
Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production

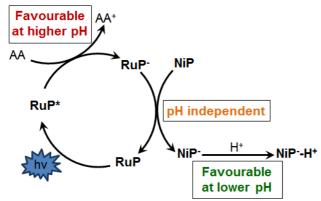
Anna Reynal, a,b* Ernest Pastor, Manuela A. Gross, Shababa Selim, Erwin Reisner, and James R. Durrant*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (**RuP**) and a nickel bisdiphosphine electrocatalyst (**NiP**) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of **RuP** and **NiP** correlated with pH-dependent photocatalytic H₂ production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the **RuP-NiP** system. The electron transfer from photo-reduced **RuP** to **NiP** is efficient and independent of the pH value of the medium. At pH < 4.5, the efficiency of the system is limited by the yield of **RuP** photo-reduction by the sacrificial electron donor, ascorbic acid. At pH > 4.5, the efficiency of the system is limited by the poor protonation of **NiP**, which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous **RuP-NiP** photocatalytic system, which can be widely applied to other photocatalytic systems.

Introduction

25 The photochemical production of H₂ from water is a rapidly expanding research field that aims to store solar energy in a chemical fuel. From the viewpoint of sustainability and economic viability, this proton reduction reaction should be carried out in aqueous conditions and use stable and Earth abundant materials. Current investigations for solar H₂ synthesis include molecular dyes and electrocatalysts based on nickel, iron and cobalt, either in solution or immobilized onto the surface of a semiconductor. These photocatalytic systems typically require the use of sacrificial chemical reductants to provide the electrons to regenerate the oxidised dye following proton reduction.

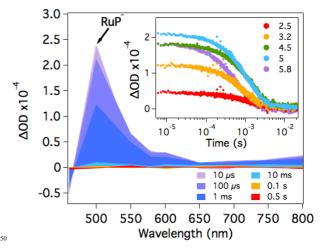

Figure 1. Molecular structures of the phosphonated ruthenium dye (**RuP**) and the nickel H₂ evolution catalyst (**NiP**). The promide counter ions have been omitted for clarity.

The efficiency of H₂ evolving photo- and electrocatalytic systems is typically strongly pH dependent.¹³⁻¹⁶ Understanding the origins of this pH dependence is critical to guiding further system development and optimisation. In particular, it is essential to determine whether such pH dependencies derive from the availability of protons to the molecular catalyst, from the function of the molecular light-harvesting unit or from the sacrificial electron donor.

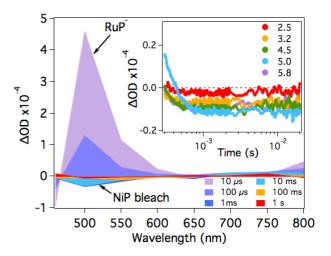
We have recently reported a homogeneous photocatalytic system based on a molecular ruthenium photosensitiser (RuP) and a nickel catalyst (NiP) capable of producing H2 in pure water with a quantum efficiency near 10% in the presence of ascorbic acid (AA) as a sacrificial electron donor (Figure 1). In this system, the electron transfer from the photoreduced dye (RuP) to NiP takes place following reductive quenching of the photoexcited dye in the presence of the sacrificial agent, AA (Scheme 1). Under visible light irradiation, optimum performance of this photocatalytic system was observed at pH 4.5. In contrast, when used as an electrocatalyst, the proton reduction efficiency of the NiP catalyst was observed to increase towards more acidic pH. This pH dependence is typical of this type of nickel-based molecular electrocatalysts, and has been attributed to the presence of pendant amines with low pKa, which are thought to act as a

proton pathway between the solvent and the metal centre. 13, 18-20

Studies reporting the dependence of H2 evolution on the acidity of the aqueous media for molecular photocatalytic systems have typically focused on the overall system efficiency s as a function of pH. ^{13-15, 21}Reaction mechanisms, where studied, have been addressed through theoretical calculations and experimental techniques such as nuclear magnetic resonance spectroscopy, electrochemistry and steady state spectroscopy;^{7, 22-} ²⁴ and to a lesser extent, time-resolved absorption spectroscopy. ¹⁵, 10 24-34 Herein, we report on the influence of the solution acidity on the formation of the photo-reduced RuP species, the electron transfer kinetics between the optically active RuP and NiP, as well as the pH dependence of H₂ evolution observed in electrochemical and bulk photocatalytic experiments. We have 15 employed transient absorption spectroscopy, combined with electrochemical experiments, to determine the working principles of this photocatalytic system. The correlation of these results allowed us to determine the pH-dependent rate-limiting steps in the photocatalytic system and give a rational explanation for the 20 observed optimal activity at pH 4.5, as well as to provide a timescale for the electron transfer (ET) reactions between the sacrificial electron donor, the dye and the catalyst. Experimental details are described in the electronic supporting information (ESI).



Scheme 1. Schematic representation of the reductive electron transfer mechanism between **RuP** and **NiP** in the presence of ascorbic acid as sacrificial electron donor.


Results and discussion

At pH 4.5, photoexcitation of **RuP** in the presence of AA leads to the efficient formation of **RuP**⁻ within $t_{50\%} \sim 250$ ns through a reductive quenching mechanism, with a quantum yield estimated from transient emission studies of approximately 70%. ¹⁷ The reduced photosensitizer **RuP**⁻ shows a transient absorption peak at $\lambda = 500$ nm with a lifetime ($t_{50\%}$, calculations detailed in Figure S1) of 500 - 700 μs (Figure 2). ³⁵ The yield of **RuP**⁻ produced at different pH values can be determined from the initial amplitude (at ~10 μs) of this **RuP**⁻ transient absorption signal at $\lambda = 500$ nm. It is apparent (Figure 2, inset) that this assay of the yield of **RuP**⁻ increases with increasing pH, reaching a maximum at pH = 5. This behaviour can be explained by the different reactivity of two protonation states of ascorbic acid present in the pH range studied herein. At low pH, ascorbic acid exists primarily in its undissociated form H₂A (pK_a= 4.17), whereas the monoprotic

 $_{45}$ ascorbate anion (HA⁻) predominates at higher pH values (pK_a=11.57). The ascorbate anion is a stronger reducing agent than its protonated form, and thus the reductive quenching of the excited dye, **RuP***, is favoured at pH > 4, where HA⁻ is the dominating species. $^{36-38}$

Figure 2. Transient absorption spectra of **RuP** (4 μ M) in the presence of AA (0.1 M) at pH 4.5 as a function of time delay. The inset shows the corresponding kinetics probed at $\lambda = 500$ nm in the pH range between 2.5 and 5.8. The samples were excited at 355 nm.

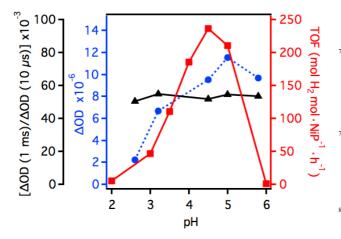


Figure 3. Transient absorption spectra of a **RuP** (4 μ M) and **NiP** (8 μ M) mixture in the presence of AA (0.1 M) at pH 4.5 as a function of time delay. The inset shows the time profile of the negative signal monitored at $\lambda = 500$ nm, assigned to the loss of ground state absorption of **NiP** in the pH range studied. The samples were excited at $\lambda = 355$ nm.

After the formation of \mathbf{RuP}^- , electrons should be transferred from the reduced dye to the catalyst. In the presence of \mathbf{NiP} , the positive transient absorption signal corresponding to \mathbf{RuP}^- absorption at $\lambda = 500$ nm is rapidly quenched (within 50-100 µs on the range of pH values studied herein), leading to the appearance of a negative signal at longer timescales (500 µs-1s; Figure 3 and S2). This negative signal is assigned to electron

transfer from RuP to NiP, resulting in bleaching of ground state absorption of NiP. 17 This bleach is not observed in the absence of either RuP or NiP (see for example Figure 2 and Figure S3), suggesting that it is due to intermolecular electron transfer (ET) between RuP and NiP (rather than the direct photoexcitation of NiP). The fast electron transfer kinetics between RuP and NiP at all studied pH values suggests that this process is not limiting the catalytic activity of NiP (Figure S2). However, the long-lived transient absorption bleach signal corresponding to reduced NiP 10 indicates that the subsequent protonation step is more likely to be the rate limiting reaction. We can also estimate the yield of NiP reduced by RuP from the amplitude of the bleach (Figure 3 inset). Thus, a greater negative signal indicates the reduction of more NiP due to ET from RuP-. It is apparent that the yield of 15 reduced NiP increases as the pH is increased, reaching a maximum at pH = 5.

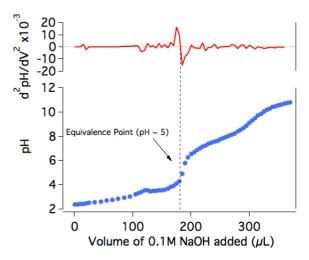

Figure 4 compares the pH dependence of the 500 nm transient absorption bleach signal assigned to the yield of reduced NiP (blue circles) and the TOF_{NiP}(H₂) per catalyst molecule of the 20 system (red squares) determined from bulk photocatalysis experiments reported previously (see ESI).¹⁷ Also shown in Figure 4 is the ratio of reduced NiP per RuP (black triangles, calculations detailed in the Supporting Information). It is apparent that whilst both the TOF and yield of reduced NiP are 25 strongly pH dependent, the ratio of reduced NiP/RuP is independent of pH. Thus, our results suggest that the yield of reduction of NiP by RuP is pH independent. In contrast, from pH 2 to 4.5, both the NiP reduction yield and the TOF_{NiP} increase. As the efficiency of electron transfer from RuP to NiP 30 is pH independent, the increase in the yield of reduced NiP with higher pH can be assigned directly to the increased efficiency of RuP formation due to the pH dependence of the electron donating function of the ascorbic acid as discussed above. It is also striking from Figure 4 that at pH > 4.5, the TOF_{NiP} rapidly 35 decreases despite the yield of reduced NiP remaining high. Such a sharp maximum in the pH dependence of TOF_{catalvst} has also been observed in many other photocatalytic systems. 14, 15, 17, 25, 39,

Figure 4. $TOF_{NiP}(H_2)$ of a homogeneous AA (0.1 M) aqueous solution at different pH values, containing **RuP** (0.3 µmol) and **NiP** (0.3 µmol; red squares). Transient absorption signal amplitudes of the **NiP** bleach at 1 ms, (absolute values, blue

⁴⁵ circles) and transient absorption amplitude ratios of **NiP** at 1 ms and **RuP**⁻ at 10 μs (black triangles).

As the yield of reduced catalyst is approximately constant between pH 4.5 and 6, the drop on hydrogen generation towards neutral pH is strongly indicative of a decreasing activity in proton 50 reduction catalysed by NiP. The exact catalytic mechanism for proton reduction using nickel bis(diphosphine) catalysts is still not fully elucidated, with little evidence of the catalytic intermediates in aqueous media. 41, 42 Although protonation of the reduced Ni species may in principle occur at the pendant amines 55 of the ligand or directly at the Ni metal centre, DFT calculations support protonation of the amines. 41 This agrees with the electrocatalytic dependence on acid concentration bis(diphosphine) nickel electrocatalyst which has explained by the presence of pendant amines in the second coordination sphere 60 of such catalysts. These amines with a relatively low pK_a have been suggested to act as proton relays between the solvent and the metal centre. 13, 18, 19, 43 Although these studies were mainly performed in pure organic solvents or aqueous-organic solvent mixtures in the presence of strong acids, the electrocatalytic 65 proton reduction activity of NiP was observed to increase towards more acidic pH.17 In this article, we detail the dependence of the catalytic activity of NiP on pH in pure water.

Figure 5. Titration of **NiP** (0.57 mM) in KCl (0.1 M) with NaOH ⁷⁰ (0.1 M; blue trace) and the second derivative of the pH with respect to the added volume (red trace). **NiP** dissolves completely upon addition of approximately 120 μL NaOH.

In order to further investigate the drop in the H_2 production yield of the photocatalytic system towards neutral pH, the protonation state of **NiP** at different pH values was studied. The titration of **NiP** with NaOH (0.1 M) shows two equivalence points, at pH \sim 5 and pH \sim 9 (Figure 5). In agreement with previous reports, these processes are assigned to the deprotonation of the pendant amines and the second deprotonation of the phosphonic acid groups, respectively. The assignment of the deprotonation of the amines is further confirmed by the presence of only one equivalence point at pH \sim 5 for the titration of an analogous bis(diphosphine) nickel for the stern groups (**NiP**^{Et}) (Figure S4). A pK_a \sim 3 is

calculated from the Henderson-Hasselbach equation for the pendant amines in the ligand with an equivalence point at pH \sim 5 (see Supporting Information for details), meaning that at pH > 5, the amines are completely deprotonated. Since these amines are considered to play an important role as proton relays between the solvent and the nickel metal centre, ^{18, 19} it is likely that, at less acidic media, the catalytic efficiency is limited by poor of protonation of the pendant amines of the catalyst which inhibits the ability of **NiP** to reduce protons to H₂. It is worth noting that the photosensitiser employed in our studies contains phosphonic acid substituents. This dye was chosen for consistency and to allow for direct comparison with our previous studies. ¹⁷ The pK_a values of **RuP** have been reported to be 1 and 12 and therefore, the buffer capacity of **RuP** within the pH range employed in this study is limited. ^{45, 46}

Our results match well with the strong pH-dependencies reported with other proton reduction photocatalytic systems that employ either AA, triethanolamine (TEOA) or ethylenediaminetetraacetic acid (EDTA) as sacrificial electron donors. If In acidic media, the sacrificial electron donor molecules become protonated, resulting in a poor electron-donating ability due to the anodic shift of the reduction potential. If Hence our studies show that the optimum pH of active homogeneous proton reduction systems is a compromise between electron donating ability of the sacrificial agent and the optimum working environment for the catalyst.

Conclusions

In summary, we have used transient absorption spectroscopy, combined with titration studies, electrochemistry and bulk 30 photocatalytic experiments, to study the pH-dependence of the electron transfer reactions of a ruthenium-based photosensitizer and a nickel bisdiphosphine catalyst for the production of H₂ under visible irradiation. Our results suggest that the yield and kinetics of the electron transfer from the sensitizer to the catalyst 35 are independent of pH. However, at pH < 4.5, the catalysis is limited by the number of RuP- molecules available to reduce the catalyst due to the poor reducing character of undissociated AA. In contrast, at less acidic pH, low TOF_{NiP}(H₂) are observed despite the large concentration of RuP molecules available to 40 reduce NiP. Titration studies of NiP with NaOH show that at pH > 5, the amines are completely deprotonated and electrochemical studies confirm the lower activity at such pH values.¹⁷ Since these amines have been reported to play an important role as proton relays between the solvent and the nickel metal centre, it is 45 likely that the catalytic efficiency is limited by the lack of protonated amines in the nickel catalyst. In the wider context, our studies suggest that the pH of photocatalytic systems using a sacrificial agent has to be adjusted to match the pH at which the dye is effectively reduced by the sacrificial electron donor and the 50 pH at which the catalyst can be efficiently protonated. We have also demonstrated how transient absorption spectroscopy, bulk photocatalytic and electrochemical experiments can be combined for a rational analysis of limiting factors in a homogeneous photocatalytic system.

55 Author contributions

E.P., A.R. and S.S. conducted the spectroscopic experiments. J.R.D. and A.R. designed the experiments. M.A.G. synthesised the compounds and carried out the titration experiments. M.A.G. and E.R. developed the photocatalytic system. E.P., A.R., 60 M.A.G., E.R. and J.R.D. wrote the paper.

Acknowledgements

Financial support from the ERC (291482, Intersolar to J. D.), the EPSRC (EP/H00338X/2 to E. R., DTG scholarship to E. P.), the European Commission Marie Curie CIG (303650, PhotoCO2 to 65 A. R.), the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), and the OMV Group (to E. R.) is gratefully acknowledged.

Notes and references

- ^a Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.; E-mail: j.durrant@imperial.ac.uk.
- ^b School of Chemistry, Newcastle University, Newcastle Upon Tyne, NEI 75 7RU, U.K.; E-mail: anna.reynal@ncl.ac.uk
 - ^cChristian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.;. E-mail: reisner@ch.cam.ac.uk,
- † Electronic Supplementary Information (ESI) available: Se DOI: 10.1039/b000000x/
- B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen,
 T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller and T. F. Jaramillo, *Energy Env. Sci.*, 2013, 6, 1983-2002.
- P. Du and R. Eisenberg, Energy Environ. Sci., 2012, 5, 6012-6021.
- W. T. Eckenhoff and R. Eisenberg, *Dalton Trans.*, 2012, 41, 13004-13021.
- F. Lakadamyali, A. Reynal, M. Kato, J. R. Durrant and E. Reisner, *Chem. Eur. J.*, 2012, 18, 15464-15475.
- A. Krawicz, J. Yang, E. Anzenberg, J. Yano, I. D. Sharp and
 G. F. Moore, J. Am. Chem. Soc., 2013, 135, 11861-11868.
- G. F. Moore and I. D. Sharp, J. Phys. Chem. Lett., 2013, 4, 568-572.
- 7. D. L. DuBois, *Inorg. Chem.*, 2014, 53, 3935-3960.
- 8. H. S. Ahn, T. C. Davenport and T. D. Tilley, *Chem. Commun.*, 2014, 50, 3834-3837.
- J. R. McKone, S. C. Marinescu, B. S. Brunschwig, J. R. Winkler and H. B. Gray, *Chem. Sci.*, 2014, 5, 865-878.
- M. Wang, K. Han, S. Zhang and L. Sun, Coord. Chem. Rev., 2015, 287, 1-14.
- 105 11. A. Reynal, F. Lakadamyali, M. A. Gross, E. Reisner and J. R. Durrant, *Energy Environ. Sci.*, 2013, 6, 3291-3300.
 - 12. F. Lakadamyali and E. Reisner, *Chem. Commun.*, 2011, 47, 1695-1697
- 13. S. Horvath, L. E. Fernandez, A. M. Appel and S. Hammes-Schiffer, *Inorg. Chem.*, 2013, 52, 3643-3652.
- S. Fukuzumi, T. Kobayashi and T. Suenobu, *Angew. Chem. Int. Ed.*, 2011, 50, 728-731.
- T. Stoll, M. Gennari, I. Serrano, J. Fortage, J. Chauvin, F. Odobel, M. Rebarz, O. Poizat, M. Sliwa, A. Deronzier and M.-N. Collomb, *Chem. Eur. J.*, 2013, 19, 782-792.
- 16. A. M. Appel, D. H. Pool, M. O'Hagan, W. J. Shaw, J. Y. Yang, M. Rakowski DuBois, D. L. DuBois and R. M. Bullock, *ACS Catal.*, 2011, 1, 777-785.
- 17. M. A. Gross, A. Reynal, J. R. Durrant and E. Reisner, J.Am.Chem.Soc., 2014, 136, 356-366.

- U. J. Kilgore, J. A. S. Roberts, D. H. Pool, A. M. Appel, M. P. Stewart, M. R. DuBois, W. G. Dougherty, W. S. Kassel, R. M. Bullock and D. L. DuBois, *J.Am.Chem.Soc.*, 2011, 133, 5861-5872.
- 5 19. M. R. DuBois and D. L. DuBois, C. R. Chim., 2008, 11, 805-817.
- A. Dutta, S. Lense, J. Hou, M. H. Engelhard, J. A. S. Roberts and W. J. Shaw, *J.Am. Chem. Soc.*, 2013, 135, 18490-18496.
- 21. P. Du, K. Knowles and R. Eisenberg, *J.Am.Chem.Soc.*, 2008, 130, 12576-12577.
- A. D. Wilson, R. K. Shoemaker, A. Miedaner, J. T. Muckerman, D. L. DuBois and M. R. DuBois, *Proc. Natl. Acad. Sci. U.S.A.*, 2007, 104, 6951-6956.
- 23. M. O'Hagan, M.-H. Ho, J. Y. Yang, A. M. Appel, M. R. DuBois, S. Raugei, W. J. Shaw, D. L. DuBois and R. M. Bullock, *J.Am.Chem.Soc.*, 2012, 134, 19409-19424.
- C. D. Windle, E. Pastor, A. Reynal, A. C. Whitwood, Y. Vaynzof, J. R. Durrant, R. N. Perutz and E. Reisner, *Chem. Eur. J.*, 2015, 21, 3746-3754.
- 20 25. M. Guttentag, A. Rodenberg, R. Kopelent, B. Probst, C. Buchwalder, M. Brandstätter, P. Hamm and R. Alberto, Eur. J. Inorg. Chem., 2012, 2012, 59-64.
 - E. Pastor, F. M. Pesci, A. Reynal, A. D. Handoko, M. Guo, X. An, A. J. Cowan, D. R. Klug, J. R. Durrant and J. Tang, *Phys. Chem. Chem. Phys.*, 2014, 16, 5922-5926.
- B. H. Solis and S. Hammes-Schiffer, *Inorg. Chem.*, 2014, 53, 6427-6443.
- A. Rodenberg, M. Orazietti, B. Probst, C. Bachmann, R. Alberto, K. K. Baldridge and P. Hamm, *Inorg. Chem.*, 2015, 54, 646-657.
- D. E. Polyansky, D. Cabelli, J. T. Muckerman, T. Fukushima,
 K. Tanaka and E. Fujita, *Inorg. Chem.*, 2008, 47, 3958-3968.
- 30. A. Lewandowska-Andralojc, T. Baine, X. Zhao, J. T. Muckerman, E. Fujita and D. E. Polyansky, *Inorg.Chem.*, 2015, 54, 4310-4321.
- 31. J. L. Dempsey, J. R. Winkler and H. B. Gray, *J.Am. Chem. Soc.*, 2010, 132, 16774-16776.
- 32. J. L. Dempsey, J. R. Winkler and H. B. Gray, *J.Am. Chem. Soc.*, 2010, 132, 1060-1065.
- 40 33. D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarström and S. Ott, Chem. Eur. J., 2010, 16, 60-63.
 - W. M. Singh, M. Mirmohades, R. T. Jane, T. A. White, L. Hammarstrom, A. Thapper, R. Lomoth and S. Ott, *Chem. Commun.*, 2013, 49, 8638-8640.
- 45 35. C. Creutz and N. Sutin, J.Am. Chem. Soc., 1976, 98, 6384-6385.
 - D. H. Macartney and N. Sutin, *Inorg. Chim. Acta.*, 1983, 74, 221-228.
 - M. P. McLaughlin, T. M. McCormick, R. Eisenberg and P. L. Holland, Chem. Commun., 2011, 47, 7989-7991.
- 50 38. T. W. Birch and L. J. Harris, Biochem. J., 1933, 27, 595.
- Z. Han, F. Qiu, R. Eisenberg, P. L. Holland and T. D. Krauss, *Science*, 2012, 338, 1321-1324.
- W. R. McNamara, Z. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland and R. Eisenberg, J.Am. Chem. Soc., 2011, 133, 15368-15371.
- 41. A. Kochem, F. Neese and M. van Gastel, *J. Phys. Chem. C*, 2014, 118, 2350-2360.
- E. B. Hulley, K. D. Welch, A. M. Appel, D. L. DuBois and R. M. Bullock, *J.Am. Chem. Soc.*, 2013, 135, 11736-11739.
- 60 43. R. M. Bullock, A. M. Appel and M. L. Helm, *Chem. Commun.*, 2014, 50, 3125-3143.
- K. Swierczek, A. S. Pandey, J. W. Peters and A. C. Hengge, J. Med. Chem., 2003, 46, 3703-3708.
- 45. H. Park, E. Bae, J.-J. Lee, J. Park and W. Choi, *J. Phys. Chem. B*, 2006, 110, 8740-8749.
- M. Montalti, S. Wadhwa, W. Y. Kim, R. A. Kipp and R. H. Schmehl, *Inorg. Chem.*, 2000, 39, 76-84.

1