Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Chemical Science

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Highly bright mechanoluminescence and remarkable mechanochromism based on a tetraphenylethene derivative with aggregation-induced emission[†]

Bingjia Xu,^{‡1,2} Jiajun He,^{‡1} Yingxiao Mu,¹ Qiangzhong Zhu,² Sikai Wu,¹ Yifan Wang,³ Yi Zhang,^{*1} Chongjun Jin,² Changcheng Lo,³ Zhenguo Chi,^{*1} Alan Lien,⁴ Siwei Liu,¹ and Jiarui Xu

Organic materials exhibiting mechanoluminescence (ML) are promising for usages in displays, lighting and sensing. However, the mechanism for ML generation remains unclear, and the light-emitting performance of organic ML materials in solid state has been severely limited by the aggregation-caused quenching (ACQ) effect. Herein, we present two strongly photoluminescent polymorphs (i.e., Cg and Cb) with distinctly different ML activities based on a tetraphenylethene derivative P_4TA . As an aggregation-induced emission (AIE) emitter, P_4TA perfectly surmounted the ACQ, making the resultant block-like crystals in the C_g phase exhibit brilliant green ML under daylight at room temperature. The ML-inactive prism-like crystals C_b can also turn on its ML by transiting toward C_g with the aid of dichloromethane vapors. Moreover, the Cg polymorph shows ML and mechanochromism simultaneously and respectively without and with UV irradiation under force stimulus, thus suggesting a feasible design direction for developing efficient and multifunctional ML materials.

Introduction

The mechanoluminescence (ML) phenomenon has been first found by Francis Bacon in 1605.1 Heretofore, research on exploiting advanced ML materials has not yet been a major focus.² The materials with brilliant ML are actually of great importance from both fundamental and practical viewpoints because they are promising for usages in displays, as well as light source and sensors.^{2,3} However, the comprehensive understanding on the crystal properties required for ML activity and the corresponding mechanisms is less well demonstrated.

E-mail: ceszy@mail.sysu.edu.cn;chizhg@mail.sysu.edu.cn;

xjr@mail.sysu.edu.cn; Fax: +86 20 84112222;Tel: +86 20 84112712. ^b State Key Laboratory of Optoelectronic Material and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275. China

^c Shenzhen China Star Optoelectronics Technology Co., Ltd, Guangdong, China

This lack in understanding leads to the feasible design principles of these emitters, particularly those with satisfactory ML brightness, being rarely found.⁵ As reported previously, the performance of organic ML compounds can be related to both their molecular and molecular-assembly structures.⁶ Therefore, controlling the molecular arrangements in the solid state and achieving a molecular-level understanding of the relationship between the molecular conformations and packing characteristics and the resulting optical properties are the essential issues in obtaining efficient ML materials.

Notably, non-covalent intermolecular interactions, such as π - π stacking and hydrogen bonding, are important in constructing the supramolecular systems.⁷ These interactions are able to influence the final packing structure strongly, thereby making polymorphism with different ML activities more probable.^{6a,8} Nevertheless, in most cases, typical π - π stacking interactions often lead to aggregation-caused quenching, which poses

Fig. 1 Molecular structure of P₄TA.

^a PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry and Chemical Engineering, Sun Yet-sen University, Guangzhou 510275, China.

^d TCL Corporate Research, Guangdong, China

[†] Electronic Supplementary Information (ESI) available: Details of the synthesis; structure information of the compound (NMR, IR, and mass spectra); Table S1-S5; Fig. S1-S11. See DOI: 10.1039/b000000x/

[‡] Theses authors contributed equally to the preparation of this work.

significant difficulties in developing high-performance ML materials.^{4b,9} By contrast, a diametrically opposed effect is recently operative in a class of chromophores with twisted conformations (*e. g.*, tetraphenylethene derivatives), which exhibit enhanced emission in the solid state with respect to the fluid solution.¹⁰ The discovery of this abnormal phenomenon, known as the aggregation-induced emission (AIE), has sparked a rapid expansion in the field of photoluminescent sensors and electroluminescent devices.¹¹ AIE also provides new possibilities for designing highly mechanoluminescent materials.

This study presents a new polymorphic system that can be facilely and controllably constructed using a tetraphenylethene derivative [*i. e.*, 5-(4-(1,2,2-triphenylvinyl)phenyl)thiophene-2carbaldehyde (P₄TA)] as the building blocks (Fig. 1). The two crystalline polymorphs of P₄TA show strong blue- and greencolored photoluminescence (PL). The blue-light crystals are significantly ML inactive, whereas the green-light ones are highly mechanoluminescent because of its distinctly different molecular packing mode and unique AIE character. The existence of polymorphs from the same molecule with exactly opposite properties provides a unique prototype to investigate the crystalline structures required for ML activity and the effect of AIE property on ML enhancement. The relationship between the ML and the mechanofluorochromism of P₄TA is also presented.

Results and discussion

 P_4TA was straightforwardly prepared through a palladiumcatalyzed coupling reaction by introducing 2-thiophenaldehyde to the tetraphenylethene moiety (Scheme S1). The purified material was then characterized using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. The satisfactory data obtained fully confirmed its expected molecular structure (ESI).

The UV-visible absorption spectrum of P4TA was measured in a dichloromethane (DCM) solution. Two absorption bands centered at 317 and 366 nm were observed. These two bands were associated with the π - π * transition and the intramolecular charge transfer, respectively (Fig. S1). The large Stokes shift (68,027 cm⁻¹) between the absorption and the fluorescence spectra ($\lambda_{em,max}$ =513 nm) of P₄TA in DCM was indicative of the structural difference between the ground and excited states. The resulting P₄TA compound would probably also be AIE-active in considering that tetraphenylethene is the most frequently used AIE unit. To identify this probability, a tetrahydrofuran (THF) solution of P₄TA was titrated with water and the change in fluorescence emission was monitored. P4TA exhibited an extremely weak emission in the THF solution, where it was well dissolved (Fig. 2a). Hence, almost no PL signal was recorded. However, when 90% (v/v) of water was added, a strong green emission peaked at 499 nm was observed and the corresponding intensity (~705 a. u.) dramatically increased by up to ~ 100 times as compared to that at 0% water fraction (~ 7 a. u.). Adding water to the THF solution of P₄TA significantly induced the formation of nanoparticle because P₄TA molecules contained highly hydrophobic aromatic rings. In other words, the emission enhancement was caused by molecule aggregation which suggested that P4TA was AIE-active.¹²

The prominent AIE character of P_4TA motivated the application of material in the solid state. Accordingly, block-like crystals (Cg-form) were achieved through solvent evaporation of P_4TA in the mixture solvent of *n*-hexane and

Page 2 of 6

Fig. 2 a) PL spectra of the dilute solutions of P₄TA in water/THF mixtures with different water fractions (f_w). The inset depicts the emission images of the compound in pure THF and 90% water fraction mixtures under 365 nm UV illumination (10 μ M). b) PL spectra of P₄TA in different phases.

DCM (Fig. S2a). Compared to the emissive nanoaggregates in THF/H₂O, the as-prepared sample C_g exhibited even a stronger green-light emission centered at 498 nm [$\Phi_{\rm F,s}$ =52%] (Fig. 2b). By grinding the C_g crystals with a pestle or shearing them with a spatula, a highly bright green light emission peaking at 517 nm was observed in the dark without UV irradiation (Figs. 3a and 3c, and Video S1). This experiment unambiguously illustrated that P_4TA in C_g -form was ML-active. The strong ML of Cg was indeed clearly seen even under daylight at the room temperature and maintained while the crystals were crushed (Fig. 3c and Video S2). Certain organic materials, such as coumarin, phenanthrene, N-acetyl anthranilic acid, N-isopropyl carbazole and N-phenyl imides, were also reported to show mechanoluminescent activities. However, none of these materials could emit a ML strong enough to be observed with the naked eye under daylight at the room temperature.^{5,13} The poor performance of the conventional organic ML materials should be attributed to their intrinsic ACQ property, which led to the low emitting efficiency in the solid state. By contrast, the unique AIE feature of P4TA perfectly surmounted the ACQ effect and exhibited a positive effect on luminescence enhancement, thereby giving a brilliant ML of Cg. To further demonstrate the ML characteristic of Cg, a simple device was made by sandwiching the sample between two pieces of presculptured glasses. The capital letters 'AITL' were clearly displayed when pressure was used as the driven force, which suggested the ML 'display capability' of Cg (Fig. 3b). As such,

the extraordinary AIE-active ML material as P_4TA will be a promising candidate for displays and optical recording.

Interestingly, another type of prism-like crystals (C_b-form) was observed while exploring different processing conditions. The C_b-form crystals, which showed an intense blue-light emission peaked at 476 nm ($\Phi_{\rm Fs}$ =36%), could be obtained by adding ethanol into a P₄TA/DCM solution under the action of ultrasonic (Fig. S2b). However, in contrast to the vivid C_{g} phenomenon, the P₄TA sample completely lost its ML activity when aggregated in the C_b-form (Fig. 3a). The C_b crystals showed a small melting endothermic shoulder peak at 191 °C and a sharp peak at 198 °C in the first heating curve of differential scanning calorimetry (DSC) (Fig. 4a), indicating that C_b was mainly composed by the microcrystals melted at 198 °C. This result was different from that of C_g melted at 206 ^oC. Moreover, the powder X-ray diffraction (XRD) spectra also exhibited distinctly different patterns for the two samples (Fig. 4b). These results implied that the different ML activities between Cg and Cb might be attributed to their dissimilar molecular packing modes. A single crystal X-ray analysis was thus performed for the P₄TA crystals to obtain more insight into this aspect. The single crystals with two polymorphs (*i. e.*, SC_{e} and SC_b) suitable for the X-ray structural analysis were isolated through the slow solvent evaporation of P₄TA in the mixtures of ethanol and CHCl₃ with different concentrations.

The SC_g and SC_b samples emitted intense green and blue lights peaked at 499 and 476 nm, respectively (Figs. 2b and 5a-5b). These lights were similar to those of the as-prepared

Fig. 3 a) ML spectra of P_4TA in different phases. b) The image of capital letters 'AITL' shown through ML of P_4TA in the dark under the pressure stimulus at room temperature. c) ML images of P_4TA in the dark (left) and under daylight (right) at room temperature. d) Writable mechanochromic fluorescence of P_4TA demonstrated by capital letters 'PAIE' generated with a metal rod.

Fig. 4 DSC curves a) and XRD patterns b) of P₄TA in different phases.

crystals of C_g and C_b. The main peaks of the simulated XRD patterns of SCg and SCb also agreed well with those in the patterns obtained from P₄TA in the C_g and C_b phases, which suggested that the initial powders were mainly composed of P₄TA microcrystals in the polymorphs of SC_g and SC_b (Fig. 4b). Further systematic analysis revealed that both SCg and SCb belonged to the non-centrosymmetric polar space group of P(2)1 (Table S1). Some previous reports had showed that the dipolar structures and the non-centrosymmetric molecular arrangements were in favor of obtaining the piezoelectric properties, which were closely pertinent to the ML activities of the crystals.¹⁴ In principle, the fracture of crystals with a strong piezoelectric effect will lead to electronic discharge at the crack surface, which would result in dye excitation and generation of ML for the crystals.^{5,15} The molecular structure of P₄TA and the crystalline symmetry of SCg and SCb also met the requirements of piezoelectric properties, thus making the as-prepared crystals of C_g and C_b more impetus and more possibility to achieve the ML character. However, the dipole moments and the HOMO-LUMO band gaps (ΔE_g) of the molecules in SC_g and SC_b polymorphs were different. These differences were caused by their distinct molecular conformations and packing characteristics. The asymmetric units in both polymorphs (i. e., SC_{g} and SC_{b}) were composed of two crystallographically independent molecules (i.e., SCg1 and SCg2 for SCg, and SCb1 and SC_{b2} for SC_{b}). Each molecule showed the formation of a C-H...O intermolecular hydrogen bond (Figs. 5a-5b, Figs. S3 and S4). Compared with SC_b , the most notable conformational difference of P4TA in the SCg polymorph was the dihedral

Fig. 5 Stacking modes and intermolecular interactions of the molecules in polymorphs SC_b a) and SC_g b); the insets show the fluorescence images of SC_b and SC_g under an excitation of 365 nm UV light. c) HOMO (lower images) and LUMO (upper images) of the four conformations of P₄TA in polymorphs SC_b and SC_g calculated at the B3LYP/6-31G (d, p) level.

angle θ between the thiophene and the adjacent phenyl ring. While the conformations of P₄TA were twisted (θ =18.9° for SC_{g1} and 6.1° for SC_{g2}) in polymorph SC_g, the two aromatic rings were nearly coplanar in polymorph SC_b (θ =2.5° for SC_{b1} and 4.7° for SC_{b2}) (Table S2). In the case of SC_g, the two thiophene rings of SC_{g1} and SC_{g2} were almost vertical to each other, showing a dihedral angel of 85.8°. By contrast, an antiparallel packing mode was observed between the thiophene rings of SC_{g1} and SC_{g2} (θ =3.7°) in SC_b.

The most popular B3LYP density functional theory was then used to calculate the dipole moments and the $\Delta E_{\rm g}$ of P₄TA in the four conformations at the 6-31G (d, p) level based on their ground state geometries in the single crystals. Fig. 5c presents the results. The dipole moments of SC_{g1} and SC_{g2} in the SC_{g} polymorph were 5.24 and 4.96 debye (D), respectively. Both values were larger than those of SC_{b1} (4.64 D) and SC_{b2} (4.78 D) in SC_b. The larger dipole moments of the molecules combining the non-centrosymmetric molecular arrangement may result in a larger net-dipole moment of the crystalline structure, and would subsequently lead to a stronger piezoelectric effect in the SCg polymorph when breaking the crystals. The theoretical calculation results also suggested that the molecules in both SCg and SCb had ICT characteristics: the electronic transitions (mainly from HOMO to LUMO for all the four conformations in SC_g and SC_b) from the occupied orbitals delocalized over the TPE (donor) moiety to the thiophenaldehyde (acceptor) moiety made major contributions to the excited states (Fig. 5c and Table S4).¹⁶ SC_{g1} and SC_{g2} showed even smaller ΔE_g (HOMO→LUMO) values at 3.38 and 3.40 eV, respectively, as compared to those of SC_{b1} (3.62 eV) and SC_{b2} (3.50 eV) in the SC_b polymorph. The calculations showed good agreement with the solid state UV-Visible spectra of Cg and Cb which absorbed

at 373 nm and 367 nm, respectively (Fig. S5). The preceding results thus indicate that the electrons of the molecules in SC_{g} can be excited with a lower energy. Hence, the stronger piezoelectric effect and the lower electronic transition energy made for the excitation of P₄TA molecules and the generation of ML in the SCg phase by breaking the crystals. Meanwhile, all the molecules adopted a highly twisted propeller-like conformation in the ${\rm SC}_{\rm g}$ polymorph, which prevented the formation of detrimental species, such as excimers or exciplexes, caused by π - π stacking interactions. Furthermore, numerous intermolecular interactions of C-H··· π and C-H···S might also exist in the crystals aside the C-H...O hydrogen bonding (Fig. 5b and Table S3). These multiple interactions had rigidified the molecular conformations and impeded the intramolecular rotations, which largely reduced the energy loss via non-radiative relaxation channels, and subsequently resulted in a notable AIE effect and high $\Phi_{F,s}$ value for P₄TA. The preceding factors consequently made the ML of sample Cg, which was mainly composed of P₄TA microcrystals in SC_g polymorph, highly emissive under the stimulus of mechanical force. By contrast, the weaker piezoelectric effect in the SC_b polymorph seemed not to reach the higher energy requirement for the electronic excitation although SCb also exhibited strong photoluminescence. Consequently, P₄TA lost its ML activity when aggregated in the C_b phase. These results also suggested a feasible design direction for the development of efficient ML materials by combining the prominent piezoelectric property for molecular excitation and the abnormal AIE character for emission.

The PL of C_b has been remarkably changed when the sample was exposed to DCM or aceton vapors for about 10 min, passing from an initial blue to green light at 499 nm (C_{bf} -form).

The resulting spectrum of Cbf was superimposable on that of Cg (Fig. 2b). The coincidence of PL emissions suggested that the fumed sample of Cbf probably took the same molecular arrangement with that of the Cg polymorph. Further evidence for this standpoint was provided by their similar XRD patterns and their overlapped DSC curves with the same melting point at 206 °C (Figs. 4a and 4b). As mentioned in the preceding discussion, sample C_g was ML-active. And expectantly, the ML activity of C_b could be tuned by simply altering the molecular packing mode upon fumigation. To verify this hypothesis, the ML spectrum of C_b was collected after exposure to DCM vapors (Cbf). As anticipated, Cbf also exhibited a strong green light emission without UV irradiation by pressure, which revealed that the ML of C_b was facile to be turned on with the aid of DCM vapors. The ML emission maximum of C_{bf} located at 520 nm, which was close to that of C_g (Fig. 3a).

Noticeably, the ML maxima of \tilde{C}_g and C_{bf} were both significantly red-shifted ($\Delta \lambda_{em,max} \approx 21$ nm) as compared to their

Fig. 6 XRD patterns a) and DSC curves b) of the ground samples of P_4TA : (G_b) ground sample from blue-light crystals; (G_g) ground sample from greenlight crystals.

PL spectra. This result shows a special mechanofluorochromic effect. To gain an understanding of this, the influence of applied pressure on the luminescence was investigated. The PL maximum of the pristine P_4TA in the C_g -form shifted from 498 nm to 521 nm (G_g) after pressing or grinding (Fig. 2a), agreed well with its ML emission (Fig. S6), thereby confirming that the bathochromic shift between ML and PL of C_g was caused by its intrinsic mechanochromic property. The phase characteristic of the ground sample G_g was determined by XRD

to decipher further the relationship between the ML and the mechanochromism of Cg. Most of the diffraction peaks were diffuse or even disappeared although some resolvable peaks of G_g were consistent with those of their original crystals (Fig. 6a). This revealed that the ground sample was partially in a metastable amorphous state. Accordingly, DSC was performed for the sample after grinding (Fig. 6b). Compared with C_g , an additional exothermal peak around 86 °C was observed in the DSC thermogram of $G_{g}\!,$ which demonstrated that the C_{g} crystals were partially destroyed and converted to an amorphous state by the grinding or pressing treatment. The P₄TA molecules in the C_g phase adopted twisted conformations in the crystalline state to fit into the crystalline lattice, and the crystalline lattices may collapse when triggered with mechanical force. The dye molecules then also relaxed to a more planar conformation, thereby emitting the redder ML and PL. In other words, the bathochromic shift of ML for C_g is originated from the microcrystal amorphization and the extension of molecular conjugation, which were believed to be the main reasons for the Cg mechanochromism.^{16,17} Unlike other conventional stimuli-responsive materials, the Cg-form of P₄TA can show luminescence response and luminescence color change simultaneously and respectively without and with UV irradiation under force stimulus. This new kind of forceresponsive material with AIE property had not yet been achieved before, and would facilitate applications of ML materials in the field of sensors.^{11c} In addition, the fluorescence spectroscopy was also performed to evaluate the mechanochromic behavior of P₄TA in the C_b phase, and the C_b sample exhibited a more remarkable emission wavelength change of 47 nm upon grinding. Furthermore, the corresponding PL spectrum (G_b) with $\lambda_{em,max}$ =523 nm fitted well with that for the powder ground from Cg (Fig. 2b), which indicated that P₄TA could switch to the same emission under force stimulus regardless of its initial state. Also the fluorescence 'writability' of Cb can be verified when being written on a piece of filter paper as shown in Fig. 3d. The mechanofluorochromism of C_b should undergo the similar mechanism proposed for Cg.

Conclusions

Based the AIE-active P_4TA molecules, two on photoluminescent polymorphs (i.e., Cg and Cb) with multiple molecular conformations were achieved. They can show opposite mechanoluminescent activities by tuning the molecular assembly structures in the crystals. The block-like crystals of Cg exhibited highly bright green color ML upon pressing or grinding under daylight at room temperature. This unique property should be attributed to the strong piezoelectric effect of the crystals and the positive effect of the AIE property on luminescence enhancement. Moreover, with UV irradiation, the Cg of P4TA showed mechanofluorochromism under mechanical stimulus. This new kind of force-responsive compound with the AIE property would facilitate applications of ML materials in the display and sensor fields. This work may provide a feasible design direction for developing more efficient ML materials by combining the prominent piezoelectric property for molecular excitation and the unique AIE character for emission.

Acknowledgements

The authors gratefully acknowledge the financial support from the NSF of China (51173210, 51073177), the Fundamental

Page 6 of 6

Research Funds for the Central Universities and NSF of Guangdong (S2011020001190).

Notes and references

- (a) N. C. Eddingsaas and K. S. Suslick, *Nature*, 2006, 444, 163. (b)
 N. C. Eddingsaas and K. S. Suslick, *J. Am. Chem. Soc.*, 2007, 129, 6718.
- 2 S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, *Energy Environ. Sci.*, 2014, **7**, 3338.
- 3 (a) S. Moon Jeong, S. Song, S. K. Lee, and B. Choi, *Appl. Phys. Lett.*, 2013, **102**, 051110. (b) S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, *Adv. Mater.*, 2013, **25**, 6194. (c) D. O. Olawale, T. Dickens, W. G. Sullivan, O. I. Okoli, J. O. Sobanjo, and Ben Wang, *J. Lumin.*, 2011, **131**, 1407. (c) I. Sage and G. Bourhill, *J. Mater. Chem.*, 2001, **11**, 231. (d) Y. Tsuboi, T. Seto, and N. Kitamura, *J. Phys. Chem. B*, 2003, **107**, 7547.
- 4 (a) Gordon E Hardy, J. C. Baldwin, J. I. Zink, W. C. Kaska, P. H. Liu, and L. Duboisi, *J. Am. Chem. Soc.*, 1997, 99, 3552. (b) L. M. Sweeting, A. L. Rheingold, J. M. Gingerich, A. W. Rutter, R. A. Spence, C. D. Cox, and T. J. Kim, *Chem. Mater.*, 1997, 9, 1103. (c) L. M. Sweeting, *Chem. Mater.*, 2001, 13, 854.
- 5 H. Nakayama, J. I. Nishida, N. Takada, H. Sato, and Y. Yamashita, *Chem. Mater.*, 2012, **24**, 671.
- 6 (a) G. E. Hardy, J. I. Zink, W. C. Kaska, and J. C. Baldwin, J. Am. Chem. Soc., 1978, 100, 8001. (b) G. E. Hardy, W. C. Kaska, B. P. Cbandra, and J. I. Zink, J. Am. Chem. Soc., 1981, 103, 1074. (c) E. Boldyreva, Chem. Soc. Rev., 2013, 42, 7719.
- 7 (a) H. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, and Y. Wang, *Adv. Mater.*, 2006, 18, 2369. (b) K. Wang, H. Zhang, S. Chen, G. Yang, J. Zhang, W. Tian, Z. Su, and Y. Wang, *Adv. Mater.*, 2014, 26, 6168.
- 8 L. M. Sweeting and A. L. Rheingoldf, J. Am. Chem. Soc., 1987, 109, 2652.
- 9 (a) R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, and B. R. Hsieh, *J. Phys. Chem. A*, 1999, **103**, 2394. (b) K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, *Adv. Funct. Mater.*, 2008, **18**, 67. (c) P. Galer, R. C. Korošec, M. Vidmar, and B. Šket, *J. Am. Chem. Soc.*, 2014, **136**, 7383.
- (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, and D. Zhu, *Chem. Commun.*, 2001, 1740. (b) B. K. An, S. K. Kwon, S. D. Jung, and S. Y. Park, *J. Am. Chem. Soc.*, 2002, **124**, 14410. (c) H. Tong, Y. Hong, Y. Dong, M. H u ler, J. W. Y. Lam, Z. Li, Z. Guo, Z. Guo, and B. Z. Tang, *Chem. Commun.*, 2006, 3705. (d) W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma, and B. Z. Tang, *Adv. Mater.*, 2010, **22**, 2159. (e) B. Xu, M. Xie, J. He, B. Xu, Z. Chi, W. Tian, L. Jiang, F. Zhao, S. Liu, Y. Zhang, Z. Xu, and J. Xu, *Chem. Commun.*, 2012, **49**, 273. (f) C. Li, T. Wu, C. Hong, G. Zhang, and S. Liu, *Angew. Chem. Int. Ed.*, 2011, **51**, 455.
- (a) Y. Hong, J. W. Y. Lam, and B. Z. Tang, *Chem. Commun.*, 2009, 4332.
 (b) Y. Hong, J. W. Y. Lam, and B. Z. Tang, *Chem. Soc. Rev.*, 2011, 40, 5361.
 (c) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, and J. Xu, *Chem. Soc. Rev.*, 2012, 41, 3878.
 (d) Z. Zhao, J. W. Y. Lam, and B. Z. Tang, *J. Mater. Chem.*, 2012, 22,

23726. (e) Y. Gong, Y. Zhang, W. Z. Yuan, J. Z. Sun, and Y. Zhang, *J. Phys. Chem. C*, 2014, **118**, 10998.

- (a) B. Xu, Z. Chi, H. Li, X. Zhang, X. Li, S. Liu, Y. Zhang, and J. Xu, *J. Phys. Chem. C*, 2011, **115**, 17574. (b) Z. Yang, W. Qin, J. W. Y. Lam, S. Chen, H. H. Y. Sung, I. D. Williams, and B. Z. Tang, *Chem. Sci.*, 2013, **4**, 3725.
- 13 (a) J. I. Zink and W. Klimt, J. Am. Chem. Soc., 1974, 96, 4960. (b) P. Jha and B. P. Chandra, Luminescence, 2014, 29, 977.
- (a) S. Biju, N. Gopakumar, J. C. G. Bünzli, R. Scopelliti, H. K. Kim, and M. L. P. Reddy, *Inorg. Chem.*, 2013, **52**, 8750. (b) S. Balsamy, P. Natarajan, R. Vedalakshmi, and S. Muralidharan, *Inorg. Chem.*, 2014, **53**, 6054.
- 15 L. S. McCarty and G. M. Whitesides, *Angew. Chem. Int. Ed.*, 2008, 47, 2188.
- 16 R. Misra, T. Jadhav, B. Dhokale, and S. M. Mobin, *Chem. Commun.*, 2014, **50**, 9076.
- 17 (a) W. Z. Yuan, Y. Tan, Y. Gong, P. Lu, J. W. Y. Lam, X. Y. Shen, C. Feng, H. H. Y. Sung, Y. Lu, I. D. Williams, J. Z. Sun, Y. Zhang, and B. Z. Tang, *Adv. Mater.*, 2013, 25, 2837. (b) Y. Gong, Y. Tan, J. Liu, P. Lu, C. Feng, W. Z. Yuan, Y. Lu, J. Z. Sun, G. He, and Y. Zhang, *Chem. Commun.*, 2013, 49, 4009. (c) P. Gautam, R. Maragani, S. M. Mobin, and R. Misra, *RSC Adv.*, 2014, 4, 52526.