin{bmatrix} Mes & Mes \\ M & 0 & N & N \\ M & 0 & N & N \\ Mes & Mes \end{bmatrix}$$

$$\begin{bmatrix} B(C_6F_5)_4 \end{bmatrix}$$

$$\begin{bmatrix} B(C_6F_5)_4 \end{bmatrix}$$