RSC Advances

Concumisivi

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Targeting the colchicine site in tubulin through cyclohexanedione derivatives

Maria-Dolores Canela, ${ }^{\#}$ Oskía Bueno, ${ }^{\#}$ Sam Noppen, ${ }^{\dagger}$ Gonzalo Sáez Calvo, ${ }^{\circ}$ Juan Estévez Gallego, ${ }^{\circ}$ J. Fernando Díaz, ${ }^{\circ}$ Maria-José Camarasa, ${ }^{\#}$ Sandra Liekens, ${ }^{\dagger}$ María-Jesús Pérez-Pérez ${ }^{\#}$ and Eva-Maria Priego ${ }^{\not{ }^{* *}}$
\# Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
${ }^{\dagger}$ KU Leuven - University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium.
${ }^{\circ}$ Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain

TITLE RUNNING HEAD: Colchicine-site binders based on cyclohexanediones

CORRESPONDING AUTHOR FOOTNOTE

Eva-María Priego

Instituto de Química Médica (CSIC)

Juan de la Cierva 3, 28006 Madrid (Spain)

Phone: +34 915680040

Fax: +34 915644853
e-mail: empriego@iqm.csic.es

Abstract

. Cyclohexanedione derivatives represent a new family of colchicine-site binders that were identified through a ligand-based virtual screening approach. Structural modifications have now been performed at both distal sites of our identified hit [2-(1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (4)] in order to improve tubulin binding affinity, anti-proliferative activity and/or aqueous solubility. The results obtained indicate that the 2-methoxyphenyl ring, the fragment located closer to the $\alpha \beta$-tubulin interface according to docking studies, is the one that allows structural variation in order to improve the Ka value against tubulin (as in compound 20a with a $\mathrm{Ka}=1.3 \times 10^{7} \mathrm{M}^{-1}$, analogous to colchicine) or to improve aqueous solubility, as in compound 22c, being more than 10 -times more soluble than the previous hit $\mathbf{4}$.

KEYWORDS: $\alpha \beta$-tubulin; colchicine; vascular-disrupting agents; cyclohexanediones.

Introduction

Microtubules (MT) are key components of the cytoskeleton and play a crucial role in different cellular processes, such as cell motility, morphogenesis and mitosis. ${ }^{1}$ MT are highly dynamic and are composed of $\alpha \beta$-tubulin heterodimers. Suppression of MT dynamics blocks the cell division machinery at mitosis leading to cell death. Several drugs have been described to interact with the $\alpha \beta$-tubulin heterodimer to stabilize (taxanes and laulimalides) or destabilize (vinca alkaloids and colchicine) the polymerization process of tubulin into microtubules. ${ }^{2}$ Therefore, MT dynamics constitute a validated target for tumor therapy. In addition, compounds that bind at the colchicine-site are being deeply explored in antivascular therapies, as an adjuvant in anticancer treatment. ${ }^{3,4}$ Colchicine itself (1) has been discarded as an anticancer agent due to its toxicity, but compounds that target the $\alpha \beta$-tubulin dimer at the colchicine-binding site, such as combretastatin A-4 (CA-4, 2a) or its related derivatives CA-4P (2b) and AVE8062 (2c) (Figure 1) have been proposed as valuable anticancer agents since they combine antimitotic properties with vascular disrupting capacity, targeting tumor and endothelial cells, respectively ${ }^{5,6}$

The colchicine site at the $\alpha \beta$-tubulin interface is able to adapt quite a variety of structurally unrelated ligands, and is commonly referred to as the "colchicine-binding domain". ${ }^{7,8}$ Thus novel ligands can be identified based on structural information of this domain. Using the coordinates of TN-16 (3, Figure 1) obtained from its X-Ray complex with $\alpha \beta$-tubulin, ${ }^{9}$ and following a ligand-based virtual screening approach, we have recently described a family of cyclohexanediones, that represents a novel class of colchicine-site binders. ${ }^{10}$ The most representative compound (4, Figure 1) was shown to inhibit tumor and endothelial cell proliferation in the sub- $\mu \mathrm{M}$ range. Its mechanism of action involves cell cycle arrest in the G2/M phase and an increase in apoptosis. Compound 4 was also shown to destroy an established endothelial tubular network and to inhibit the migration and invasion of human breast carcinoma cells. ${ }^{10}$ Therefore, this new family of colchicine-site binders, exemplified by compound 4 , has shown significant therapeutic potential.

The structural requirements for anti-proliferative activity established in our previous paper ${ }^{10}$ among this series of cyclohexanediones can be summarized as follows: (i) fragment \mathbf{A} (Figure 2) should be an aromatic ring, preferentially unsubstituted; (ii) the alkyl chain at fragment \mathbf{C} plays an important role in the anti-proliferative activity, in the order $\mathrm{Me}>\mathrm{Et} \ggg \mathrm{Pr}$; (iii) substitutions at the aromatic ring \mathbf{D} at para or meta position lead to poorly active compounds, while substitutions at ortho render active compounds, the best results, among the substituents assayed, were obtained with a methoxy or a methyl.

Our objective in this paper has been to improve the low aqueous solubility $(<10 \mu \mathrm{M})$ of our initial series of compounds. With this purpose we have undertaken the synthesis of new structural analogues by incorporating novel substituents at fragments \mathbf{A}, \mathbf{C} or \mathbf{D} of our lead compound $\mathbf{4}$ (Figure 2) as follows: 1) the phenyl ring at fragment A has been replaced by aromatic heterocycles; 2) a $\mathrm{CH}_{2} \mathrm{OH}$ group has been introduced at fragment C replacing the methyl of the lead compound, and 3) a wide variety of substitutions has been introduced at the ortho position of fragment \mathbf{D} by incorporating polar groups, by elongating the substituent and/or by incorporating solubilizing groups. Based on docking studies, also here reported, this fragment \mathbf{D} faces the $\alpha \beta$ tubulin interface, being closer to the solvent-exposed area. In all cases, the central core of the molecule has been kept intact since this determines the overall conformation of these compounds making them suitable to bind similarly to $\mathrm{TN}-16$ at the $\alpha \beta$-tubulin interface as initially designed. Therefore we here report on the design and synthesis of a second series of cyclohexanedione derivatives, their antiproliferative activity against tumor and endothelial cell lines and their effect on the cell cycle. For the most relevant compounds, aqueous solubility has been experimentally measured and binding to the colchicine-site has been investigated by competition experiments. Finally, the results obtained have been rationalized based on docking studies.

Results and Discussion

As mentioned in the introduction, the first series of modifications addressed in this paper involved replacement of the phenyl ring on fragment \mathbf{A} in compound $\mathbf{4}$ by heteroaromatic rings such as pyridines, thiophene or furane. Thus, reaction of the pyridylbutenones (5a-c) with diethylmalonate in the presence of sodium ethoxide (Scheme 1) afforded the corresponding cyclohexane-1,3-diones $\mathbf{6 a - c}$ that were heated with acetyl chloride in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}, 1,2,4$-triazole and tetrabutylammonium bromide in anhydrous DMF, as previously setup ${ }^{10}$, obtaining the corresponding 2-acetylcyclohexanediones $7 \mathbf{a}-\mathbf{c}$ in good to moderate yields. These compounds (7a-c) and the corresponding thiophenyl (7d) or furanyl (7e) derivatives, that were synthesized following described procedures, ${ }^{11}$ reacted with o-anisidine in toluene at 110 ${ }^{\circ} \mathrm{C}$ overnight to afford the condensation products 8a-e in good to excellent yields (44-99\%). Next the methyl group at fragment \mathbf{C} in compound $\mathbf{4}$ was replaced by an hydroxymethyl group. Thus, reaction of the commercially available 5-phenylcyclohexane-1,3-dione (9) (Scheme 2) with acetoxyacetylchloride in dichloromethane in the presence of triethylamine and DMAP ${ }^{12}$ afforded the C-acylderivative (10) in 68% yield. Treatment of $\mathbf{1 0}$ with o-anisidine in toluene at $110^{\circ} \mathrm{C}$ afforded $\mathbf{1 1 a}$ that was deacetylated to provide the hydroxymethyl derivative 11b.

A wider set of modifications were performed at fragment \mathbf{D}. Introduction of an hydroxymethyl group at the ortho position of the phenyl ring (Scheme 3) was carried out by reaction of the 2 -acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}$ with 2-(((tert-butyldimethylsily)oxy)methyl)aniline (13) ${ }^{12}$ followed by treatment of the condensation product with TBAF to afford compound 14 in 73% yield. Similarly, reaction of the 2-acetyl-5-phenylcyclohexane-1,3-dione (12) with 2-aminopyridine (15) in toluene at $110{ }^{\circ} \mathrm{C}$ overnight provided the 2-pyridyl derivative $\mathbf{1 6}$ in 84% yield. Alternatively, reaction of $\mathbf{1 2}$ with o-phenylendiamine ($\mathbf{1 7 a}$) or N-methyl-1,2-benzenediamine ($\mathbf{1 7 b}$) in toluene afforded the condensation products $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ in 83 and 76% yield, respectively. A small series of alkoxy groups different to the OMe in compound $\mathbf{4}$ were also incorporated at fragment \mathbf{D}. Thus, reaction of the acylcyclohexanedione $\mathbf{1 2}$ with the corresponding anilines 19a-d (Scheme 3) in toluene gave access to the 2-ethoxy, 2-propoxy, 2-isopropxy and 2-cyclopropylmethoxy derivatives 20a-d, respectively. Compounds 20a-d showed interesting anti-proliferative activity (see Biological evaluation section), indicating that longer substitutions at position 2 in ring \mathbf{B} could be envisaged. Therefore, a small series of glycol derivatives with a terminal polar group was envisioned meant to reach the solvent exposed area at the interface while increasing solubility. A similar approach has been successfully used in the kinases field. ${ }^{13}$ Thus reaction of $\mathbf{1 2}$ with 2-(2-((tert-butyldimethylsilyl)oxy)ethoxy)aniline $\mathbf{2 1 a}{ }^{14}$ (Scheme 4) or its propoxy analoge $\mathbf{2 1} \mathbf{b}^{14,15}$ afforded the corresponding condensation products that were treated with TBAF to remove the silyl group. In this way compounds 22a and 22b were obtained. Similarly, reaction of $\mathbf{1 2}$ with 2-(2-(2-((tert-butyldimethylsilyl)oxy)ethoxy)ethoxy)aniline (21c) ${ }^{14,15}$ or tert-butyl(2-(2-(2-aminophenoxy)ethoxy)ethyl)carbamate (21d), ${ }^{16}$ and subsequent treatment with TBAF or TFA afforded compounds 22c and 22d in 57 and 84% yield, respectively.

Since the incorporation of morpholinyl and piperidyl substituents has also been proposed as a good alternative to improve solubility, ${ }^{17,18}$ such groups were incorporated at the ortho position at ring \mathbf{D} as shown in Scheme 5. Thus, reaction of $\mathbf{1 2}$ with 2-[2-(morpholin-4-yl)ethoxy]aniline (23), ${ }^{19}$ afforded the morpholinoethoxy derivative $\mathbf{2 4}$ in 32% yield. On the other hand, reaction of $\mathbf{1 2}$ with 2-((1-(3)-((tert-butyldimethylsilyl)oxy)propyl)piperidin-4-yl)oxy)aniline (25) followed by silyl deprotection provided derivative 26.

Biological evaluation

Anti-proliferative activity

The synthesized compounds were evaluated for their anti-proliferative activity in five different cell lines: two endothelial cell lines [human microvascular endothelial cells (HMEC-1) and bovine aortic endothelial cells (BAEC)] and three cancer cell lines [mouse lymphocytic leukemia (L1210), human lymphoblastic leukemia (CEM) and human cervical carcinoma (HeLa) cells]. Data are expressed as IC_{50} (50% inhibitory concentration) defined as the concentration at which the compounds reduce cell proliferation by 50% and are shown in Table 1. As reference compounds we have included colchicine (1) and our previous hit compound 4. Those compounds with a heteroaromatic ring in fragment \mathbf{A} showed a diverse behavior in terms of antiproliferative activity. Thus, while the 4-pyridyl derivative (8a) had no anti-proliferative activity, the 3-pyridil (8b) and 2-pyridyl (8c) derivatives were moderately active with IC_{50} values around 1 to $6 \mu \mathrm{M}$. The 2thiophenyl derivative $(\mathbf{8 d})$ showed better IC_{50} values whereas the 2-furanyl compound (8e) afforded IC_{50} values quite comparable to our previous hit compound 4 . Compounds $\mathbf{1 1 a}$ and $\mathbf{1 1 b}$ modified in fragment \mathbf{C} were found to be inactive or almost inactive in the different cell lines.

The first series of modifications at the ortho position of the phenyl in fragment \mathbf{D}, consisting on replacement of the OMe in compound 4 by a $\mathrm{CH}_{2} \mathrm{OH}$, a NH_{2} or a NHCH_{3} (compounds $\mathbf{1 4}, \mathbf{1 8 a}$ and $\mathbf{1 8 b}$, respectively) or replacement of the phenyl by a 2-pyridyl (compound 16), resulted in a very significant drop of the antiproliferative activity. However, when the OMe in compound 4 was replaced by other alkoxy groups (compounds 20a-d), a series of potent anti-proliferative compounds was obtained with IC_{50} values in the sub$\mu \mathrm{M}$ range for the different cell lines tested. The best data were obtained for the 2-ethoxy derivative (20a) with IC_{50} values ranging from 0.08 to $0.19 \mu \mathrm{M}$ against all the cell lines tested. The isopropoxy ($\mathbf{2 0 c}$) and the cyclopropylmethoxy (20d) derivatives also afforded low IC_{50} values opening the way for exploring other alkoxy substituents. Elongating the alkoxy substituent, such as in compounds with an ethylene glycol (22a), propylene glycol (22b) or diethylene glycol (22c) substituent, kept the anti-proliferative activity in the sub$\mu \mathrm{M}$ range. When the terminal group at the diethylene glycol chain was replaced by an amino group instead of an OH (compound 22d versus 22c), the IC_{50} values were increased 2- to 10 -fold. It is noticeable that the introduction of a morpholinoethoxy group (as in 24) or a piperididyl substituent (as in compound 26) afforded a significant drop in the cytostatic activity against all cell lines.

Solubility determination.

Experimental solubility determinations were performed in aqueous pH 7.4 buffer for compound 4 and for a selection of the here described compounds with significant antiproliferative activity ($\mathbf{8 e}, \mathbf{2 0 a}, \mathbf{2 2 b}$ and $\mathbf{2 2} \mathbf{c}$).

Compounds $\mathbf{4}$ and 20a exhibited a very poor solubility (s $<10 \mu \mathrm{M}$). Replacement of the phenyl ring in \mathbf{A} by a furanyl ring led to a more soluble compound than $\mathbf{4}(\mathbf{8 e}, \mathrm{s}=32 \pm 0 \mu \mathrm{M})$. Also compound $\mathbf{2 2 b}$, with a 3hydroxypropoxy substituent at ring \mathbf{D} has a better solubility value ($\mathrm{s}=42 \pm 3 \mu \mathrm{M}$) when compared with $\mathbf{4}$ or 20a, with a methoxy or an ethoxy group, respectively. As expected, the best results were obtained with compound 22c with a diethylene glycol substituent that showed a solubility value of $119 \pm 3 \mu \mathrm{M}$, more than 10 -times more soluble than $\mathbf{4}$ or 20a. It should be noted that these solubility values were not correctly predicted using two different computational tools, as can be seen in the Supporting information (Table S1)

Tubulin binding

Compound $\mathbf{4}$ was previously shown to bind tubulin at the colchicine-binding site. ${ }^{10}$ Therefore, the binding of 20a and 22c to tubulin was further analyzed by western blot analysis, using EBI, which cross-links the cysteine residues at positions 239 and 354 of β-tubulin, located in the colchicine binding site. This β-tubulin adduct formed by EBI is easily detectable by western blot as a second immunoreactive band that migrates faster than the reference β-tubulin band. As a consequence, treatment of the cells with a compound that binds to this colchicine-binding site will impair the binding of EBI, resulting in the absence of the second band. As shown in Fig. 3, compounds 20a and 22c were able to inhibit the formation of the EBI adduct at $40 \mu \mathrm{M}$, compound 20a being equally effective as the previously reported compound $\mathbf{4}$, while compound 21c was less effective. ${ }^{10}$

In order to determine the binding affinities of the here described compounds $\mathbf{8 e}, \mathbf{2 0}, \mathbf{2 0 c}$ and $\mathbf{2 2 c}$ for tubulin competition experiments with (R)-(+)-ethyl 5-amino 2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate (R-PT), a well characterized reversible colchicine-binding were performed. ${ }^{20}$

The binding constants obtained for compounds 8e, 20a and 20c (Table 2) were similar to the one reported for compound $\mathbf{4}$ and higher than those previously determined for other classical colchicine-binding site ligands, such as nocodazole $\left(4 \times 10^{5} \mathrm{M}^{-1}\right),{ }^{21}$ or podophyillotoxin $\left(1.8 \times 10^{6} \mathrm{M}^{-1}\right) .{ }^{22}$ It should be emphasized that the Ka value obtained for the 2-ethoxy derivative 20a was almost identical to that of colchicine. The glycol derivative 22chad a Ka value of $1.2 \times 10^{6} \mathrm{M}^{-1}$, closer to that of podophyllotoxin, and ten-fold less potent that our best derivative 20a. Thus, it can be concluded that these new analogues also bind at the colchicinebinding site in tubulin and compound 20a has shown an affinity slightly better than our previous best compound 4.

Docking studies

To gain insight into the molecular basis of the interaction of these compounds with tubulin, a docking study was carried out using the DAMA-colchicine-tubulin complex (Protein Data Bank code: 1 SA 0$)^{23}$ as template. In addition, and since the cyclohexanediones were identified based on the TN-16 binding mode, the TN-16tubulin complex (PDB ID: 3HKD) ${ }^{9}$ was used to expand the grid box in order to cover the so called "colchicine-binding domain". Compound 20a, having the best affinity constant for tubulin among the here described compounds, was docked using the automated docking program AutoDock 4.0. ${ }^{24,25}$

The predicted binding mode of 20a with tubulin (Figure 4) showed only a partial overlap with colchicine (represented in green in Figure 4). Compound 20a is located deeply into the β-subunit of tubulin, making use of the TN- 16 subpocket. Thus, fragment \mathbf{A} of $\mathbf{2 0 a}$ is buried inside the β-subunit fitting into a cavity formed by the side chains of residues Val $\beta 238$, Leu $\beta 242$, $\operatorname{Thr} \beta 239$, $\operatorname{Tyr} \beta 202$, Glu $\beta 200$ and Asn $\beta 167$. The mostly lipophilic nature of this subpocket may help to explain the lack of activity of the pyridine derivatives (8a-c) that are probably protonated at physiological pH . It should be noted that the NH at fragment \mathbf{D} and one of the CO groups of the cyclohexanedione of 20a are correctly oriented to form an intramolecular hydrogen bond ($\mathrm{NH} \cdot \mathrm{CO}$ distance $2.2 \AA$), creating a type of pseudocycle. Such an intramolecular hydrogen bond had already been suggested based on experimental ${ }^{1} \mathrm{H}$ NMR data, and it may be relevant to determine the overall conformation of these compounds making them suitable to bind similarly to TN-16. ${ }^{10}$ Indeed, in other colchicine-site binders like the didehydropiperazine diones, a pseudotricycle structure has also been proposed as required for fitting to the colchicine binding site. ${ }^{26}$

In this docked conformation of 20a, the second carbonyl group of the cyclohexanedione moiety is oriented towards the side chain of residue Cys241, suggesting a hydrogen bond with this residue. Noticeably, DAMAcolchicine and most colchicine-site binders form a hydrogen bond with this cysteine residue. ${ }^{8}$ Finally, fragment \mathbf{D} of compound 20a is located closer to the $\alpha \beta$-tubulin interface surrounded by residues Leu $\beta 248$, Thr $\beta 353$, Alaß354 and Lys $\beta 352$ and overlapping with B- and C-rings of colchicine.

Based on our previous results, only ortho substituents at ring \mathbf{D} have been explored herein. It should be noted that while protic or protonable substituents are not well tolerated (as shown by the poor activity of compounds 14, 16 o $\mathbf{1 8 a}, \mathbf{b}$), alkoxy groups, exemplified by the ethoxy group in compound 20 , result in the most potent compounds. It may be proposed that such alkoxy substituents are directed towards the $\alpha \beta$-tubulin interface, so that the elongation of the substituent (compounds 20b-d) and the inclusion of a terminal hydroxyl group
(compounds 22a-c) are compatible with a potent antiproliferative activity. These observations might be helpful for other classes of colchicine-site binders since the highly lipophilic nature of the colchicine site implies that, in most cases, the best ligands have a high lipophilic character for which aqueous solubility becomes a serious problem.

Inhibition of cell cycle progression.

Tubulin-binding agents typically inhibit cell mitosis, leading to inhibition of cell proliferation and/or induction of cell death by apoptosis. Therefore, we investigated the effect of 20a and 22c on cell cycle progression. Whereas control endothelial cells show a typical distribution of cells in the different phases of the cell cycle (Figure 5), 20a caused a dose-dependent increase in the G2/M phase population, indicating that the treated cells can no longer proceed through mitosis. Moreover, 20a also induced apoptosis, as indicated by the increase in sub G1 cells displaying a sub diploid DNA content, which was particularly evident at $0.3 \mu \mathrm{M}$. The glycol derivative 22c showed a similar effect on cell cycle progression as 20a with a more pronounced accumulation of cells in $\mathrm{G} 2 / \mathrm{M}$ phase at $1 \mu \mathrm{M}$, but was less active than $\mathbf{2 0 a}$ at lower concentrations, which is in agreement with the affinity constant and the EBI-results.

Vascular-disrupting activity.

Colchicine-site binding agents have been shown to destroy a preexisting vasculature network formed by endothelial cells and we have seen this effect with compound $4 .{ }^{10}$ Therefore, we tested the vascular-disrupting effect of 20a and the more soluble analogue 22c. HMEC-1 cells were seeded on top of matrigel, which induces within 3 h the formation of a network of endothelial cell tubes. Then, the cultures were treated with each compound for 90 min after which the integrity of the vascular network was evaluated. As shown in Figure 6, both compounds displayed a vascular-disrupting activity in a dose-dependent manner, 20a being about 3-fold more active than 22c. The images clearly show the absence of a tubular network in cultures treated with 30 and $10 \mu \mathrm{M}$ of $\mathbf{2 0 a}$, whereas at $3 \mu \mathrm{M}$ a network of vascular structures is still present but several tubes are not connected.

Conclusions

Colchicine-site binders represent a stimulating class of pharmacological compounds due to their antitumoral activity through a combination of antimitotic and antivascular actions. We have recently identified a new
family of colchicine-site binders and herein we have additionally explored structural analogues of our hit named 2-(1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (4). The structure-activity relationship studies indicate that the phenyl ring at position 5 of the cyclohexanedione scaffold (designated as fragment A) can be replaced by a furanyl ring (compound 8e), keeping a similar binding to colchicine (Ka $4.1 \times 10^{6} \mathrm{M}^{-1}$), a potent anti-proliferative activity (IC_{50} values ranging from 0.15 to $0.63 \mu \mathrm{M}$) and a slightly improved solubility. However replacement by other heteroaromatic rings resulted in significantly less active compounds. On the other hand, among the substituents assayed affecting the ortho position in fragment D , the best results were obtained with the alkoxy groups that, according to our docking studies, could be oriented towards the $\alpha \beta$-dimer interface. It should be emphasized that the 2 -ethoxy derivative (20a) showed an antiproliferative activity in the low $\mu \mathrm{M}$ range $(0.08-0.19 \mu \mathrm{M})$ and an association constant with tubulin analogous to that of colchicine $\left(\mathrm{Ka} 1.3 \times 10^{7} \mathrm{M}^{-1}\right.$). Incorporation of a diethlyeneglycol substituent facing the dimer interface improved solubility more that 10 -fold compared to our previous best compound 4 . Although this increase in aqueous solubility was accompanied by a reduction in affinity in the binding to tubulin and biological activity, this approach may be a valuable tool to increase solubility of other colchicine-site binders.

Figure 1

Colchicine (1)

$\mathrm{R}=\mathrm{OH} \mathrm{CA}-4$ (2a)
$\mathrm{R}=\mathrm{OPO}(\mathrm{ONa})_{2} \mathrm{CA}-4 \mathrm{P}(\mathbf{2 b})$
R=NH-Ser AVE8062 (2c)

4

Chemical structures of selected colchicine-site binders

Figure 2

Proposed modifications on 4

Scheme 1. Reagents and conditions: (a) (i) Diethyl malonate, EtONa, EtOH, Δ; (ii) $\mathrm{NaOH}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) $\mathrm{HCl}, \Delta, 1 \mathrm{~h}$; (b) $\mathrm{ClCOCH}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ anh, 1,2.4-triazole, $\mathrm{Bu}_{4} \mathrm{NBr}$, DMF, MW, $70{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (c) o-anisidine, toluene, $4 \AA$ molecular sieves, pressure tube, $110^{\circ} \mathrm{C}$, overnight.

Scheme 2. Reagents and conditions: (a) $\mathrm{ClCOCH}_{2} \mathrm{OCOCH}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CHCl}_{2}$, rt , 3h.; (b) o-anisidine, toluene, $4 \AA$ molecular sieves, pressure tube, $110^{\circ} \mathrm{C}$, overnight; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$.

Scheme 3. Reagents and conditions: (a) Toluene, $4 \AA$ molecular sieves, pressure tube, $110^{\circ} \mathrm{C}$, overnight; (b) TBAF, THF, rt, 1 h .

Scheme 4. Reagents and conditions: (a) Toluene, $4 \AA$ molecular sieves, pressure tube, $110{ }^{\circ} \mathrm{C}$, overnight; (b) TBAF, THF, rt, 1 h ; or TFA, CHCl_{3}, rt, overnight (for 22d)

23
a

Scheme 5. Reagents and conditions: (a) Toluene, $4 \AA$ molecular sieves, pressure tube, $110^{\circ} \mathrm{C}$, overnight; (b) TBAF, THF, rt, 1 h

Table 1. Anti-proliferative activity of compounds 8a-e, 11a-b, 14, 16, 18a-b, 20a-d, 22a-d, 24 and 26 in endothelial and tumor cell lines.

Compound	Endothelial cells $\mathrm{IC}_{50}(\mu \mathrm{M})$		Tumor cells $\mathrm{IC}_{50}(\mu \mathrm{M})$		
	HMEC-1	BAEC	L1210	CEM	HeLa
Colchicine	0.0038 ± 0.0011	0.069 ± 0.0008	0.010 ± 0.0006	0.013 ± 0.0004	0.0087 ± 0.0001
4	0.09 ± 0.01	0.09 ± 0.01	0.16 ± 0.08	0.18 ± 0.05	0.18 ± 0.00
8 a	>100	>100	>100	>100	>100
8b	3.3 ± 0.5	1.4 ± 0.1	1.8 ± 0.8	4.3 ± 1.0	4.3 ± 1.0
8c	1.7 ± 0.6	1.6 ± 0.2	4.6 ± 0.5	6.5 ± 0.3	5.4 ± 0.4
8d	0.41	0.38	0.59 ± 0.54	0.55 ± 0.41	1.1 ± 0.4
8 e	0.24 ± 0.08	0.15 ± 0.04	0.21 ± 0.05	0.34 ± 0.04	0.63 ± 0.37
11a	> 100	>100	>250	113 ± 11	≥ 250
11b	48 ± 10	50 ± 14	54 ± 36	33 ± 7	86 ± 1
14	31 ± 1	22 ± 1	102 ± 8	117 ± 29	113 ± 1
16	> 100	58 ± 23	74 ± 17	93 ± 21	112 ± 10
18a	29 ± 2	14 ± 1	14 ± 5	21 ± 5	27 ± 2
18b	14 ± 2	9.4 ± 0.1	12 ± 6	13 ± 9	18 ± 1
20 a	0.10 ± 0.02	0.086 ± 0.024	0.19 ± 0.05	0.19 ± 0.01	0.18 ± 0.00
20b	0.48 ± 0.02	0.35 ± 0.11	0.71 ± 0.04	0.86 ± 0.10	0.81 ± 0.11
20 c	0.16 ± 0.07	0.12 ± 0.09	0.23 ± 0.03	0.19 ± 0.02	0.32 ± 0.04
20d	0.24 ± 0.02	0.23 ± 0.09	0.25 ± 0.03	0.22 ± 0.06	0.62 ± 0.06
22a	0.83 ± 0.03	0.69 ± 0.12	0.85 ± 0.28	1.1 ± 0.4	2.2 ± 1.6
22b	0.50 ± 0.06	0.53 ± 0.03	0.87 ± 0.09	0.82 ± 0.02	1.1 ± 0.
22c	0.46 ± 0.05	0.45 ± 0.03	0.80 ± 0.01	0.42 ± 0.14	0.93 ± 0.05
22d	1.5 ± 0.3	2.7 ± 2.5	1.2 ± 0.0	4.3 ± 1.3	1.5 ± 0.0
24	13 ± 1	22 ± 1	28 ± 4	25 ± 1	54 ± 36
26	21 ± 5	30 ± 6	19 ± 3	26 ± 4	57 ± 39

Table 2. Association constants for compounds 4, 8e, 20a, 20c and 22e, and other colchicine-binding site ligands

Compound	$\mathbf{K}_{\text {assoc }}\left(\mathbf{M}^{-1}\right) \mathbf{2 5}{ }^{\circ} \mathbf{C}$
Colchicine	$1.16 \times 10^{7}\left(\text { at } 37^{\circ} \mathrm{C}\right)^{a}$
R-PT	$3.2 \times 10^{6 \mathrm{~b}}$
Podophyillotoxin	$1.8 \times 10^{6 \mathrm{c}}$
Nocodazole	$4 \times 10^{5 \mathrm{~d}}$
$\mathbf{4}$	$(9.6 \pm 1.2) \times 10^{6}$
8e	$(4.1 \pm 0.3) \times 10^{6}$
$\mathbf{2 0 a}$	$(1.3 \pm 0.2) \times 10^{7}$
$\mathbf{2 0 c}$	$(6.3 \pm 0.8) \times 10^{6}$
$\mathbf{2 2 c}$	$(1.2 \pm 0.1) \times 10^{6}$

${ }^{\text {a }}$ Data from ref. 27. ${ }^{6}$ Data from ref. $28{ }^{\text {c }}$ Data from ref. 22. ${ }^{\text {d }}$ Data from ref. 21

Figure 3

Tubulin binding. MDA-MB-231 cells were treated with DMSO, 20a or 22c at 40,10 or $2.5 \mu \mathrm{M}$ for 24 h . Next EBI $(100 \mu \mathrm{M})$ was added and after 1.5 h , the cells were harvested and cell extracts were prepared for western blot analysis using anti- β-tubulin antibody. EBI cross-links cysteine residues in β-tubulin resulting in the formation of a β-tubulin/EBI adduct (second immunoreactive band). Compounds that bind to the colchicine-binding site in β-tubulin prevent the formation of the EBI/ β-tubulin adduct

Figure 4. Predicted binding mode for 20a (cyan) in the colchicine binding domain of $\alpha \beta$-tubulin (α-tubulin in pale cyan and β-tubulin in light pink), and overlap with colchicine (green). Dashed lines indicate hydrogen bonds. Surrounding amino acid side chains of residues in the binding site within $4 \AA$ from 20 a are shown in lines and labelled.

Figure 5. Inhibition of cell cycle progression. HMEC-1 were treated with DMSO (control) or different concentrations of $\mathbf{2 0 a}$ or $\mathbf{2 2 c}$ for 24 h . for 24 h . Next, the cells were harvested, stained with propidium iodide, and cell cycle distribution was evaluated by flow cytometry. Percentages of cells in the different phases of the cell cycle are indicated.

Figure 6. Vascular disrupting effects of 20a and 22c. HMEC-1 cells were cultured on matrigel for 3 h to allow the formation of tube-like structures. Then different concentrations of compounds were added. After 90 min, tube formation was quantified. Values are expressed as mean \pm SD. Images show the disruption of the vascular network after treatment with 20a.

Experimental Section.

Chemistry procedures

Melting points were obtained on a Reichert-Jung Kofler apparatus and are uncorrected. The elemental analysis was performed with a Heraeus CHN-O-RAPID instrument. The elemental compositions of the compounds agreed to within $\pm 0.4 \%$ of the calculated values. For all the tested compounds, satisfactory elemental analysis was obtained supporting $>95 \%$ purity. Electrospray mass spectra were measured on a quadrupole mass spectrometer equipped with an electrospray source (Hewlett-Packard, LC/MS HP 1100). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INNOVA 300 operating at $299 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively, a Varian INNOVA-400 operating at $399 \mathrm{MHZ}\left({ }^{1} \mathrm{H}\right)$ and $99 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively, and a VARIAN SYSTEM-500 operating a $499 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively.

Analytical TLC was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck) precoated plates (0.2 mm). Spots were detected under UV light (254 nm) and/or charring with ninhydrin or phosphomolibdic acid. Separations on silica gel were performed by preparative centrifugal circular thin-layer chromatography (CCTLC) on a Chromatotron ${ }^{\mathrm{R}}$ (Kiesegel $60 \mathrm{PF}_{254}$ gipshaltig (Merck)), with layer thickness of 1 and 2 mm and flow rate of 4 or $8 \mathrm{~mL} / \mathrm{min}$, respectively. Flash column chromatography was performed in a Biotage Horizon instrument.

Microwave reactions were performed using the Biotage Initiator 2.0 single-mode cavity instrument from Biotage (Uppsala). Experiments were carried out in sealed microwave process vials utilizing the standard absorbance level (400 W maximum power). The temperature was measured with an IR sensor on the outside of the reaction vessel.

5-(Pyridin-4-yl)cyclohexane-1,3-dione (6a).To a solution of 25% sodium ethoxide in ethanol (3.70 mL , $13.55 \mathrm{mmol})$ diethyl malonate $(2.06 \mathrm{~mL}, 13.55 \mathrm{mmol})$ was added dropwise while keeping the temperature below $25^{\circ} \mathrm{C}$. The mixture was diluted with ethanol $(0.2 \mathrm{~mL})$ and heated at $60^{\circ} \mathrm{C}$. Once the temperature was reached, a solution of (E)-4-(pyridin-4-yl)but-3-en-2-one $\left.{ }^{29} \mathbf{(5 a}\right)(1.81 \mathrm{~g}, 12.32 \mathrm{mmol})$ in ethanol (3 mL) was added and the reaction was refluxed. The course of the reaction was monitored by LC-MS until the corresponding starting material was consumed. Then a solution of 6 M sodium hydroxide (0.3 mmol) was added and the reaction was heated at $80^{\circ} \mathrm{C}$ for 2 h . After cooling, ethanol was removed in vacuo and the resulting solution was washed with toluene $(2 \times 10 \mathrm{~mL})$. The aqueous layer was treated with $37 \% \mathrm{HCl}$ until pH 2, refluxed for 1 h and left to cool at rt . Then, the mixture was neutralized with 6 M sodium hydroxide and extracted with isobutanol:ethyl acetate (1:1) ($3 \times 20 \mathrm{~mL}$). The organic extracts were dried on anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, which afforded $\mathbf{6 a}(1.42 \mathrm{~g}, 61 \%)$ as a yellow oil, pure enough for the next step. MS (ES, positive mode): m/z $190(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 300 \mathrm{MHz}$) δ (enol form): 2.40 (dd, 2 H , $J=16.7,4.6 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6), 2.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 5.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.36(\mathrm{~m}, 2 \mathrm{H}, J=$ $4.2,1.6 \mathrm{~Hz}, \mathrm{Ar}), 8.50(\mathrm{~m}, 2 \mathrm{H}, J=4.6,1.4 \mathrm{~Hz}, \mathrm{Ar})$.

5-(Pyridin-3-yl)cyclohexane-1,3-dione (6b). As described for the synthesis of 6a, a mixture of diethyl malonate ($1.36 \mathrm{~mL}, 8.97 \mathrm{mmol}$), 25% sodium ethoxide in ethanol ($2.44 \mathrm{~mL}, 8.97 \mathrm{mmol}$) and (E)-4-(pyridin-3-yl)but-3-en-2-one ${ }^{29}(\mathbf{5 b})(1.20 \mathrm{~g}, 8.15 \mathrm{mmol})$ afforded $\mathbf{6 b}(0.77 \mathrm{~g}, 50 \%)$ as a yellow oil, pure enough for the next step. MS (ES, positive mode): m/z $190(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): 2.10 (dd, $2 \mathrm{H}, J=15.7,4.5 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6$), 2.23 (m, 2H, H-4, H-6), $3.15(\mathrm{tt}, 1 \mathrm{H}, J=11.4,4.7 \mathrm{~Hz}, \mathrm{H}-5), 4.51$ (s, 1H, H2), $7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.66$ (dt, $1 \mathrm{H}, J=7.8,2.1 \mathrm{~Hz}, \mathrm{Ar}), 8.37(\mathrm{dd}, 1 \mathrm{H}, J=4.7,1.7 \mathrm{~Hz}, \mathrm{Ar}), 8.47(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ $\mathrm{Hz}, \mathrm{Ar})$.

5-(Pyridin-2-yl)cyclohexane-1,3-dione (6c). As described for the synthesis of 6a, a mixture of diethyl malonate ($1.36 \mathrm{~mL}, 8.97 \mathrm{mmol}$), 25% sodium ethoxide in ethanol ($2.44 \mathrm{~mL}, 8.97 \mathrm{mmol}$) and (E)-4-(pyridin-2-yl)but-3-en-2-one ${ }^{29}(\mathbf{5 c})(1.20 \mathrm{~g}, 8.15 \mathrm{mmol})$ yielded $\mathbf{6 c}(1.51 \mathrm{~g}, 97 \%)$ as a yellow oil, that was used as such for the next step. MS (ES, positive mode): m/z $190(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 300 \mathrm{MHz}$) δ (enol form): 2.08 (m, 2H, $J=16.3,4.5 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6), 2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.23(\mathrm{tt}, 1 \mathrm{H}, J=11.7,4.7 \mathrm{~Hz}, \mathrm{H}-5), 4.51(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-2), 7.17$ (ddd, $1 \mathrm{H}, J=7.4,4.8,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.27(\mathrm{dt}, 1 \mathrm{H}, J=7.8,0.9 \mathrm{~Hz}, \mathrm{Ar}), 7.67(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.9$ $\mathrm{Hz}, \mathrm{Ar}), 8.47$ (m, 1H, Ar).

2-Acetyl-5-(pyridin-4-yl)cyclohexane-1,3-dione (7a). A microwave vial was charged with $\mathbf{6 a}$ ($\mathbf{3 7 5} \mathrm{mg}, 1.98$ mmol), acetylchloride ($305 \mu \mathrm{~L}, 3.96 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (603 mg , 4.36 mmol), 1,2,4-triazole (55 mg , 0.79 mmol) and tetrabutylammonium bromide ($319 \mathrm{mg}, 0.99 \mathrm{mmol}$) in anhydrous DMF (8 mL). The reaction vessel was sealed, stirred under argon atmosphere for 10 minutes and heated in a microwave reactor at $70^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was acidified with 1 N HCl and the crude was extracted with ethyl acetate. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash chromatography (hexane/ethyl acetate) to yield $\mathbf{7 a}(170 \mathrm{mg}, 37 \%)$ as a white solid. Mp 121-123 ${ }^{\circ} \mathrm{C}$. MS (ES, positive mode): $232 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 300 \mathrm{MHz}$) δ (enol form): $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6)$, 2.95 (m, 2H, H-4, H-6), 3.46 (tt, 1H, $J=11.7,4.2 \mathrm{~Hz}, \mathrm{H}-5), 7.37(\mathrm{~m}, 2 \mathrm{H}, J=4.4,1.8 \mathrm{~Hz}, \mathrm{Ar}), 8.52(\mathrm{~m}, 2 \mathrm{H}, J$ $=4.3,1.8 \mathrm{~Hz}, \mathrm{Ar})$.

2-Acetyl-5-(pyridin-3-yl)cyclohexane-1,3-dione (7b). As described for the synthesis of 7a, a microwave vial was charged with $\mathbf{6 b}$ ($334 \mathrm{mg}, 1.76 \mathrm{mmol}$), acetylchloride ($249 \mu \mathrm{~L}$, 3.52 mmol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(535 \mathrm{mg}$,
$3.87 \mathrm{mmol}), 1,2,4$-triazole ($48 \mathrm{mg}, 0.70 \mathrm{mmol}$) and tetrabutylammonium bromide ($284 \mathrm{mg}, 0.88 \mathrm{mmol}$) in anhydrous DMF (7 mL). After workup and flash chromatography (hexane/ethyl acetate) $7 \mathbf{b}$ ($151 \mathrm{mg}, 37 \%$) was obtained as an oil. MS (ES, positive mode): $232 \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}){ }^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d, $\left.300 \mathrm{MHz}\right) \delta$ (enol form): $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.48(\mathrm{tt}, 1 \mathrm{H}, J=12.0,4.1 \mathrm{~Hz}, \mathrm{H}-5)$, $7.38(\mathrm{ddd}, 1 \mathrm{H}, J=7.7,4.8,0.9 \mathrm{~Hz}, \mathrm{Ar}), 7.78(\mathrm{dt}, 1 \mathrm{H}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{Ar}), 8.47(\mathrm{dd}, 1 \mathrm{H}, J=4.7,1.7 \mathrm{~Hz}, \mathrm{Ar})$, $8.56(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{Ar})$.

2-Acetyl-5-(pyridin-2-yl)cyclohexane-1,3-dione (7c). As described for the synthesis of 7a, a microwave vial was charged with $6 \mathbf{c}(334 \mathrm{mg}, 1.76 \mathrm{mmol})$, acetylchloride $(249 \mu \mathrm{~L}, 3.52 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(535 \mathrm{mg}$, $3.87 \mathrm{mmol}), 1,2,4$-triazole ($48 \mathrm{mg}, 0.70 \mathrm{mmol}$) and tetrabutylammonium bromide ($284 \mathrm{mg}, 0.88 \mathrm{mmol}$) in anhydrous DMF $(7 \mathrm{~mL})$ to yield $7 \mathrm{c}(200 \mathrm{mg}, 49 \%)$ as white solid. Mp $91-93{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): 232 $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}}, 300 \mathrm{MHz}\right) \delta\left(\right.$ enol form): $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.03$ (m, 2H, H-4, H-6), 3.60 (tt, $1 \mathrm{H}, J=9.9,4.7 \mathrm{~Hz}, \mathrm{H}-5), 7.27$ (ddd, $1 \mathrm{H}, J=7.4,4.8,1.1 \mathrm{~Hz}, \mathrm{Ar}), 7.39$ (dt, $1 \mathrm{H}, J$ $=7.8,1.0 \mathrm{~Hz}, \mathrm{Ar}), 7.77(\mathrm{td}, 1 \mathrm{H}, J=7.7,1.8 \mathrm{~Hz}, \mathrm{Ar}), 8.52(\mathrm{ddd}, 1 \mathrm{H}, J=4.9,1.9,0.9, \mathrm{Ar}), 11.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH})$.

General procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines. A solution of the corresponding 2-acylcyclohexane-1,3-dione $(1.0 \mathrm{mmol})$ and the appropriate aniline $(1.5 \mathrm{mmol})$ in toluene (10 mL) was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added, the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated and the residue was purified by flash chromatography (hexane/ethyl acetate).

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(pyridin-4-yl)cyclohexane-1,3-dione (8a). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of $7 \mathbf{a}(150 \mathrm{mg}$, $0.65 \mathrm{mmol})$ and o-anisidine $(110 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$ in toluene afforded $\mathbf{8 a}(96 \mathrm{mg}, 44 \%)$ as a white solid. Mp $146-148{ }^{\circ} \mathrm{C} . \mathrm{MS}\left(\mathrm{ES}\right.$, positive mode): m/z $337(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta: 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.39(\mathrm{tt}, 1 \mathrm{H}, J=11.5,3.8 \mathrm{~Hz}, \mathrm{H}-5), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.04$ $(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.37(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 8.51(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}), 8.51(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{Ar}), 14.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}}, 100 \mathrm{MHz}\right) \delta: 19.8\left(\mathrm{CH}_{3}\right), 35.3(\mathrm{C}-5), 45.1(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right), 108.4(\mathrm{NHC}=\mathrm{C}), 112.3$, $120.6,122.3,124.4,126.9,129.2,149.7,152.0,153.0(\mathrm{Ar}), 172.6(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right): C$, 71.41 ; H, 5.99; N, 8.33. Found: C, 71.70; H, 6.18; N, 8.10.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(pyridin-3-yl)cyclohexane-1,3-dione (8b). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of $\mathbf{7 b}(130 \mathrm{mg}$, $0.56 \mathrm{mmol})$ and o-anisidine ($95 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$) in toluene yielded $\mathbf{8 b}(105 \mathrm{mg}, 56 \%)$ as an oil. MS (ES, positive mode): m/z $337(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO_{6}, 300 MHz) ($\left.\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.63(\mathrm{dd}, 2 \mathrm{H}, J=15.6,3.1 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-6), 2.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 7.04(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.1 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.4,0.8 \mathrm{~Hz}, \mathrm{Ar}), 7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.37(\mathrm{~m}, 2 \mathrm{H}$, Ar), $7.78(\mathrm{dt}, 1 \mathrm{H}, J=7.9,1.9 \mathrm{~Hz}, \mathrm{Ar}), 8.46(\mathrm{dd}, 1 \mathrm{H}, J=4.7,1.5 \mathrm{~Hz}, \mathrm{Ar}), 8.57(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}), 14.76$ (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right) \delta: 19.7\left(\mathrm{CH}_{3}\right), 33.7(\mathrm{C}-5), 45.1(\mathrm{C}-4, \mathrm{C}-6), 55.8\left(\mathrm{OCH}_{3}\right)$, $108.4(\mathrm{NHC}=\mathrm{C}), 112.3,120.6,123.5,124.4,126.9,129.2,134.3,138.8,147.8,148.6,153.1(\mathrm{Ar}), 172.6$ ($\mathrm{NH} \underline{C}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: C, $71.41 ; \mathrm{H}, 5.99 ; \mathrm{N}, 8.33$. Found: C, 71.19; $\mathrm{H}, 6.02 ; \mathrm{N}, 8.12$.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(pyridin-2-yl)cyclohexane-1,3-dione (8c). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of $7 \mathbf{c}(180 \mathrm{mg}$, $0.78 \mathrm{mmol})$ and o-anisidine $(132 \mu \mathrm{~L} \mathrm{mg}, 1.17 \mathrm{mmol})$ in toluene, afforded $\mathbf{8 c}(185 \mathrm{mg}, 71 \%)$ as a white solid. Mp 127-129 ${ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $337(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.40(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.50(\mathrm{tt}, 1 \mathrm{H}, J=11.4,4.2 \mathrm{~Hz}, \mathrm{H}-5), 3.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 7.04(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=8.3,0.6 \mathrm{~Hz}, \mathrm{Ar}), 7.26(\mathrm{ddd}, 1 \mathrm{H}, J=7.3,4.9,1.1$ $\mathrm{Hz}, \mathrm{Ar}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{td}, 1 \mathrm{H}, J=7.7,1.9 \mathrm{~Hz}, \mathrm{Ar}), 8.54(\mathrm{~m}, 1 \mathrm{H}$, Ar), 14.77 (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO_{6}, 100 MHz) $\delta: 19.7\left(\mathrm{CH}_{3}\right), 37.9(\mathrm{C}-5), 44.3(\mathrm{C}-4, \mathrm{C}-6), 55.8$ $\left(\mathrm{OCH}_{3}\right), 108.5(\mathrm{NHC}=\underline{\mathrm{C}}), 112.3,120.6,121.8,121.9,124.5,126.9,129.2,136.8,149.0,153.1,161.7$ (Ar), $172.6(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$: C, $71.41 ; \mathrm{H}, 5.99 ; \mathrm{N}, 8.33$. Found: C, 71.80; $\mathrm{H}, 6.21 ; \mathrm{N}, 8.23$.

2-(1-((2-Methoxyphenyl)amino)ethylidene)-5-(thiophen-2-yl)cyclohexane-1,3-dione (8d). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-(thiophen-2-yl)cyclohexane-1,3-dione (7d $)^{\mathbf{1 1}}(60 \mathrm{mg}, 0.25 \mathrm{mmol})$ and o-anisidine ($43 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) in toluene afforded $\mathbf{8 d}(86 \mathrm{mg}, 99 \%)$ as a yellow solid. $\mathrm{Mp} 105-107{ }^{\circ} \mathrm{C} . \mathrm{MS}$ (ES, positive mode): m/z 342 $(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-}, 300 \mathrm{MHz}\right) \delta: 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.64(\mathrm{tt}, 1 \mathrm{H}, J=9.4$, $4.6 \mathrm{~Hz}, \mathrm{H}-5), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96(\mathrm{dt}, 1 \mathrm{H}, J=3.5,1.2 \mathrm{~Hz}, \mathrm{Ar}), 6.98(\mathrm{dd}, 1 \mathrm{H}, J=5.0,3.5 \mathrm{~Hz}, \mathrm{Ar}) 7.03$ $(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.1 \mathrm{~Hz}, \mathrm{Ar}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.38(\mathrm{~m}, 2 \mathrm{H}$, Ar), 14.74 (br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{-1}, 75 \mathrm{MHz}\right) \delta: 19.8\left(\mathrm{CH}_{3}\right), 31.6(\mathrm{C}-5), 46.2(\mathrm{C}-4, \mathrm{C}-6), 55.9$ $\left(\mathrm{OCH}_{3}\right), 108.6(\mathrm{NHC}=\underline{\mathrm{C}}), 112.3,120.6,123.5,123.9,124.4,126.9,126.9,129.2,147.2,153.1$ (Ar), 172.5
($\mathrm{NHC}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\right)$: C, 66.84; H, 5.61; N, 4.10; S, 9.39. Found: C, 67.02; H, 5.50; N , 3.89; S, 9.16.

5-(Furan-2-yl)-2-(1-((2-methoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (8e). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-(furan-2-yl)cyclohexane-1,3-dione (7 e$)^{11}(60 \mathrm{mg}, 0.27 \mathrm{mmol})$ and o-anisidine ($46 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$) in toluene afforded $\mathbf{8 e}(87 \mathrm{mg}, 99 \%)$ as a yellow solid. $\mathrm{Mp} 98-100^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $326(\mathrm{M}+\mathrm{H}){ }^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta: 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.76(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $6.16(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{Ar}), 6.38(\mathrm{dd}, 1 \mathrm{H}, J=3.2,1.9 \mathrm{~Hz}, \mathrm{Ar}), 7.03(\mathrm{td}, 1 \mathrm{H}, J=7.7,1.0 \mathrm{~Hz}, \mathrm{Ar}), 7.19$ (dd, $1 \mathrm{H}, J=8.3,0.8 \mathrm{~Hz}, \mathrm{Ar}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=7.7,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}$, Ar), 14.73 (br s, $1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 75 \mathrm{MHz}$) $\delta: 19.8\left(\mathrm{CH}_{3}\right.$), 29.9 (C-5), 42.8 (C-4, C-6), 55.8 $\left(\mathrm{OCH}_{3}\right), 108.6(\mathrm{NHC}=\mathrm{C}), 104.7,110.4,112.3,120.6,124.4,126.9,129.2,141.8,153.1,156.4$ (Ar), 172.5 $(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4}\right)$: $\mathrm{C}, 70.14 ; \mathrm{H}, 5.89 ; \mathrm{N}, 4.31$. Found: C, $69.95 ; \mathrm{H}, 5.90 ; \mathrm{N}, 4.17$. 2,6-Dioxo-4-phenylcyclohexyl)methyl acetate (10) To a solution of 5-phenyl-1,3-cyclohexanedione (9) $(1.0 \mathrm{~g}, 5.32 \mathrm{mmol})$ in dichloromethane $(14 \mathrm{~mL})$, triethylamine $(1.5 \mathrm{~mL}, 10.64 \mathrm{mmol})$ and DMAP (7 $\mathrm{mg}, 0.06 \mathrm{mmol}$) were added. Then, acetoxyacetyl chloride ($0.62 \mathrm{~mL}, 5.84 \mathrm{mmol}$) was added dropwise. After stirring for 3 h at room temperature, acetic acid ($0.4 \mathrm{~mL}, 6.92 \mathrm{mmol}$) was added and the reaction was further stirred for 30 min . The reaction was diluted with water $(10 \mathrm{~mL})$ and extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography (hexane/ethyl acetate) to yield 10 ($1.04 \mathrm{~g}, 68 \%$) as a white solid. Mp $116-118^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z 289 $(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.98(\mathrm{~m}, 2 \mathrm{H}$, H-4, H-6), 3.45 (tt, 1H, $J=11.8,4.2 \mathrm{~Hz}, \mathrm{H}-5), 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.27(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.35 (m, 4H, Ar).

2-(2,6-Dioxo-4-phenylcyclohexylidene)-2-((2-methoxyphenyl)amino)ethyl acetate (11a). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of $\mathbf{1 0}$ $(1.0 \mathrm{~g}, 3.47 \mathrm{mmol})$ and o-anisidine $(0.59 \mathrm{~mL}, 5.20 \mathrm{mmol})$ in toluene afforded $11 \mathrm{a}(910 \mathrm{mg}, 67 \%)$ as an oil. MS (ES, positive mode): m/z $394(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \delta: 1.69(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.64 (m, 2H, H-4, H-6), 2.86 (m, 2H, H-4, H-6), $3.39(\mathrm{tt}, 1 \mathrm{H}, J=11.9,3.8 \mathrm{~Hz}, \mathrm{H}-5), 3.84(\mathrm{~s}$,
$\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.02(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{dd}, 1 \mathrm{H}, J=8.3,1.2 \mathrm{~Hz}, \mathrm{Ar})$, 7.24 (m, 1H, Ar), 7.30 (dd, 1H, $J=7.8,1.6 \mathrm{~Hz}, \operatorname{Ar}), 7.34$ (m, 2H, Ar), 7.35 (m, 2H, Ar), 7.35 (s, 1H, Ar), 14.87 (br s, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{-} \mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 19.8\left(\mathrm{CH}_{3}\right), 36.0(\mathrm{C}-5), 46.1(\mathrm{C}-4, \mathrm{C}-$ 6), $55.9\left(\mathrm{OCH}_{3}\right), 60.4\left(\mathrm{CH}_{2}\right), 108.3(\mathrm{NHC}=\underline{\mathrm{C}}), 112.3,120.6,125.3,125.6,126.6,126.8,128.5$, 129.2, 143.3, $152.6(\mathrm{Ar}), 167.4(\mathrm{NHC}=\mathrm{C}), 169.2\left(\mathrm{COCH}_{3}\right)$. Anal. calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{5}\right): \mathrm{C}, 70.21$; H, 5.89; N, 3.56. Found: C, 69.92; H, 6.01; N, 3.68.

2-(2-Hydroxy-1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (11b). To a solution of 11a ($98 \mathrm{mg}, 0.25 \mathrm{mmol}$) in methanol (1 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(52 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added and the reaction was stirred at room temperature for 1 h . Then, the reaction was neutralized with 1 N HCl and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (hexane/ethyl acetate) to yield 11b ($60 \mathrm{mg}, 68 \%$) as a rosaceus solid. Mp 131-133 ${ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $352(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 500 \mathrm{MHz}\right) \delta: 2.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6)$, 2.86 (m, 2H, H-4, H-6), 3.35 (tt, 1H, $J=12.8,4.0 \mathrm{~Hz}, \mathrm{H}-5$), 3.83 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.37 (d, 2H, $J=7.2 \mathrm{~Hz}$, CH_{2}), $5.34(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OH}), 7.04(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.23(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.32 (m, 2H, Ar), 7.33 (m, 2H, Ar), 7.37 (m, 1H, Ar), 7.44 (dd, $1 \mathrm{H}, J=7.8,1.1 \mathrm{~Hz}, \mathrm{Ar}$), 14.83 (br s, 1 H , NH). ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta: 36.5(\mathrm{C}-5), 46.0(\mathrm{C}-4, \mathrm{C}-6), 56.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 58.4\left(\mathrm{OCH}_{3}\right), 108.9$ $(\mathrm{NHC}=\mathrm{C}), 112.6,121.0,125.2,126.3,127.0,127.2,129.0,129.5,143.7,152.9$ (Ar), $171.2(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$: C, $71.78 ; \mathrm{H}, 6.02$; N, 3.99. Found: C, $71.72 ; \mathrm{H}, 5.98 ; \mathrm{N}, 4.01$.

2-(1-((2-(Hydroxymethyl)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (14). A solution of 2-acetyl-5-phenylcyclohexane-1,3-dione $\quad(\mathbf{1 2})^{10} \quad(100 \quad \mathrm{mg}, \quad 0.43 \mathrm{mmol})$ and $2-((($ tert butyldimetylsily)oxy)methyl)aniline ($\mathbf{1 3})^{12,15}(155 \mathrm{mg}, 0.65 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was placed in an Ace pressure tube. Then, $4 \AA$ molecular sieves were added and the vessel was sealed and heated at $110{ }^{\circ} \mathrm{C}$ overnight. After cooling, the solvent was evaporated to dryness and the crude reaction mixture was then dissolved in anhydrous THF (2 mL) and treated with 1 M TBAF in THF ($400 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) at room temperature for 1 h . The reaction was quenched with water and extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography (hexane/ethyl acetate) to yield $\mathbf{1 4}$ ($106 \mathrm{mg}, 73 \%$ for the two steps) as a white solid. Mp 166$168^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $336(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 500 \mathrm{MHz}$) $\delta: 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62$ (m, 2H, H-4, H-6), 2.83 (m, 2H, H-4, H-6), 3.34 (tt, 1H, $J=12.2,4.0 \mathrm{~Hz}, \mathrm{H}-5$), 4.41 (d, 2H, $J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2}$),
$5.27(\mathrm{t}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{OH}), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.28(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.55(\mathrm{dd}, 1 \mathrm{H}, J=7.3,2.0 \mathrm{~Hz}, \mathrm{Ar}), 14.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 100$ $\mathrm{MHz}) \delta: 19.8\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-5), 45.9(\mathrm{C}-4, \mathrm{C}-6), 59.5\left(\mathrm{CH}_{2}\right), 108.3(\mathrm{NHC}=\mathrm{C}), 126.5,126.7,127.9,128.0$, $128.5,128.6,134.2,137.4,143.5(\mathrm{Ar}), 172.6(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}\right): \mathrm{C}, 75.20 ; \mathrm{H}, 6.31 ; \mathrm{N}$, 4.18. Found: C, 75.35; H, 6.60; N, 4.07.

5-Phenyl-2-(1-(pyridin-2-ylamino)ethylidene)cyclohexane-1,3-dione (16). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, reaction of 2-acetyl-5-phenylcyclohexane-1,3dione (12) $)^{10}(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ and 2-aminopyridine (15) $(62 \mathrm{mg}, 0.65 \mathrm{mmol})$ in toluene afforded $16(111$ $\mathrm{mg}, 84 \%$) as an oil. MS (ES, positive mode): m/z $307(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta: 2.64(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34(\mathrm{~d}, 4 \mathrm{H}, J$ $=4.3 \mathrm{~Hz}, \mathrm{Ar}), 7.38(\mathrm{dd}, 1 \mathrm{H}, J=7.3,5.0 \mathrm{~Hz}, \mathrm{Ar}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}), 7.95(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.7 \mathrm{~Hz}$, Ar), $8.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 15.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta: 20.2\left(\mathrm{CH}_{3}\right), 35.8(\mathrm{C}-5), 46.0$ (C-4, C-6), 109.3 ($\mathrm{NHC}=\mathrm{C}$), 119.3, 122.4, 126.6, 126.8, 128.5, 139.0, 143.3, 149.1, 150.0 (Ar), 171.0 ($\mathrm{NH} \underline{C}=\mathrm{C}$). Anal. calc. for $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: C, 74.49 ; H, 5.92 ; N, 9.14. Found: C, 74.27; H, 5.81; N, 9.00.

2-(1-((2-Aminophenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18a). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ and o-phenylendiamine ($\mathbf{1 7 a}$) ($\left.19 \mathrm{mg}, 0.17 \mathrm{mmol}\right)$ in toluene yielded 18a ($45 \mathrm{mg}, 83 \%$) as a yellow solid. $\mathrm{Mp} 135-136{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z 321 $(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 400 \mathrm{MHz}\right) \delta: 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ 6), $3.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 5.19\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.61(\mathrm{td}, 1 \mathrm{H}, J=7.7,1.2 \mathrm{~Hz}, \mathrm{Ar}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.0 \mathrm{~Hz}$, Ar), $6.97(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}), 14.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta: 20.0\left(\mathrm{CH}_{3}\right), 36.9(\mathrm{C}-5), 46.7(\mathrm{C}-4, \mathrm{C}-6)$, $109.2(\mathrm{NHC}=\underline{\mathrm{C}}), 116.5,116.9,121.5,127.2,127.4,127.7,129.2,129.5,144.2,144.5(\mathrm{Ar}), 174.4(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$: C, 74.98; H, 6.29; N, 8.74. Found: C, 74.78; H, 6.02; N, 8.53.

2-(1-((2-(Methylamino)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (18b). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ and N^{1}-methylbenzene-1,2-diamine (17b) (49 $\mu \mathrm{L}$, $0.43 \mathrm{mmol})$ in toluene afforded $\mathbf{1 8 b}(110 \mathrm{mg}, 76 \%)$ as a yellow solid. $\mathrm{Mp} 144-146{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): $\mathrm{m} / \mathrm{z} 335(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 300 \mathrm{MHz}\right) \delta: 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.64$ (m, 2H, H-4, H-6), $2.70\left(\mathrm{~d}, 3 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right) 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 5.40\left(\mathrm{q}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right)$,
6.67 (m, 2H, Ar), 7.01 (dd, 1H, $J=7.6,1.2 \mathrm{~Hz}, \operatorname{Ar}), 7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~d}, 4 \mathrm{H}, J=4.4 \mathrm{~Hz}, \mathrm{Ar}), 14.46$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{-} \mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta: 19.3\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{NHCH}_{3}\right), 36.2(\mathrm{C}-5), 46.0(\mathrm{C}-4, \mathrm{C}-6), 108.6$ $(\mathrm{NHC}=\mathrm{C}), 110.7,115.6,121.3,126.5,126.7,126.8,128.5,129.3,143.5,144.7$ (Ar), 174.1 (NHC=C). Anal. calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\right): \mathrm{C}, 75.42 ; \mathrm{H}, 6.63 ; \mathrm{N}, 8.38$. Found: C, $75.44 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.19$.

2-(1-((2-Ethoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (20a). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}(62 \mathrm{mg}, 0.27 \mathrm{mmol})$ and o-phenetidine (19a) ($53 \mu \mathrm{~L}, 0.41$ mmol) in toluene afforded $\mathbf{2 0 a}\left(69 \mathrm{mg}, 76 \%\right.$) of as a white solid. Mp $125-127^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $350(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 1.30\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, 2.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.61 (m, 2H, H-4, H-6), 2.82 (m, 2H, H-4, H-6), 3.35 (m, 1H, H-5), 4.11 (q, 2H, J $\left.=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 7.02(\mathrm{td}, 1 \mathrm{H}, J=7.6,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{Ar}), 14.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta: 14.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 19.7\left(\mathrm{CH}_{3}\right), 36.1$ (C-5), $45.9(\mathrm{C}-6, \mathrm{C}-4), 64.0\left(\mathrm{CH}_{3} \underline{\mathrm{CH}}_{2} \mathrm{O}\right), 108.5(\mathrm{NHC}=\underline{\mathrm{C}}), 113.37,120.6,124.8,126.5,126.7,126.9$, 128.5, 129.1, 143.5, 152.2 (Ar), $172.3(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}\right): \mathrm{C}, 75.62 ; \mathrm{H}, 6.63 ; \mathrm{N}$, 4.01. Found: C, 75.47 ; H, 6.61; N, 3.89.

5-Phenyl-2-(1-((2-propoxyphenyl)amino)ethylidene)cyclohexane-1,3-dione (20b). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione ($\mathbf{(1 2})^{10}(62 \mathrm{mg}, 0.27 \mathrm{mmol})$ and 2-propoxyaniline ($\mathbf{1 9 b}$) ($61 \mathrm{mg}, 0.41 \mathrm{mmol}$) in toluene yielded 20b ($64 \mathrm{mg}, 65 \%$) as a white solid. $\mathrm{Mp} 120-122{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): $\mathrm{m} / \mathrm{z} 364$ $(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 1.01\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.81(\mathrm{~m}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.39(\mathrm{tt}, 1 \mathrm{H}, J=11.8,4.7$ $\mathrm{Hz}, \mathrm{H}-5), 3.97\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.12(\mathrm{ddd}, 1 \mathrm{H}, J=8.4,6.8,1.4 \mathrm{~Hz}, \mathrm{Ar})$, $7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.27(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}), 7.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 14.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 10.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 20.6\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 37.1(\mathrm{C}-5), 45.9,47.3(\mathrm{C}-6, \mathrm{C}-$ 4), $70.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 109.2$ ($\mathrm{NHC}=\underline{\mathrm{C}}$), 112.8, 120.6, 125.7, 126.8, 127.1, 128.9, 129.2, 143.3, 153.4, 165.2 (Ar), $174.0(\mathrm{NHC}=\mathrm{C})$ 196.5, 199.1 (CO). Anal. calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}\right)$: C, $76.01 ; \mathrm{H}, 6.93 ; \mathrm{N}, 3.85$. Found: C, 76.28; H, 6.78; N, 4.04.

2-(1-((2-Isopropoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (20c). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-
phenylcyclohexane-1,3-dione (12) ${ }^{10}$ ($51 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 2-isopropoxyaniline (19c) $(50 \mathrm{mg}, 0.33 \mathrm{mmol})$ in toluene afforded 20c ($52 \mathrm{mg}, 66 \%$) as a white solid. $\mathrm{Mp} 89-91{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): $\mathrm{m} / \mathrm{z} 364$ $(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}, 500 \mathrm{MHz}\right) \delta: 1.26\left(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.82$ (m, 2H, H-4, H-6), $3.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.66$ (hept, $\left.1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.01$ (td, $1 \mathrm{H}, J=7.7,1.1 \mathrm{~Hz}, \mathrm{Ar}), 7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 14.82(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}, 125 \mathrm{MHz}\right) \delta: 20.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 36.1(\mathrm{C}-5), 45.9(\mathrm{C}-6, \mathrm{C}-4)$, $71.0\left(\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 108.5(\mathrm{NHC}=\underline{\mathrm{C}}), 115.1,120.6,125.8,126.5,126.8,126.8,128.5,128.9,143.6,151.3$, (Ar), $172.0(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}\right)$: C, 76.01; H, 6.93; N, 3.85. Found: C, 76.30; H, 7.02; N, 4.00.

2-(1-((2-(Cyclopropylmethoxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione
(20d).
Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) $)^{10}(51 \mathrm{mg}, 0.22 \mathrm{mmol})$ and 2-(cyclopropylmethoxy)aniline $(19 d))^{30}(54 \mathrm{mg}, 0.33 \mathrm{mmol})$ yielded $\mathbf{2 0 d}(45 \mathrm{mg}, 57 \%)$ as a rosaceous solid. $\mathrm{Mp} 76-78{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $376(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 300 \mathrm{MHz}\right) \delta: 0.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right), 0.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-\right.$ $\left.3^{\prime}\right), 1.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5), $3.94\left(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.03(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Ar}), 7.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 14.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta: 3.0(\mathrm{C}-$ 2', C-3'), $9.9\left(\mathrm{C}-1\right.$ '), $19.9\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-5), 45.9(\mathrm{C}-6, \mathrm{C}-4), 72.8\left(\mathrm{OCH}_{2}\right), 108.5(\mathrm{NHC}=\mathrm{C}), 113.8,120.7$, $125.0,126.5,126.8,126.8,128.5,129.1,143.5,152.4(\mathrm{Ar}), 172.4(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}\right): \mathrm{C}$, 76.77; H, 6.71; N, 3.73. Found: C, 76.48; H, 6.50; N, 3.72.

2-(1-((2-(2-Hydroxyethoxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (22a). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10} \quad(143 \mathrm{mg}, 0.62 \mathrm{mmol})$ reacted with 2-(2-((tertbutyldimethylsilyl)oxy)ethoxy)aniline (21a) ${ }^{14}$ ($200 \mathrm{mg}, 0.75 \mathrm{mmol}$) in toluene (6 mL). Volatiles were removed and the residue was dissolved in anhydrous THF $(1.5 \mathrm{~mL})$ and 1 M TBAF in THF $(410 \mu \mathrm{~L}, 0.41$ mmol) was added. The reaction mixture was stirred at room temperature for 1 h , quenched with water and extracted with dichloromethane $(2 \mathrm{x} \quad 15 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography (hexane/ethyl acetate) to yield 22a ($109 \mathrm{mg}, 48 \%$ for the two steps) as a white solid. Mp $156-158^{\circ} \mathrm{C} . \mathrm{MS}$ (ES, positive mode): $\mathrm{m} / \mathrm{z} 366(\mathrm{M}+\mathrm{H})^{+}$. ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{DMSO}_{6}, 500 \mathrm{MHz}\right) \delta: 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 3.34$
(m, 1H, H-5), $3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.10\left(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.81(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{OH})$, 7.03 (td, 1H, $J=7.4,1.3 \mathrm{~Hz}, \mathrm{Ar}), 7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.7 \mathrm{~Hz}, \mathrm{Ar}), 7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.34$ (m, 2H, Ar), $7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 14.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta: 19.9\left(\mathrm{CH}_{3}\right), 36.1(\mathrm{C}-$ 5), $45.6(\mathrm{C}-4, \mathrm{C}-6), 57.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 65.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 108.9(\mathrm{NHC}=\mathrm{C}), 113.5,120.7,124.5,124.9$, 126.5, 126.8, 128.5, 129.1, 143.6, 152.5 (Ar), 172.5 ($\mathrm{NHC=C}$). Anal. calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$: C, 72.31; H , 6.34; N, 3.83. Found: C, 72.40; H, 6.53; N, 4.01.

2-(1-((2-(3-Hydroxypropoxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (22b). As described for compound 22a, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}$ ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 2-(3-((tert-butyldimethylsilyl)oxy)-propoxy)aniline (21b) ${ }^{14,15}$ ($73 \mathrm{mg}, 0.26 \mathrm{mmol}$) in toluene afforded a condensation product that was dissolved in anhydrous THF (1.3 mL) and treated with 1M TBAF ($290 \mu \mathrm{~L}$, $0.29 \mathrm{mmol})$. After stirring for 1 h at room temperature, the mixture was quenched with water and extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography (hexane/ethyl acetate) to yield $\mathbf{2 2 b}(58 \mathrm{mg}, 90 \%)$ as a white solid. Mp $83-85^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $380(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$) δ : $1.85\left(\mathrm{~m}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 2.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-$ 4), $3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.62(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}), 7.02$ (dt, $1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}, 6 \mathrm{H}$, Ar), 14.79 (br s, 1H, NH). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 125 \mathrm{MHz}$) $\delta: 20.3\left(\mathrm{CH}_{3}\right), 32.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 36.6(\mathrm{C}-5)$, 45.9 (C-6, C-4), $59.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{OH}\right), 70.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 108.5(\mathrm{NHC}=\underline{\mathrm{C}}), 112.2,114.3,116.6,127.2$, 128.9, 138.2, 144.0, 147.0, 146.1, 152.8, (Ar), 172.7 (NHC=C). Anal. calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}\right): \mathrm{C}, 72.80 ; \mathrm{H}$, 6.64; N, 3.69. Found: C, 72.53; H, 6.92; N, 3.99.

2-(1-((2-(2-(2-Hydroxyethoxy)ethoxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (22c). As described for compound 22a, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}(40 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ and 2-(2-(2-((tert-butyldimethylsilyl)oxy)ethoxy)ethoxy)aniline (21c) ${ }^{14,15}(81 \mathrm{mg}, 0.26 \mathrm{mmol})$ in toluene afforded a condensation product that was dissolved in anhydrous THF (1.3 mL) and treated with 1 M TBAF ($290 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$). After stirring for 1 h at room temperature, the mixture was quenched with water and extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude was purified by flash chromatography (hexane/ethyl acetate) to yield $\mathbf{2 2} \mathbf{c}$ ($40 \mathrm{mg}, 57 \%$) as a white solid. Mp $105-107^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $410(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta: 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4), 3.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.47-$
$3.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH} \underline{H}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.59(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, \mathrm{OH}), 7.04$ $(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 14.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}) \delta: 19.9\left(\mathrm{CH}_{3}\right), 36.2(\mathrm{C}-5), 46.0(\mathrm{C}-4, \mathrm{C}-6), 60.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 68.2,68.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 72.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 108.5(\mathrm{NHC}=\underline{\mathrm{C}}), 113.4,120.8,124.5,124.9,126.6$, $126.8,128.6,129.2,143.6,152.4(\mathrm{Ar}), 172.7(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}\right): \mathrm{C}, 70.40 ; \mathrm{H}, 6.65 ; \mathrm{N}$, 3.42. Found: C, 70.26; H, 6.45; N, 3.45.

2-(1-((2-(2-(2-Aminoethoxy)ethoxy)phenyl)amino)ethylidene)-5-phenylcyclo-hexane-1,3-dione (22d). As described for compound 22a, reaction of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}$ ($220 \mathrm{mg}, 0.78 \mathrm{mmol}$) and tert-butyl(2-(2-(2-aminophenoxy)ethoxy)ethyl)carbamate (21d) ${ }^{16}$ (466 $\mathrm{mg}, 1.17 \mathrm{mmol}$) in toluene afforded 360 mg of the condensation product. MS (ES, positive mode): m/z $509(\mathrm{M}+\mathrm{H})^{+}$. A solution of this compound ($300 \mathrm{mg}, 0.60 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was treated with TFA $(450 \mu \mathrm{~L}, 6.00 \mathrm{mmol})$ at room temperature overnight. Volatiles were removed in vacuo yielding 22d ($288 \mathrm{mg}, 84 \%$ yield, two steps) as a white solid (trifluoroacetate salt). Mp $148-150{ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $409(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (methanol- $\left.\mathrm{d}_{4}, 500 \mathrm{MHz}\right) \delta: 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 2.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.15(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OPh}\right), 4.27(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OPh}\right), 7.09(\mathrm{dt}, 1 \mathrm{H}, J=7.7,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.18(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}, \mathrm{Ar}), 7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.30$ (dd, $1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}, \mathrm{Ar}), 7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{ddd}, 1 \mathrm{H}, J=8.37 .6,1.6 \mathrm{~Hz}, \mathrm{Ar})$. Anal. calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$: C, 59.77; H, 5.59; N, 5.39. Found: C, 59.50; H, 5.30; N, 5.42.

2-(1-((2-(2-Morpholinoethoxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (24). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}$ ($58 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 2-[2-(morpholin-4-yl)ethoxy]aniline (23) ${ }^{19}$ (37 $\mathrm{mg}, 0.17 \mathrm{mmol}$) reacted in toluene at $110{ }^{\circ} \mathrm{C}$ overnight. After workup, the residue was purified by CCTLC (dichloromethane/methanol 10/1) to yield 24 ($24 \mathrm{mg}, 32 \%$) as a brown oil. MS (ES, positive mode): m/z 435 $(\mathrm{M}+\mathrm{H})^{+1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{-1}, 400 \mathrm{MHz}\right) \delta: \delta 2.39-2.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH} 3, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.56-2.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$, H-6), $2.66(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH} 2), 2.72-2.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.50-3.54(\mathrm{~m}, 4 \mathrm{H}$, H-2', H-6'), $4.16\left(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.03(\mathrm{td}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.19-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-$ $7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 14.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $\left.{ }_{6}\right) \delta 19.8\left(\mathrm{CH}_{3}\right), 36.2(\mathrm{C}-5), 43.1(\mathrm{C}-4, \mathrm{C}-$ 6), $53.6\left(\mathrm{C}^{\prime}, \mathrm{C}^{\prime}\right), 56.8\left(\mathrm{NCH}_{2}\right), 66.2\left(\mathrm{C}^{\prime}, \mathrm{C}^{\prime}\right), 66.6\left(\mathrm{OCH}_{2}\right), 108.4(\mathrm{NHC}=\underline{C}), 113.4,120.8,124.9,126.5$, 126.8, 126.9, 128.5, 129.2, 143.5, $152.4(\mathrm{Ar}), 172.5(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}$, 70.41 ; H, 7.05; N, 6.32. Found: C, 70.70; H, 7.09; N, 6.70.

2-((1-(3-((Tert-butyldimethylsilyl)oxy)propyl)piperidin-4-yl)oxy)aniline (25). To a mixture containing 4-(2-nitrophenoxy)piperidine ($372 \mathrm{mg}, 1.11 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(118 \mathrm{mg}, 1.11 \mathrm{mmol})$ in acetone $(4.4 \mathrm{~mL})$, 3bromopropanol ($194 \mu \mathrm{~L}, 2.22 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h under argon atmosphere. After cooling, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added and extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by CCTLC (dichloromethane:ammonia solution 7 N in methanol, 10:0.2) to yield 3-(4-(2-nitrophenoxy)piperidin-1-yl)propan-1-ol ($230 \mathrm{mg}, 74 \%$) as a yellow oil. MS (ES, positive mode): m/z $281(\mathrm{M}+\mathrm{H})^{+}$. To a solution of this alcohol ($210 \mathrm{mg}, 0.75 \mathrm{mmol}$) in DMF anhydrous, tert-butyldimethylsilyl chloride ($159 \mathrm{mg}, 1.12 \mathrm{mmol}$), dimethylaminopyridine ($92 \mathrm{mg}, 0.075$ $\mathrm{mmol})$ and imidazole ($102 \mathrm{mg}, 1.50 \mathrm{mmol}$) were added. The reaction mixture was stirred at rt for 16 h under argon atmosphere, concentrated in vacuo, washed with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with dichloromethane (2×20 $\mathrm{mL})$. The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (dichloromethane/methanol, 10/1) to yield the protected alcohol (293 mg, 99%) of [MS (positive mode): m/z $395(\mathrm{M}+\mathrm{H})^{+}$] that was used for the next step. A solution of the protected alcohol (293 mg, 0.74 mmol) in ethanol $(12 \mathrm{~mL})$ in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ (catalytic amount) was hydrogenated (30 psi) for 5 h at $30^{\circ} \mathrm{C}$. Then, the reaction mixture was filtered and volatiles were removed to yield 25 ($267 \mathrm{mg}, 99 \%$) of as rosaceous oil that was pure enough for the next step. MS (ES, positive mode): $\mathrm{m} / \mathrm{z} 365(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 0.87\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-3\right.$,, H-5'), 1.92 (m, 2H, H-3', H-5'), 2.35 (m, 2H, H-2', H-6'), 2.45 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.70 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$, H-6'), $3.62\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 4.26 (m, 1H, H-4'), 4.65 (br s, 2H, NH2), 6.47 (m, 1H, Ar), 7.64 (m, 2H, Ar), 6.81 (m, 1H, Ar).

2-(1-((2-((1-(3-Hydroxypropyl)piperidin-4-yl)oxy)phenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-

dione (26). Following the general procedure for the reaction of 2-acylcyclohexane-1,3-diones with anilines, a solution of 2-acetyl-5-phenylcyclohexane-1,3-dione (12) ${ }^{10}(155 \mathrm{mg}, 0.68 \mathrm{mmol})$ reacted with $25(164 \mathrm{mg}$, $0.45 \mathrm{mmol})$ in toluene. After cooling, the solvent was evaporated to dryness and the residue was dissolved in dichloromethane $(1.4 \mathrm{~mL})$ and TFA $(1.4 \mathrm{~mL})$. The reaction mixture was stirred at rt for 1 h and volatiles were removed. The residue was purified by CCTLC (dichloromethane/ methanol $10 / 1$) to yield 26 (102 mg, 49\%) as a white solid. Mp 104-106 ${ }^{\circ} \mathrm{C}$. MS (ES, positive mode): m/z $463(\mathrm{M}+\mathrm{H})^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 5^{\prime}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right), 2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right)$, $2.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ ', H-6'), $2.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6)$,
$2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4{ }^{\prime}, \mathrm{OH}\right)$, $7.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}), 14.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) ס: $20.0\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{C}-3 ', \mathrm{C}-5{ }^{\prime}\right), 36.2(\mathrm{C}-5), 40.1\left(\mathrm{C}-2\right.$ ', $\mathrm{C}-6$ '), $49.5(\mathrm{C}-4, \mathrm{C}-6), 55.1\left(\mathrm{CH}_{2}\right), 59.5$ $\left(\mathrm{CH}_{2}\right), 72.9$ (C-4'), 108.5 ($\mathrm{NHC}=\mathrm{C}$), 115.3, 120.8, 126.1, 126.5, 126.8, 127.0, 128.5, 128.9, 143.5, 150.1 (Ar), $172.2(\mathrm{NHC}=\mathrm{C})$. Anal. calc. for $\left(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$: C, $71.31 ; \mathrm{H}, 7.48 ; \mathrm{N}, 5.94$. Found: C, 71.36; H, 7.60; N, 6.10.

Biological methods

Cell proliferation.

Endothelial cells. Bovine aortic endothelial cells (BAEC) and human microvascular endothelial cells (HMEC1) were seeded in 48 -well plates at 10,000 cells/well or $20,000 /$ well), respectively. After $24 \mathrm{~h}, 5$-fold dilutions of the compounds were added. The cells were allowed to proliferate 3 or 4 days for BAEC and HMEC-1, respectively, in the presence of the compounds, trypsinized, and counted by means of a Coulter counter (Analis, Belgium).

Tumor cells. Human cervical carcinoma (HeLa) cells were seeded in 96 -well plates at 15,000 cells/well in the presence of different concentrations of the compounds. After 4 days of incubation, the cells were trypsinized and counted in a Coulter counter. Suspension cells (Mouse leukemia L1210 and human lymphoid CEM cells) were seeded in 96 -well plates at 60,000 cells/well in the presence of different concentrations of the compounds. L1210 and CEM cells were allowed to proliferate for 48 h or 96 h , respectively and then counted in a Coulter counter. The 50% inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ was defined as the compound concentration required to reduce cell proliferation by 50%.

Cell cycle analysis. HMEC-1 cells were seeded in 6 -well plates at 125,000 cells/well in DMEM with 10% FBS. After 24 h , the cells were exposed to different concentrations of the compounds. After 16h, the DNA of the cells was stained with propidium iodide using the CycleTEST PLUS DNA Reagent Kit (BD Biosciences, San Jose, CA). The DNA content of the stained cells was assessed by flow cytometry on a FACSCalibur flow cytometer and analyzed with CellQuest software (BD Biosciences) within 3h after staining. Cell debris and clumps were excluded from the analysis by appropriate dot plot gating. Percentages of sub-G1, G1, S, and $\mathrm{G}_{2} / \mathrm{M}$ cells were estimated using appropriate region markers.

Tube destruction. Wells of a 96 -well plate were coated with $70 \mu \mathrm{l}$ matrigel $(10 \mathrm{mg} / \mathrm{ml}$, BD Biosciences, Heidelberg, Germany) at $4^{\circ} \mathrm{C}$. After gelatinization at $37^{\circ} \mathrm{C}$ during 30 min , $\mathrm{HMEC}-1$ cells were seeded at 60,000 cells/well on top of the matrigel in $200 \mu \mathrm{l}$ DMEM containing 10% FCS. After 3 h of incubation at
$37^{\circ} \mathrm{C}$, when the endothelial cells had reorganized to form tube-like structures, the compounds were added. Two hours later,the cultures were photographed at 4 x magnification. Tube formation was quantified by giving a score from 0 (no tubes) to 3 (complete vascular network, as seen in control cultures without compound).

Tubulin binding. Human breast carcinoma MDA-MB-231 cells were seeded in 6 -well plates at 500,000 cells/well. After 48 h , compounds were added to the cells for 16 h before adding EBI (N, N '-ethylenebis(iodoacetamide) at $100 \mu \mathrm{M}$. After 1.5 h , the cells were harvested and cell extracts were prepared for western blot analysis. Twenty $\mu \mathrm{g}$ of proteins were subjected to gel electrophoresis using 0.1% SDS $(85 \%$ purity) and 10% polyacrylamide gels. After electrophoresis, proteins were transferred to pretreated Hybond-P polyvinylidene difluoride (PVDF) membranes (Amersham Biosciences). The membranes were incubated for 1 h at room temperature in blocking buffer (2.5% non-fat dry milk in PBS containing 0.1% Tween) and subsequently for 16 h at $4^{\circ} \mathrm{C}$ in blocking buffer with primary antibodies raised against β-tubulin. After washing, the membranes were incubated with the corresponding horseradish peroxidase-conjugated secondary antibody in blocking buffer for 25^{\prime}, at room temperature. Next, the membranes were washed extensively. Immunoreactive proteins were detected by chemiluminescence (ECLplus, Bio-Rad).

Determination of binding constants.

Proteins and ligands Calf brain tubulin was purified as described. ${ }^{31}$ (R)-(+)-ethyl 5-amino 2-methyk-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate (R-PT) ${ }^{20}$ was a kind gift of Prof. G.A., Rener Organic Chemistry Research Department, Southern Research Institute, Birmingham, Alabama. The compounds were diluted in 99.8% D6-DMSO (Merck, Darmstadt, Germany) to a final concentration of 10 mM and stored at $80^{\circ} \mathrm{C}$.

Determination of binding constants. R-PT ($\left.\mathrm{Ka} 5.1 \times 10^{6} \mathrm{M}^{-1}\right)^{10}$ was used as a reference ligand as described in reference. ${ }^{32}$ For that purpose, the fluorescence emission of a previous mixed sample of $0.2 \mu \mathrm{M}$ of R-PT and $0.2 \mu \mathrm{M}$ of tubulin was evaluated in presence of increasing concentrations of studied ligand in a black 96 -well plate $(0 ; 0.05 ; 0.2 ; 0.5 ; 2 ; 5 ; 10 ; 30 ; 50 ; 70 \mu \mathrm{M})$. The samples were incubated 30 minutes at $25^{\circ} \mathrm{C}$ in a Varioskan plate reader (Thermo Scientific Waltham, Massachusetts, USA) before the fluorescence emission intensity at 456 nm (excitation 374 nm) was measured. The data were analyzed and the binding constants determined using Equigra V5.0. ${ }^{31}$

Solubility determination.

Excess amount of the tested compound was added to $400 \mu \mathrm{~L}$ of PBS buffer with 1% DMSO, and the resulting suspension was shaken at room temperature for 2 h on a rotary shaker. The samples were centrifuged at 135 rpm in a Hettich microcentrifuge for 15 min at room temperature. Finally, $160 \mu \mathrm{~L}$ of the clear supernatant were transferred in a quartz microplate and were diluted by adjunction of $40 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$:DMSO 8:2 solution. The solubility was determined using UV detection and comparison with calibration standards previously prepared. Standards are made in an $\mathrm{PBS}: \mathrm{CH}_{3} \mathrm{CN}$ (8:2) solution to ensure overall compound solubility. Additionally, the level of DMSO in all calibrators is maintained at $5 \%(\mathrm{v} / \mathrm{v})$ ensuring that the final solvent content of all standards and samples remains consistent. For the preparation of standards, the PBS: $\mathrm{CH}_{3} \mathrm{CN}$ solution and DMSO were added to the plate and mixed thoroughly before the addition of 10 mM DMSO stock compound. Concentration of the 5 standard calibrators were $10 \mu \mathrm{M}, 100 \mu \mathrm{M}, 250 \mu \mathrm{M}, 350 \mu \mathrm{M}$ and $500 \mu \mathrm{M}$. A standard solution with a known concentration was used to validate the calibration curve.

Computational studies

Docking of 20a. Compound 20a was used as ligand for the automated docking experiments. DAMA-colchicine-tubulin complex (Protein Data Bank code: 1SA0) ${ }^{23}$ and TN-16-tubulin complex (PDB ID: 3HKD) ${ }^{9}$ were retrieved from the Protein Data Bank. ${ }^{33}$ AMBER-compatible RESP point charges were used for 20a. The Lamarkian genetic algorithm implemented in AutoDock 4.0.5 ${ }^{24}$ was used to generate the docked conformations within the putative binding cavity by randomly changing the overall orientation of the molecule as well as the torsion angles of all rotable bonds. Default settings were used except for the number of runs, population size, and maximum number of energy evaluations, which were fixed at 250,100 and 250.000, respectively. Rapid intra- and intermolecular energy evaluations of each configuration was achieved by having the receptor's atomic affinity potentials for aliphatic and aromatic carbon, oxygen, nitrogen and hydrogen atoms precalculated in a three-dimensional grid with a spacing of $0.375 \AA$. A distance-dependent dielectric function was used in the computation of electrostatic interactions.

Conflict of interest.

The authors declare no financial or commercial conflict of interest.

Abbreviations

VDA: vascular-disrupting agent; TN-16: 3-[1-(Phenylamino)ethylidene]-5-(phenylmethyl)-2,4pyrrolidinedione ;EBI: $\quad N, N$ '-ethylene-bis(iodoacetamide);R-PT: (R)-(+)-ethyl $\quad 5$-amino \quad 2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl carbamate.

Acknowledgments.

M.-D. C. thanks the Fondo Social Europeo (FSE) and the JAE Predoc Programme for a predoctoral fellowship. This project has been supported by the Spanish Ministerio de Economía y Competitividad (SAF2012-39760-C02-01 to E.-M. P, M.-J. P.-P. and M.-J. C and BIO2013-42984-R to J. F. D.), and Comunidad de Madrid (BIPEDD2; ref. P2010/BMD-2457 to M.-J. C and J. F. D.). J. F. D. acknowledges networking contribution by the COST Action CM1407 "Challenging organic synthesis inspired by naturefrom natural products chemistry to drug discovery" and the COST action CM1470. We also wish to thank Eef Meyen and Lizette van Berckelaer for excellent technical assistance.

References

1. K. J. Verhey and J. Gaertig, Cell Cycle, 2007, 6, 2152-2160.
2. R. A. Stanton, K. M. Gernert, J. H. Nettles and R. Aneja, Medicinal Research Reviews, 2011, 31, 443-481.
3. M. M. Mita, L. Sargsyan, A. C. Mita and M. Spear, Expert Opinion on Investigational Drugs, 2013, 22, 317-328.
4. D. W. Siemann, Cancer Treat. Rev., 2011, 37, 63-74.
5. Y. Lu, J. Chen, M. Xiao, W. Li and D. D. Miller, Pharm. Res., 2012, 29, 2943-2971.
6. E. L. Schwartz, Clin. Cancer. Res., 2009, 15, 2594-2601.
7. R. Alvarez, M. Medarde and R. Pelaez, Curr. Top. Med. Chem., 2014, 14, 2231-2252.
8. A. Massarotti, A. Coluccia, R. Silvestri, G. Sorba and A. Brancale, ChemMedChem, 2012, 7, 33-42.
9. A. Dorleans, B. Gigant, R. B. G. Ravelli, P. Mailliet, V. Mikol and M. Knossow, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13775-13779.
10. M.-D. Canela, M.-J. Pérez-Pérez, S. Noppen, G. Sáez-Calvo, J. F. Díaz, M.-J. Camarasa, S. Liekens and E.-M. Priego, J. Med. Chem., 2014, 57, 3924-3938.
11. WO 2008142720 A2, 2008 Nov 27.
12. W. F. McCalmont, J. R. Patterson, M. A. Lindenmuth, T. N. Heady, D. M. Haverstick, L. S. Gray and T. L. Macdonald, Bioorg. Med. Chem., 2005, 13, 3821-3839.
13. P. Wu, T. E. Nielsen and M. H. Clausen, Trends Pharmacol. Sci., 2015, 36, 422-439.
14. WO 2003072545 A1, 2003 Sep 04.
15. A. Nitta, Y. Iura, H. Inoue, I. Sato, K. Morihira, H. Kubota, T. Morokata, M. Takeuchi, M. Ohta, S.-i. Tsukamoto, T. Imaoka and T. Takahashi, Bioorg. Med. Chem., 2012, 22, 6876-6881.
16. P. M. L. Robitaille and Z. Jiang, Biochemistry, 1992, 31, 12585-12591.
17. C. Tang, G. Gu, B. Wang, X. Deng, X. Zhu, H. Qian and W. Huang, Chemical Biology \& Drug Design, 2014, 83, 324-333.
18. D. E. Durrant, J. Richards, A. Tripathi, G. E. Kellogg, P. Marchetti, M. Eleopra, G. Grisolia, D. Simoni and R. M. Lee, Investigational New Drugs, 2009, 27, 41-52.
19. WO 2008001076 A1, 2008 Jan 3.
20. C. Temple, G. A. Rener and R. N. Comber, J. Med. Chem., 1989, 32, 2363-2367.
21. K. Xu, P. M. Schwarz and R. F. Luduena, Drug Dev. Res., 2002, 55, 91-96.
22. F. Cortese, B. Bhattacharyya and J. Wolff, J. Biol. Chem., 1977, 252, 1134-1140.
23. R. B. G. Ravelli, B. Gigant, P. A. Curmi, I. Jourdain, S. Lachkar, A. Sobel and M. Knossow, Nature, 2004, 428, 198-202.
24. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, J. Comput. Chem., 2009, 30, 2785-2791.
25. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew and A. J. Olson, J. Comput. Chem., 1998, 19, 1639-1662.
26. Y. Yamazaki, K. Tanaka, B. Nicholson, G. Deyanat-Yazdi, B. Potts, T. Yoshida, A. Oda, T. Kitagawa, S. Orikasa, Y. Kiso, H. Yasui, M. Akamatsu, T. Chinen, T. Usui, Y. Shinozaki, F. Yakushiji, B. R. Miller, S. Neuteboom, M. Palladino, K. Kanoh, G. K. Lloyd and Y. Hayashi, J. Med. Chem., 2012, 55, 1056-1071.
27. J. F. Díaz and J. M. Andreu, J. Biol. Chem., 1991, 266, 2890-2896.
28. D. Leynadier, V. Peyrot, M. Sarrazin, C. Briand, J. M. Andreu, G. A. Rener and C. Temple, Biochemistry, 1993, 32, 10675-10682.
29. P. Q. Le, T. S. Nguyen and J. A. May, Organic Lett., 2012, 14, 6104-6107.
30. US 8383826 B2, 2013 Mar 28.
31. J. M. Andreu, in Methods in Molecular Medicine, ed. J. Zhou, Humana Press Inc., Totowa, NJ, 2007, vol. 137, ch. Microtubule Protocols, pp. 17-28.
32. J. F. Díaz and R. M. Buey, in Methods in Molecular Medicine, ed. J. Zhou, Humana Press Inc., Totowa, NJ, 2007, vol. 137, ch. Microtubule Protocols, pp. 245-260.
33. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, Nucleic Acids Res., 2000, 28, 235-242.

Table of contents graphic
Tatgerting the colchicine site in tubulin through cyclohexanedione derivatives
María-Dolores Canela, Oskía Bueno, Sam Noppen, Gonzalo Sáez-Calvo, J. Fernando Díaz, María-José Camarasa, Sandra Liekens, María-Jesús Pérez-Pérez and Eva-María Priego.

