
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Chemical
Science

www.rsc.org/chemicalscience

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal Name RSCPublishing 

ARTICLE 

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Fluorescence spectroscopy and microscopy as tools 
for monitoring redox transformations of uranium in 
biological systems† 

Debbie L. Jones,a Michael B. Andrews,a Adam N. Swinburne,a Stanley W. 
Botchway,b Andrew D. Ward,b Jonathan R. Lloydc and Louise S. Natrajana,d* 

We report a study of redox reactions of uranium in model conditions using luminescence 
spectroscopy, which with its ease and wide availability has the potential to offer new 
insights into a bioremediation strategy of particular interest – the enzymatic reduction of 
UVIO2

2+ by bacteria such as Geobacter sulfurreducens. The inherent luminescent properties of 
UVIO2

2+ have been combined with confocal fluorescence microscopy techniques and lifetime 
image mapping to report directly on uranium concentration, localisation and oxidation state 
in cellular systems during uranium bioreduction, suggesting that localisation of uranyl 
species on the cell membrane surface plays an important role and that extracellular biogenic 
features form alongside uranyl sorbed cellular species during early stages of the 
bioreduction. The use of confocal microscopy in tandem with lifetime image mapping offers 
both improved temporal and spatial resolution (nanoseconds to microseconds and sub-micron 
respectively) than more conventional X-ray based techniques and offers the potential to image 
redox reactions occurring in situ. Together, these techniques provide an excellent and sensitive 
probe to assess the coordination environment of uranium during bioreduction processes that are 
currently being considered for remediation strategies of redox active radionuclides present in 
contaminated land.   
 
 

 

Introduction 

The oxidation state of any metal is of vital importance when 
considering their impact on biological and environmental 
systems. Oxidation state determines the coordination geometry, 
bond strength, and Lewis acidity (and therefore the tendency to 
undergo oligomerisation) and underpins speciation of the metal 
ion. Additionally, many metal ions are involved in oxidative 
stress, which arises from the formation of reactive oxygen or 
nitrogen species and has been implicated in a wide range of 
diseases.1 Optical spectroscopy provides a convenient, non-
destructive, and direct method of monitoring the electronic 
structure of metal ions in complex systems. Luminescence 
spectroscopy in particular combines high sensitivity, broad 
applicability, and low cost, making it an attractive option for 
studying metal oxidation states over more technologically 
demanding and/or restricted techniques such as X-ray 
diffraction, X-ray absorption and electron paramagnetic 
resonance techniques (XRD, XAS, EPR) which often require 
extensive sample preparation. It has also been combined with 
optical microscopy to form fluorescence microscopy, confocal 
microscopy, and, more recently, two-photon excitation 
microscopy2 and super resolution microscopy,3 which can 

provide both spatial and temporal data on a variety of chemical 
species in a biological setting.4, 5 
 
Luminescence spectroscopy is an ideal technique for the study 
of uranium speciation. Since the development of nuclear power 
and weapons, containment breaches at all stages of the fuel 
cycle have led to elevated levels of uranium in the 
environment.6 Although there are concerns associated with its 
radioactivity and long half-life, the hazards of uranium are 
primarily due to its chemical toxicity.7 The dominant form of 
uranium under oxic, environmental conditions is UVIO2

2+, a 
potent nephrotoxin. The uranyl cation is also very soluble and 
hence mobile in groundwater and biological systems, therefore 
remediation techniques focus largely on the reduction of 
UVIO2

2+ to the less soluble UIV cation.8 The inherent 
photophysical properties of the uranyl cation, arising from 
partially forbidden charge transfer transitions from oxo-based 
molecular orbitals to non-bonding, unoccupied f-orbitals,9, 10 
provide a convenient means of monitoring uranyl 
concentration, speciation, and movement without the need of 
additional imaging agents (such as dye probes). Despite recent 
time-resolved laser fluorescence spectroscopy (TRLFS) studies 
into the bioaccumulation of uranium,11 the use of optical 
techniques has been largely underutilised in favour of assay-
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based and scintillation techniques, to provide concentration 
data, and X-ray-based techniques such as EXAFS and EDX 
(coupled with electron microscopy), to provide structural data. 
  
Here, we report the use of luminescence spectroscopy in 
combination with confocal fluorescence and phosphorescence 
microscopy and lifetime image mapping in the study of a 
process of great interest to the remediation of uranium in the 
environment – the bioreduction of UVIO2

2+ to insoluble UIV-
based mineral-type structures by endogenous bacterial 
populations.  
 
 
Results and Discussion 
 
Luminescence Spectroscopy 
The bacterium chosen for this study, Geobacter sulfurreducens, 
is a Gram negative bacterium that is ubiquitous in subsurface 
soils. Geobacter sulfurreducens is well known to enzymatically 
reduce UVIO2

2+  under anaerobic conditions12-15 and was grown 
according to literature precedent.16 This reduction process has 
previously been studied by assay-based techniques to yield 
concentration data12 and EXAFS to give structural data,14 
however many questions still remain on the exact enzymatic 
mechanisms responsible for the reduction process and despite 
its sensitivity and greater spatial resolution, luminescence 
spectroscopy remains underutilised in this field. Under the 
conditions required for bioreduction to occur (30 mM NaHCO3, 
5 mM UO2(CH3CO2)2, see ESI for further details) in the 
absence of bacterial cells, excitation at 420 nm resulted in 
characteristic uranyl emission centred at 525 nm. Strong 
coupling of the electronic energy levels with the Raman active 
symmetric O-U-O stretching mode often results in a 
vibronically resolved spectrum with several distinct emission 
bands between 450 and 650 nm. The spectra observed here 
show a single broad peak consistent with emission from uranyl 
at near-neutral and basic conditions.17-19 The luminescence 
lifetime could not be modelled adequately as a single 
exponential decay (Table 1), and instead was fitted to 
abiexponential decay with two components of 2.2 μs and 7.1 
μs, each contributing approximately equally. Thermodynamic 
modelling carried out using the PHREEQC20 software package, 
suggests that under these conditions, uranium exists primarily 
as carbonate complexes UO2(CO3)3

4- (83 %), UO2(CO3)2
2- 

(8 %), and (UO2)3(CO3)6
6- (3 %). As most uranyl carbonate 

complexes are known to be non-emissive at room 
temperature,21 it is likely that minor oligomeric and uranyl 
hydroxide species contribute disproportionately to the emissive 
properties of the system.  

 
Fig. 1. Emission spectra of the uranyl cation in a carbonate buffer 
solution (30 mmol) in the presence of Geobacter sulfurreducens at 
room temperature (solid line) and 77 K (dotted line), (λex = 420 nm). 

Aliquot obtained immediately after introduction of UO2(CH3CO2)2 

(5 mmol) to microcosm and brief agitation.     
 
In the presence of metabolically active washed cell suspensions 
of Geobacter sulfurreducens a change in the emissive 
properties was observed (Fig. S1), with the steady-state 
emission spectrum showing subtle changes in profile significant 
increases in intensity the luminescence lifetime to 8.8 (61 %) 
and 21 μs (39 %). As aliquots taken from a bacterial cell 
suspension in the absence of uranium show little 
autofluorescence or scattering (ESI, Fig. S1) these results 
represent a change in uranyl speciation in the presence of 
bacteria, suggesting that either the uranyl is sorbing onto the 
surface of the cells, being taken up into the cells, or that the 
bacteria are releasing biogenic complexants. Indeed, efficient 
biosorption of uranium onto living and dead cellular material 
and the complexation of uranyl species by biogenic carbonate 
and phosphate are well-known phenomena,6 however, 
interestingly, these have not previously been implicated as a 
step in the bioreduction of UVI. 
 
 
Table 1. Collected lifetime data from various solutions, percentages 
indicate contribution to biexponential decay model.  
Solution Temp/

K 
Emission 
Lifetime/μs (%)  

5 mM UO2(CH3CO2)2, 30 
mMNaHCO3  

293  2.21 ± 0.13 (51) 
7.06 ± 0.31 (49) 

5 mM UO2(CH3CO2)2, 30 mM 
NaHCO3,  Geobacter sulfurreducens  

293 8.84 ± 0.46 (61) 
20.98 ± 1.17 (39) 

5 mM UO2(CH3CO2)2, 30 mM 
NaHCO3  

77 1198.20 ± 9.02 

5 mM UO2(CH3CO2)2, 30 mM 
NaHCO3,  Geobacter sulfurreducens 

77 1125.62 ± 12.63  

 
In a frozen solution at 77 K, the corresponding emission 
spectrum was significantly more well-resolved (Fig. 1), with 
the radiative decay now exhibiting monoexponential kinetics 
and a determined lifetime of 1125 μs. This suggests a shift in 
speciation toward a single emissive complex. It appears that if 
the interaction of UVIO2

2+ with the cells is maintained at this 
temperature it does not significantly contribute to the 
fluorescent properties of the system. Indeed, at this 
temperature, the structural integrity of the cellular structure of 
the bacteria is likely to be compromised. A control study with a 
uranyl nitrate solution shows the same steady-state spectrum 
and emission lifetime (ESI), demonstrating that the emissive 
species in the presence of Geobacter sulfurreducens is not a 
uranyl acetate complex. Uranyl carbonate species are known to 
be emissive under cryogenic conditions,21, 22 showing 
significant variation in both the energy of the vibronic bands 
and the emission lifetimes. Comparison of the peak values and 
lifetime measurements with literature reports for uranyl 
carbonate and hydroxide species21-23 did not allow 
identification of the emissive species in this system; it does 
however suggest that if multiple species were present, this 
would be visible in both the steady-state and time-resolved 
spectra. The simplified speciation enabled the concentration of 
uranyl to be monitored and quantified over the course of the 
bioreduction experiment (see ESI for calibration experiments). 
At regular time points an aliquot of the solution was removed 
from the reaction and frozen in liquid nitrogen, an emission 
spectrum was then obtained under a standardised instrumental 
set-up (see ESI for further details). Over eight hours the 
emission intensity showed a general decrease, and after one day 
the solution was completely non-emissive, suggesting that 
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outer membrane of the Gram-negative bacterial cell, such as 
cytochromes (including c-type) which have been implicated in 
the reduction of uranium37 and those that are known to bind 
UVIO2

2+.38, 39, 40 The identification of extracellular material has 
suggested the applicability of this technique to the study of 
other bioremediation techniques such as biosorption, 
bioaccumulation and biomineralisation. This approach could 
provide new insights into the fate of uranium in more complex 
microbial-mineral-ground water systems, which are currently 
poorly understood. Further work will also aim at incorporating 
two-photon microscopy as a potential means of providing 
additional spectroscopy and spatial data.  
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